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Abstract 

In this paper, we show decidabil i ty of a rather 
expressive fragment of the situation calculus. 
We allow second order quantif ication over fi­
nite and inf inite sets of situations. We do not 
impose a domain closure assumption on ac­
tions; therefore, infinite and even uncountable 
domains are allowed. The decision procedure is 
based on automata accepting infinite trees. 

1 In t roduct ion 
During the last decade, several action formalisms have 
been developed: [Reiter, 1991, Gelfond and Lifschitz, 
1993, Sandcwall, 1994, Mil ler and Shanahan, 1994], to 
mention a few. The ul t imate goal of developing these 
formalisms is to perform reasoning about actions, which 
generally amounts to comput ing answers to queries. 
More precisely, given action description theory T and 
query , we are interested whether is a logical con 
sequence of T. Obviously, for some theories (in expres­
sive languages) logical consequence and thus query 
answering — wil l not be deeidable. It is important to 
establish under what restrictions on the language one 
can obtain an answer for an arbitrary query. Wre solve 
this question positively for a rather expressive fragment 
of the situation calculus1. This language is second or­
der, wi th quantif ication over finite and infinite sets of 
situations. The domain closure axiom for actions is not 
assumed, therefore inf inite and even uncountable action 
domains are allowed. 

Similar work has been done for the action language 
A proposed in [Gelfond and Lifschitz, 1993], Liber-
atore [Liberatore, 1997] studied the complexity of de­
ciding whether a set of statements in this language is 
consistent, and specified which restrictions of A lead to 
t ractabi l i ty and which do not. The author describes a 
reduction f rom proposit ional satisfiabil ity to consistency 
in A thus showing NIncompleteness of the problem. It 
follows that the entai lment problem for the language A 
is co-NP-eomplete. Since the language of the situation 

1 We use the dialect of the situation calculus developed by 
the members of the Cognitive Robotics group in Toronto. 

calculus is more expressive (we allow second order quan­
t i f ication), the reduction f rom proposit ional satisfiabil ity 
cannot be applied. 

Here, we reduce the problem of decidabil ity of the ba­
sic action theory (cf. [Pirr i and Reiter, 1999]) to the 
emptiness problem for a tree automaton. The empt i ­
ness problem is to determine whether the language ac­
cepted by a tree automaton is empty. From our construc­
tion it follows that if the accepted language is empty, 
then is unsatisfiable which is equivalent to the 
fact that is logically impl ied by Since the empt i ­
ness problem for tree automata is deeidable, the problem 

is deeidable as well. 
In the fol lowing section, we specify the language 

of the situation calculus. Section 3 describes the basic 
action theory Section 4 surveys basic definitions of 
automata theory on inf inite trees. Then, in Section 5, we 
construct a tree automaton corresponding to the basic 
action theory Section 6 is devoted to the main step 
in the proof of decidabil i ty - translat ing an arbitrary 
formula in the language of the si tuat ion calculus to a 
tree automaton. Final ly, in Section 7, we discuss the 
implications of this work and outl ine directions for future 
research. 

2 T h e Language 
We consider a two-sorted version of the language of 
the situation calculus wi th equality and wi th sorts for ac­
tions and situations. The pr imi t ive non-logical symbols 
of sort actions consist of variables , and con­
stants . . . The pr imi t ive non-logical symbols 
of sort situations consist of variables . . . , con­
stant binary function do where is an action, 
s is a si tuat ion. This function defines a successor situa­
t ion in terms of a current si tuat ion and a performed ac­
t ion. Finitely many unary predicate symbols 
called fluents represent properties of the world and have 
situations as their arguments. We allow quantif ication 
over finite and infinite sets of situations, i.e., over unary 
predicate variables. Sometimes it is convenient to view a 
situation as a str ing of performed actions. We shall use 
binary relation to represent the prefix relation on 
the corresponding strings of actions. Below, in Section 3, 
it w i l l be seen that __ is second order definable in terms 
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of function and hence is inessential. The logical 
symbols of the language are Other logical 
connectives and the universal quantifier are the usual 
abbreviations. Note that we do not include the predi­
cate Poss (of. [Pirr i and Reiter, 1999]). Including it is 
unproblernatic, but would complicate the exposition. 

It is convenient to introduce the fol lowing shorthands. 

These sentences introduce notations for least and great­

est fixed points respectively. In these sentences, 

is any formula in the language w i th no free variables 

other than X and s. The fol lowing examples demon­

strate the expressive power of this language. Property 

"there is a path in the tree of situations where f lu­

ent F holds in inf initely many situations" is express-

occurrence of a situation where fluent F1 holds, is even­

tual ly followed by a situation where holds". Prop­

erty "there is a path in the tree of situations where 

fluent F holds in every s i tuat ion" is represented by 

3 Basic Act ion Theories 
A basic action theory is a set of axioms 

where is the set of foundational axioms for situations, 
is the set of successor state axioms, one for each 

fluent, u n a is the set of unique name axioms for actions, 
and Ds0 is the description of the in i t ia l s i tuat ion. 

First we consider the foundational axioms for the sit­
uation c a l c u l u s , T h e unique name axioms for situa­
tions are 

The induction principle for situations is 

(i) 

these axjoms guarantee that situations compose an in­
finitely branching tree. Indeed, it can be shown that 
the class of tree-like structures is completely character­
ized by the induct ion principle on situations and unique 
name assumptions for situations [Ternovskaia, 1998]. 
The properties of the prefix relation are as follows. 

(3) 

Formula cS is an abbreviation for s 
Relation s s' can be defined by 

We use it for easier formalizations. The foundational 
axioms for situations, are (1), (2) and (3). 

Successor state axioms, have the form 

Formula ( r e s p e c t i v e l y , d e n o t e s a f i r s t 
order formula specifying the conditions under which flu­
ent F is true (respectively, false) in the successor sit­
uation [Reiter, 1991]. The only free variables of these 
formulae are those among , Function symbol do does 
not occur in these formulae. 

The unique name axioms, specify that any two 
actions wi th different names are not equal. The descrip­
t ion of the in i t ia l s i tuat ion, , is a set of first order 
sentences that are uni form in i.e., contain no situ­
ation term other than We shall call the ini­
tial database. For simpl ic i ty, we assume that the in i t ia l 
database is first order and does not contain sentences 
mentioning no si tuat ion term at al l . We do not require 
completeness of 

4 Tree Automata 
Let be a finite set. Later, in sections 
5 and 6, we shall associate the elements of this set wi th 
actions. An unlabeled k-ary tree is specified by its set of 
nodes; each node is a str ing in The empty str ing 
corresponds to the root of the tree. If is a node, then 

is the i-th son of Notice that this set of strings 
is prefix-closed, and each str ing uniquely determines a 
node in the tree. Suppose a finite alphabet of labels 
is given. A k-ary labeled tree t is specified by its set 
of nodes (the "domain" dorn(t) and a valuation 
of the nodes (the "labeling funct ion" : doin(t) 
By we denote the set of inf inite labeled trees with 
domain A subset T of wi l l be called a tree lan­
guage. An example of a tree language is the language 

Figure 1: An inf ini te labeled tree 
wi th the set of nodes dom(t) and labels 
from 

defined in Section 5. This language is determined 
by the basic action theory Another example of a tree 
language is the language associated wi th an arbi trary 
formula in the language We define in Section 6. 
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Both languages, and are sets of trees of situations 
labeled wi th tuples of fluent values. 

Let us review definitions from the general theory of 
automata on inf inite A:-ary trees. A Biichi tree automa­
ton A over alphabet is a quadruple 
where 

The transit ion relation specifies which tuples 
of states of A can be assumed at the sons of a node, 
given the node's label in and the state of the au­
tomaton assumed there. A run of A on a tree 

i s a map wi th and 

In other words, a run is a labeling of the nodes of the 
tree wi th the states of the automaton A that obeys 
the transit ion funct ion. Let be the proper prefix re­
lation over A path through is a maximal subset 
of dom l inearly ordered by is a path through 

then denotes the restriction of the function to 
the set be the set of infinite strings over the 
set of states For an - sequence 
from , the ' in f in i ty set" of 

there exist infinitely many n such that 
The run r is successful if on each path some final state oc­
curs infinitely often, i.e., for all paths 

A R a b i n tret automaton over has the form A = 

Figure 2: A graphical representation of a Biichi tree au­
tomaton accepting the tree from Figure 1. 

A tree t is accepted by a Bi ichi, respectively Ra­
bin tree automaton A, if some run of A is successful in 
the corresponding sense. A set is Biichi recog­
nizable, respectively Rabin recognizable, if it consists of 
the trees accepted by a Bi ichi , respectively Rabin tree 
automaton. Since any Biichi tree automaton may be re­
garded as a Rabin tree automaton (set 
any Biichi recognizable set of infinite trees is Rabin rec­
ognizable. Both Biichi and Rabin tree automata are 
closed under union, intersection and projection. The fa­
mous Rabin complementation theorem holds for Rabin 

tree automata, but fails for Biichi tree automata. More 
informat ion about tree automata can be found in the 
excellent survey [Thomas, 1990]. 
Example 1 Consider the inf inite labeled tree repre­
sented in Figure I. This tree has the fol lowing property. 
The label of the root is 0. The son WAQ of every node 
is always labeled wi th 1. If the label of a current node 
is 1 (0, respectively), then the label of the node is 
0 ( 1 , respectively). A deterministic tree automaton ac­
cepting this tree is represented in Figure 2. The in i t ia l 
state is and the accepting state is . Notice that we 
could rename state of the automaton as 0 and state 
q-2 as 1. The input label then would always coincide wi th 
the current state of the automaton. An automaton hav­
ing this property is called input-free. The automata from 
Section 5 are input-free. This is not the case, however, 
for automata considered in Section 6. 

5 Translating V to a Tree Automaton 
In the remaining part of the paper, we shall consider the 
trees of situations. The set of nodes, the domain, of such 
a tree is the set. of strings of actions. The empty str ing 

corresponds to the in i t ia l situation If w is a str ing 
representing situation s, then str ing w Ai,, where Ai is 
an action, represents do Let the language include 

fluents, then the alphabet, of labels is the set of 
all tuples of length over alphabet Position of 
the tuple corresponds to the -th fluent, 1 The 
labeling function maps each node of the tree, a si tuat ion, 
to an element of 

In this section, we demonstrate a connection between 
the structures of the basic action theory and the trees 
accepted by a Biichi tree automaton. The main difficulty 
in proving such a connection is that the universe of ac­
tions may be inf ini te, or even uncountable. To approach 
this problem, we first introduce a structure of such 
that if is satisfiable then this structure is a model of 
Let be the set of all constants of 
sort action in the language be a structure with 
the universe of actions 
The universe of situations, "" is constructed by apply­
ing function do start ing from the in i t ia l situation. The 
basic action theory is satisfiable if and only if 

Given we consider infinite 
-ary trees where the domain (i.e., the set of nodes) 

is the set of strings over 
Let be the fold Cartesian product of 

Every tuple of sets of situations yields a 
tree that labels each node wi th tu­
ple , where cy I is the char­
acteristic function of V. Notice that each fluent F can 
be seen as the set of situations where it is true. Thus, 
every tuple of fluents yields a -ary tree 

labeled w i th the elements of . Notice 
further that the characteristic function < of F spec­
ifies whether fluent F holds in the situation represented 
by str ing The characteristic funct ion for each fluent 
is determined by successor state axioms, and by the 
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in i t ia l database, W i t h every set of axioms we 
shall associate a Biichi tree automaton Ap that accepts a 
tree language This automaton depends 
on the description of the in i t ia l si tuat ion and the 
choice of successor state axioms 

T h e o r e m 1 Let be the model of defined above. 
With every set of axioms one can effectively associate 

tree Biichi automaton labeled with the elements of 
such that 

Proof We shall construct a Biichi tree automaton Ap that 
accepts trees labeled wi th tuples 
for each node The set of states of . is the set of 
all possible -tuples over 

First, we define the set of in i t ia l states Note that 
we have restricted to be a collection of ground for­
mulae. Find the set of satisfying t ru th assignments for 

or determine that no such assignment exists. In 
the latter case is unsatisfiable, and is an automa­
ton wi thout final states. This means that the set of trees 
it accepts is empty. The set of t ru th assignments corre­
sponds to the set of tuples of char­
acteristic functions specifying which fluents hold in the 
in i t ia l s i tuat ion. Each such tuple is an element of 

Second, we define the transit ion relation , 
This relation specifies what tuples of automaton 

states may be assumed at the sons of the node, 
i.e., what states (tuples of fluent values) are reached by 
performing each action . A transit ion exists if and only 
if the state of the automaton is the same as the label of 
the current node. It is easy to see that the set of all t ru th 
assignments satisfying successor state axioms determines 
the transit ion relation. The eomputabi l i ty of this set 
of t ru th assignments is guaranteed by the definit ion of 

and the form of If this set does not exist 
we, again, construct so that it accepts the empty 
language. 
E x a m p l e 2 Suppose includes two successor state ax­
ioms: 

The transit ion function is determined by the t ru th as­
signments that satisfy the successor state axioms. For 
example, suppose is false and is true in a situ­
at ion. This corresponds to the label of the tree 
of situations and to a state of the automaton wi th the 
same name. (Recall that all automata considered in this 
section are input-free.) Now we have to specify which 
tuples of states may be assumed at the four sons of this 
node. Suppose is performed. According to the suc­
cessor state axioms, wi l l be true and wi l l be false in 
the successor si tuat ion. This corresponds to state 
of the automaton. We map all actions different from AQ 
to the action Thus, whenever we consider 
the transit ion f rom node to node . This transi­
t ion leads to state (0,1) if equals and to state 

otherwise. For actions the construc­
t ion is similar. A tree automaton corresponding to these 
successor state axioms is represented in Figure 3. 

Figure 3: A Biichi tree automaton where the transi­
t ion function is determined by the successor state axioms 
from Example 2. 

Now we continue defining The set F of final states 
of this automaton coincides wi th the set of all states, 
We impose Biichi acceptance condit ion: a tree over is 
accepted by if there is a run such that in all possible 
paths some final state occurs infinitely often. We claim 
that i f a n d o n l y i f accepts 

Suppose Then is satisfied by ary 
trees of situations; specifies the set of in i t ia l states 
of and is satisfied by the t ru th assignment which 
determines the transit ion relation of the automaton. 
The number of states of is finite. Therefore the only 
way to obtain infinite computat ions is by looping. Since 
all states of are accepting, all paths start ing at one 
of the in i t ia l states contain at least one accepting state 
infinitely often. Therefore accepts trees labeled wi th 
tuples for each node The set of 
these trees is 

Suppose accepts all trees from 
These ary trees satisfy the foundational axioms 

The label of each node deter­
mines fluent values in the corresponding si tuat ion. The 
transit ion relation for is represented by a set of tuples 
which determines the set of satisfying t ru th assignments 
for The set of in i t ia l states of specifies the in i t ia l 
database . Therefore, is satisfiable, and it follows 
that 

6 Translating to a Tree Automaton 
and Decidability of 

W i t h every formula in the language we shall as­
sociate a Rabin tree automaton This automaton ac­
cepts labeled ary trees determined by the formula 

if and only if , where is a structure constructed 
as in the previous section. Notice that it is sufficient to 
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consider structures of this form — we are interested in 
satisfying and simultaneously. For easier exposition, 
we restrict to the case where are the only 
actions occurring in The proof generalizes easily for 
the case w i th any number of actions. 

Let be a formula in the language of the 
situation calculus w i th fluents where 

and is the total number of fluents. 

T h e o r e m 2 Let be the model of 
defined in section 5. With every formula 

in the language one can effectively associate 
tree Rabin automaton such that for all 

Proof In the proof of this theorem we use techniques 
similar to those used in the proof of Rabin's result about 
the decidabil i ty of S2S, the second order monadic logic 
of two successors. 

For every formula we construct an equivalent for­
mula in a ( formal ly first order) language wi th binary 
predicates , w i th variables 
ranging over subsets of , w i th the ob­
vious interpretation of and wi th 

Carry out the fol lowing steps, start ing wi th a given for­
mula in the language 

(i) El iminate superpositions of "do" by introducing 
addit ional variables of sort situations. For example, 

(ii) El iminate universal and existential quantif ication 
over actions by using conjunctions and disjunctions, re­
spectively. For example, becomes 

(i i i ) El iminate occurrences of action symbols other 
than as arguments of function do. For example, 

(iv) El iminate the symbol So by using the property 
that no situation is a proper prefix of So. For example, 

We arrive at a formula wi th atomic formulae of the form 
and F(s) only. 

For the remaining step we use the shorthands 

(there is exactly one proper subset of F). 
(v) El iminate variables ranging over situations and 

function do(a,s) by using relations Sing and Succ. For 
example, 

We obtain a formula equivalent over tree-like struc­
tures to the given formula in the fol lowing sense: 
if is the structure w i th the domain of actions 

as defined in the previous section, and 
if 
then 

For each formula ' in the language wi th binary predi­
cates one can effectively 
construct a tree automaton satisfying the conditions 
of the claim. We show this by induction over 

For atomic formulae the construction is easy. Let 
In this case, each node is la­

beled wi th tuple . F o r ' w e need a 
tree automaton A that accepts a -tree t if and only if 
- avoids the label for all nodes 

. This is achieved by an automaton w i th a single state 
(which is in i t ia l and final) and transit ion for 

all 

In other words, A, accepts if and only if there is a 
situation s such that F holds in s, F' holds in do 
and these fluents do not hold anywhere else. In the case 
if there are more than two fluents, the construction is es­
sentially the same except for each addit ional fluent, say 

we replace each transit ion wi th two transitions, one 
wi th 1 on the i-s posit ion, one w i th 0. The induction 
step for follows 
f rom the fact that (nondeterministic) tree automata are 
closed under union, projection and complementation. 

Recall that theory in language is decidable if and 
only if there is an algor i thm to determine whether any 
given sentence of is a logical consequence of 
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T h e o r e m 3 The basic action theory m language 
is decidable. 

Pivof We shall use the fact that if and only if 
is unsatisfiable. From the construction of Ap and 

it follows that 

Every Biichi tree automaton is also a Rabin tree au­
tomaton. Rabin tree automata are closed under comple­
mentation and intersection. The emptiness problem for 
Rabin tree automata is decidable. It follows that there 
is an algori thm to determine for an arbitrary 
in i.e., theory in l a n g u a g e i s decidable. 

7 Conclusions 
We have proven the decidabil ity of the basic action the­
ory in the second order language of the situation cal­
culus. This language allows one to reason about quite 
sophisticated properties of the trees of situations, such 
as, for example, "there is a path in the tree of situations 
where fluent F holds in infinitely many situations" or 
"every occurrence of a situation where fluent F\ holds, is 
eventually followed by a situation where fluent Fo holds". 
Reasoning about such properties is especially important 
when one has to address the verification of high-level 
programs for robotics. 

Of course, expressiveness never comes for free. The 
decision procedure described in this paper is non-
elementary. Each level of negation in the given formula 

requires a corresponding complementation of a Rabin 
automaton and hence an at least exponential blow-up in 
the size of the query. A nice improvement of our result 
would be a decision procedure of elementary t ime com­
plexity (i.e., of t ime complexity bounded by the compo­
sition of a fixed number of exponential functions), or a 
proof that no such procedure exists. This direction of 
research is interesting because in practice queries tend 
to be relatively small. 

Our decision procedure can be easily generalized for 
the case of concurrent actions. Each transit ion to a son 
of a node would be performed if a corresponding group 
of concurrent actions is executed. It is also straightfor­
ward to incorporate actions wi th non-deterministic ef­
fects. This would amount to redefining the automaton 

from Section 5 as non-deterministic. Introducing in­
direct effects is a more complicated problem. Extending 
our decision procedure to handle ramifications would be 
an interesting exercise. 

For many practical problems we need to study the 
entailment of restricted classes of queries. Such queries 
might be, for example, those expressible using fixed point 
operators and or those where set quantifiers refer 
to chains in trees of situations (i.e., sets of situations 
linearly ordered by the prefix relation o i \ t o paths 
of situations (i.e., max imal chains). Developing decision 
procedures for these subproblems would be useful. The 
impact of incorporating more informat ion about the the­
ory on the complexity of the decision procedure is also 

of interest. Another intr iguing direction of research is to 
further investigate the boundary between decidable and 
undecidable fragments of the si tuat ion calculus. 

In our proofs, we have used automata on infinite trees. 
To our knowledge, this is the first t ime that automata 
theory has been applied to the problems of reasoning 
about actions. We consider automata-theoretic tech­
niques useful for the fol lowing reasons. First, automata 
bear an obvious relation to action theories. Transit ion 
diagrams for tree automata are closely connected to suc­
cessor states axioms specifying the effects of actions. 
Second, automata-theoretic techniques provide the only 
known methods of obtaining elementary t ime decision 
procedures for some very expressive logics. Therefore, 
they bear great potential for automat ing reasoning. 
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