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Abstract 

We describe a logic-based AI architecture based 
on Brooks' subsumption architecture. In this 
architecture, we axiomatize different layers of 
control in First-Order Logic (FOL) and use 
independent theorem provers to derive each 
layer's outputs given its inputs. We implement 
the subsumption of lower layers by higher lay­
ers using circumscription to make assumptions 
in lower layers, and nonmonotonically retract 
them when higher layers draw new conclusions. 
WTe also give formal semantics to our approach. 
Finally, we describe four layers designed for the 
task of robot control and an experiment that 
empirically shows the feasibility of using fully 
expressive FOL theorem provers for robot con­
t ro l wi th our architecture. 

1 Introduction 
In [Brooks, 1986], Rodney Brooks provided a decompo­
sition of the problem of robot control into layers corre­
sponding to levels of behavior, rather than a sequential, 
functional form. W i th i n this sett ing, he introduced the 
idea of subsumption, that is, that more complex layers 
not only depend on lower, more reactive layers, but could 
also influence their behavior. The resulting architecture 
was one that could simultaneously service mult iple, po­
tential ly confl icting goals in a reactive fashion, giving 
precedence to high-pr ior i ty goals. 

Because of its realization in hardware, the architecture 
lacks declarativeness, making it diff icult to implement 
higher-level reasoning and making its semantics unclear. 
The increasing hardware complexity w i th new layers in­
troduces scaling problems. And, relying on hardware 
specifications, the architecture is specifically oriented to 
wards robot control and is not applicable to software-
based intell igent agents. The problem of extending simi­
lar architectures to more complex tasks and goals and to 
agents that are not necessarily physical has already been 
raised and discussed in general terms by [Minsky, 1985] 
and [Stein, 1997], but to our knowledge, no practical AI 
architecture has been developed along these lines. 

In this paper we describe an architecture that is mod­
eled in the spirit of Brooks' subsumption architecture 
but relies on a logical framework and has wider applica­
bi l i ty and extendibi l i ty in the manner described above. 
Our Logic-Based Subsumption Architecture (LSA) in­
cludes a set of First-Order Logic (FOL) theories, each 
corresponding to a layer in the sense of Brooks' archi­
tecture. Each layer is supplied w i th a separate theorem 
prover, allowing the system of layers to operate concur­
rently. We use nonmonotonic reasoning to model the 
connections between the theories. In addi t ion, by allow­
ing the layers to make nonmonotonic assumptions, we 
have made each layer's performance independent of the 
performance of other layers, thus support ing reactivity. 

We demonstrate our architecture by modeling four 
layers for the task of robot control , the bot tom two of 
which are Brooks1 first, two layers. We show empirically 
that the layer in greatest need of reactivi ty is sufficiently 
fast (0.1-0.3 seconds per control-loop cycle). This result 
shows that general-purpose theorem provers can be used 
in intelligent agents wi thout sacrificing react iv i ty 

The remainder of the paper is organized as follows: 
After giving a brief int roduct ion to Brooks' system and 
behavioral decomposition, we describe the LSA and give 
formal semantics to the approach using circumscription. 
We then describe the robot control system we have im­
plemented using the architecture. We conclude wi th a 
discussion of implementation issues, comparisons to re­
lated work and a description of future directions. 

2 Subsumption and Decomposition 
2.1 Brooks' Subsumption Architecture 
Brooks showed that it is often advantageous to decom­
pose a system into parallel tasks or behaviors of increas­
ing levels of competence rather than the standard func­
t ional decomposition. Whereas a typical functional de­
composition might resemble the sequence 

sensors perception modeling planning 
task recognition motor control. 

Brooks would decompose? the same domain as 
avoid objects wander explore bui ld maps 

monitor changes identify objects plan 
actions reason about object behavior 
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where denotes increasing levels of competence. Po­
tential benefits f rom this approach include increased ro­
bustness, concurrency support, incremental construction 
and ease of testing. 

Figure 1: Layers 0 and 1 of Brooks' subsumption archi­
tecture robot control system. 

In general, the different layers are not completely in­
dependent. In the decomposition above, wandering and 
exploring depend on the robot's abi l i ty to avoid objects. 
But the system may be able to service mult iple goals in 
parallel, despite the dependence. The goals of one layer 
wi l l occasionally conflict w i th those of another layer, in 
which case higher-prior i ty goals should override lower-
pr ior i ty ones. Consequently, the subsumption architec­
ture provides mechanisms by which higher, more compe­
tent layers may observe the state of lower layers, inhibi t 
their outputs and override their inputs, thus adjusting 
their behavior. High-pr ior i ty tasks in lower layers (such 
as reflexively hal t ing when an object is dead ahead) wi l l 
st i l l have a default precedence if the designer disallows 
any tampering w i th these part icular tasks. 

Brooks implemented a control system of layers corre­
sponding to the first three levels of competence described 
above (avoidance, wandering and exploration). The first 
two layers are shown in Figure 1. Briefly, the a v o i d 
layer endows the robot wi th obstacle avoidance capabil­
ities by moving it in directions that avoid obstacles as 
much as possible and forcing it to stop if a head-on col­
lision is imminent. The wander layer causes the robot 
to move around aimlessly when u is not otherwise occu­
pied. The e x p l o r e layer gives the robot some pr imi t ive 
goal-directed behavior by periodically choosing a loca­
t ion in the distance and heading the robot towards it 
if idle. Whi le in explore mode, this layer inhibits the 
wander layer so that the robot remains on track towards 
its destination. When either the wander or the e x p l o r e 
layer is active, it overrides the default heading computed 
by the a v o i d layer, but the a v o i d layer sti l l ensures that 
the robot does not have a collision. We refer the reader 
to [Brooks, 1986] for further details. 

2.2 Behavioral Decomposition 
The first impor tant idea we borrow from Brooks' ar­
chitecture is that of decomposing the domain along be­
havioral lines rather than along the standard, sequen­

t ia l functional lines. A Logic-Based Subsumption Archi­
tecture (LSA) is composed of a sequence of F O L the­
ories. Each represents a layer w i th an axiomatization 
of the layer's behavior, that is, the layer's inputs, out­
puts (goal), state and any dependencies between them. 
The inputs are axioms coming f rom either the sensors 
or higher layers. The outputs are proved theorems de­
termined by running a separate theorem prover for that 
layer only. These outputs may be sent to lower layers or 
to the robot effectors. 

Because the axiomatizat ion of a layer is usually much 
smaller than that of the whole system, each cycle is less 
computational ly expensive than running one theorem 
prover over the whole compound axiomatizat ion, leading 
to an overall higher performance. Another advantage of 
the layer-decoupling is the possibil i ty of achieving more 
reactive behavior. As in Brooks' system, lower layers 
control l ing basic behaviors are trusted to be autonomous 
and do not need to wait on results from higher layers 
(they assume some of them by default) before being able 
to respond to situations. Because these layers typical ly 
have simpler axiomatizations, and given the default as­
sumptions, the cycle t ime to compute their outputs can 
be shorter than that of the more complex layers. 

2.3 Subsumption Principles 
Of course, the layers are not ful ly independent. We adopt 
the view that , together w i th the task-based decompo­
sition idea, the coupling approach represented by sub­
sumption in the subsumption architecture is an impor­
tant and natural paradigm for intell igent agents in gen­
eral, and robot control in part icular (see [Stein, 1997]). 
We want each layer in an LSA to be able to communicate 
wi th those underneath it in the hierarchy. 

In general, however, when one layer overrides another, 
the two disagree on what some part icular input should 
be. In a classical logic sett ing, the two corresponding 
theories wi l l be inconsistent. We need to formalize the 
higher-layer theory's precedence over the lower layer's in 
such a way that (a) if there is no conflict, both layers 
keep their facts and the higher layer asserts its relevant 
conclusions in the lower layer, and (b) if there is conflict, 
the lower layer tries to give up some assumptions to ac­
commodate the higher layer's conclusions. A number of 
techniques developed in the logic community are appli­
cable, e.g., nonmonotonic techniques and belief revision. 
We have chosen to use circumscript ion, although other 
approaches may be equally interesting and appropriate. 

3 Logical Subsumption 
This section describes in detai l how we implement the 
principles discussed above. 

3.1 Basic Machinery 
We distinguish three parts of the logical theory associ­
ated w i th each layer: (1) the Body of the layer, (2) the 
Sensory and Input Latches, and (3) the Output The 
Body of the layer is the invariant theory for that layer. 
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The Latches are used to accept the input and replace it 
at the beginning of every cycle (rather than accumulate 
i t ) . The Output is the set of goal sentences proved from 
the layer's theory ( including the latches). 

The processing loop of each layer proceeds as follows: 
First , collect any pert inent sensor data and assert it in 
the form of logical axioms. Simultaneously, assert any 
inputs from higher-level theories. The theorem prover of 
that layer then attempts to prove the layer's goal. Upon 
reaching the conclusions, transmit the relevant ones ei­
ther to the layer below or (in the case of layer 0) to the 
robot manipulators. Figure 2 il lustrates this process. 

Figure 2: A detailed look at two layers. 

3.2 Circumscription-Based Subsumption 
In the logical paradigm, McCarthy's circumscription 
[McCarthy, 1986] is one of the first major nonmonotonic 
reasoning tools. McCarthy's circumscription formula 

says that in the theory .4, w i th parameter relations and 
function sequences P , Z , P is a minimal element such 
that A(P, Z) st i l l holds while Z is allowed to vary in 
order to allow P to become smaller. 

Take, for example, the theory 
block(B2). The circumscription of block in T, varying 
nothing, is 
block)] and is equivalent to 
B2)). By minimizing block, we have concluded that there 
are no other blocks in the world besides those mentioned 
in the original theory T. 

In the LSA, we use circumscription for two distinct 
tasks: assuming defaults in the layers and giving seman­
tics to the system of layers as one big logical system. 

To implement the idea of subsumption, we let each 
layer make default "assumptions" about the inputs that 
later may be adjusted by other (higher-level) layers. 
These assumptions take the form of the Closed-World 
Assumption (CWA) by minimizing a predicate in the 
layer's input language (Extended CWA, a generalization 
of CWA, was shown to be equivalent to circumscription 
[Gelfond et a/., 1989]). 

More formally, let be the theory of layer and 
a set of predicates in for which we wish 

to assert CWA. Then, subsumption is achieved for layer 
by using the parallel circumscript ion policy 

When implemented, this formula often can be substi­
tuted wi th a simple (external to the logic) mechanical in ­
terference determining the value of the minimized pred­
icates; we discuss this issue in section 5. 
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3.3 Semantics for LSA 
If we ignore the t ime differences between the theorem 
provers in different layers and consider the entire system 
of layers as one logical theory, we can give the system 
a simple semantics. Let be the theory of layer i 
(including any CWA as a FOL schemata), be the 
goal formula of layer (i.e., the formula that we t r y to 
prove in that layer) and be its translation to 

's input. We call such a system of layers T a 
layered theory. For we wri te if the 
mechanical entailment we described above derives 

, where 
every abi is a relation symbol that does not show in T. 
Def in i t ion 3.1 (Semantics for Layered Theories) 

is a model of the layered theory T 
iff it is a first-order model of the circumscriptions 

This semantics assumes (1) we are interested in the 
set of results for some (as opposed to 

for example) and (2) all the 
symbols in the various theories are different (e.g., the 
symbol 1 actually has the name 1 in layer 0 and 
in layer 2). 

Let be the F O L language including only =, 
and the constant and function symbols of 
For a sentence be the translation of by 
replacing G w i th G' and every term t by The 
following theorem validates the semantics for our proof-
theoretic system of transferring goals from one layer to 
another. 
T h e o r e m 3.2 (Completeness) Assume that 

is layered theory and is formula in the 
language . I f T h e n there i s a n d 
sequence of sentences 

, and 1 
Our LSA obeys this semantics, assuming that transfer­
r ing a single instantiat ion of the goal between any pair 
of layers is sufficient. In case one layer proves only a 
disjunction of goal instantiations, we need to refine our 
LSA to support such a transfer, but this refinement can 
be done for any size of disjunctions. Addit ional ly, there 
is no need to consider quantif ication in our LSA since we 
assume skolemization of the clauses (see Section 5). 

We omit the proof for lack of space, but mention that 
it relies on Craig's Interpolat ion Theorem for FOL and 
on the following lemma. 



For soundness, we need to assume that the set of layers 
of is consistent w i th and that all 
the circumscriptions in tor T have smooth preference 
relations (i.e., every model is either minimal or has a 
minimal model that is preferred to i t ) . 

4 A Model of Brooks' System 
We briefly describe the logical theories for a control sys­
tem we have implemented for a robot operating in a 
mult i -story office bui lding. The first two layers corre­
spond roughly to the first three layers in Brooks' system. 
For simplicity, we list only selected axioms from the the­
ories and refer the reader to the ful l version of the paper 
for the complete system. 

We assume the architecture is used to control a cyl in­
drical robot w i th sonar sensors on its perimeter and 
wheels that control its mot ion. We also assume that it 
is able to determine its current location and orientation. 

4.1 L A Y E R 0: Obstacle-avoidance 
Layer 0 takes its input , asserted in the form of the axiom 
schema S'onarReading (sonar .number) = (list, from the 
physical sonars and translates it into a map of objects, 
recording their distance and direction (relative to the 
robot)1 . It may also discover "v i r tua l " objects by way 
of layer l 's subsumption latch. 

Layer 0 checks to see if it has detected objects ly ing 
directly in front of i t , and halts the robot if it has. 

Object Ahead 

ObjectAhead HaltRobot. The robot's 0-radians reference point is straight ahead, 
the front sonar is numbered 0, and the sonars are numbered 
consecutively, counter-clockwise from 0 to NSONARS — 1. 

Using the map, layer 0 executes the function GetForce, 
computing the combined "repulsive force" exerted on 
the robot by the detected objects as Force -direction and 
Force.strength. It uses the former to specify a heading 
angle for the robot away from this force. Once headed 
in the right direct ion, the robot is commanded to move 
away at a speed proport ional to the strength of the force, 
slowing down as it moves farther away from the objects. 

Dur ing each cycle of layer 0, it applies the CWA to 
the symbols HaltRobot, Object, Distance, Direction in 
the input language. It then uses its theorem prover to 
t ry to prove Fwd(speed) and Turn(angle), where speed 
and angle are instantiated by the proof. The results are 
translated into the appropriate actuator commands. 

4.2 LAYER 1: Destination-seeking 
Layer 1 supports simple movements towards a goal lo­
cation, more closely resembling the exploration layer 
of Brooks' system than the wandering layer. Given 
a part icular pair of coordinates specified by the input 
MoveCmd from layer 2 and given the robot's current 
location,2 it makes a simple calculation to find in which 
of the eight quadrants surrounding the robot this goal 
position is, and asserts the existence of a "v i r tual push­
ing object" in the opposing quadrant. 

Object( PUSH .OBJECT). 

Dur ing each cycle, layer l 's theorem prover at­
tempts to prove Object(obj), Direction (obj) = dir, and 
Distance(obj) = dist, and introduces them into layer 0's 
input latch if successful. The avoidance capabilities of 
layer 0 effectively push the robot away from the object 
in the direction of the goal, al though it may deviate from 
a direct path if there are physical objects in the vicinity. 

4.3 LAYER 2: Mid-Level Planning 
Layer 2 performs two tasks: (1) translate logical loca­
tions into Cartesian coordinates and (2) reason in the 
situation calculus [McCarthy and Hayes, 1969] about us­
ing the elevators. 

2These coordinates are with respect to the fixed coordi­
nate system of the domain. 
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The inputs for this layer are the current location 
data from the robot (CurrLandmark) and the out­
put from layer 3 (Tar get Landmark). Dur ing each cy­
cle, it tries to plan for the next landmark and prove 
MoveCmd (next-landmark). 

The situation calculus theory includes three fluents: 
the two elevators' locations and the robot's location (we 
explicit ly state frame axioms). Since the domain and 
depth are small, planning here is simple. 

4.4 LAYER 3: High-level planning 
Layer 3 performs high-level robot motion planning using 
situation calculus. Mere there is only one fluent (the 
robot's location); thus, deeper reasoning can be per­
formed in a reasonable t ime. 

The input for this layer is the current location of the 
robot. The goal is TargetLandmark(land.inark). 

5 Implementat ion Issues 
We have implemented the above theory using the P T T P 
theorem prover ([Stickel, 1988], [Stickel, 1992]) on a Sun 
Sparc stat ion, running Quintus Prolog as the underlying 
interpreter for PTTP . P T T P (Prolog Technology The­
orem Prover) is a model-el imination theorem prover. 
Given a theory made of clauses (not necessarily dis­
junctive) wi thout quantifiers, P T T P produces a set of 
Prolog-like Horn clauses, makes sure only sound unif i­
cation is produced, and avoids the negation-as-failure 
proofs that are produced by the Prolog inference algo­
r i t hm. It is sound and complete. 

We subjected our system to a battery of experiments 
in a simulated office bui lding environment. Figure 3 
summarizes the results for three scenarios of varying dif­
f iculty: (1) planning a path towards a location on the 
same floor as the robot, (2) creating a plan that requires 
a low-level plan for using the elevator, and (3) planning 
a path towards a location on a different floor. In each 
scenario, we experimented w i th various robot orienta­
tions and obstacle positions in the robot's vicinity. For 

each layer, we measured the number of inference steps 
and t ime taken to prove its goal.3 

Layer 0, the crit ical layer, achieved its results in an 
average of 0.1 seconds when a tu rn action was required, 
and 0.3 seconds when a forward action was required. 
(Because of space concerns, we have included in Figure 3 
only the data for easels of the former kind.) Layers 1, 
2, and 3 worked fair ly fast, although the long planning 
involved in Scenario 1 took more than 10 seconds (for a 
depth of 30 in the proof space). However, because we rely 
on the speed of only layer 0, safety is not compromised; 
the avoidance capabilities ensure that the robot does not 
fall off a cliff while planning a way to avoid the cliff edge. 

We at t r ibute the speed achieved to three optimiza­
tions. First, we used a few semantic attachments in 
Layer 0. In part icular, the predicate Get Force was em­
bodied in a C function that returns the force vector 
[Strength, Direction]. It calls Prolog's bagof operator to 
collect all the objects for which existence proofs can be 
found, then computes the sum of the forces contributed 
by each object. This CWA is achieved by l imi t ing proofs 
to be no longer than a specified constant (after some ex­
perimentation, we settled on a constant of 20.) 

Second, we applied caching to the proof of GetForce. 
Since every proof "re-proved" GetForce many times, this 
improved the performance of Layer 0 significantly (from 
approximately 10 seconds to 0.1 seconds per proof) . 

Th i rd , we divided the planning so that layer 2 executes 
"local planning" for the elevator domain. This allowed 
layer 3 to avoid an explosion of the proof space, which 
otherwise would have occurred since there are four pr in­
cipal actions as well as a number of frame axioms asso­
ciated w i th the robot and the elevator. The separation 
also helped prevent complex unifications. 

6 Related Work 
Compared to other approaches to agent architecture and 
robot control using logic, LSA is the only one using full 
FOL theorem provers for the low-level control loop and 
the first one to propose an architecture bui l t on theorem 
provers that is suitable for realizing complex tasks. 

[Shanahan, 1996] describes a map-bui lding process us­
ing abduct ion, but then implements his theory in an al­
gor i thm that is proved to have his abductive semantics. 
Baral and Tran, 1998] define control modules to be of 

a form of Stimulus-Response (S-R) agents (see [Nilsson, 
1998]), relating them to the family of action languages 
A (e.g., [Gelfond and Lifschitz, 1993], [Giunchiglia et al, 
1997]). They provide a way to check that an S-R module 
is correct w i th respect to an action theory in A or A7\ 
and provide an algori thm to create an S-R, agent from 
an action theory. [Levesque et a/., 1997], [Giacomo et 
a/., 1998], and other work in the G O L O G project have a 
planner that computes/plans the GOLOG program off­
line, only later let t ing the robot execute the GOLOG 

3We do not list averages or standard deviations for layers 
2 and 3 because their performances are independent of both 
the robot's orientation and sonar readings. 
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Seen. 1 
Seen. 2 
Seen. 3 

Layer 0 
Time Infer. 

Mean SD Mean SD 
0.09 0.02 
0.10 0.01 
0.09 0.02 

3598 629 
3703 613 
3575 640 

Layer 1 
Time Infer. 

Mean SD Mean SD 
0.02 0.01 394 2 
0.02 0.01 384 4 
0.02 0.01 389 1 

Layer 2 
Time Infer. 

0.01 4 
0.52 27184 
0.00 4 

Lay 
Time 

0.00 
0.47 

11.24 

er 3 
Infer. 

20 
34056 

694966 

Figure 3: Proof t ime and inference steps measurements for the LSA dur ing experiments in three different scenarios: 
(1) single-floor planning, (2) lower-level elevator planning, and (3) mult i- f loor planning. (SD is standard deviation.) 

program on-line. Here again, logic is used only to give 
semantics for GOLOG programs by way of situation cal­
culus ( [McCarthy and Hayes, 1969]). 

None of this work uses FOL theorem provers for con­
tro l l ing robots at run-t ime. To our knowledge, there has 
been no such system since Shakey [Nilsson, 1984]. 

7 Conclusion 
We have shown that theorem provers can be used for 
robot control by employing them in a layered architec­
ture. We demonstrated that the architecture and the 
versati l i ty of theorem provers allow us to realize complex 
tasks, while keeping indiv idual theories simple enough 
for efficient theorem proving. Furthermore, we have 
grounded our proposal by giving it formal semantics 
based on circumscript ion. 

At this t ime, the system is implemented in four layers 
on a simulating computer. Besides instal l ing the system 
on a mobile robot, our future work plan includes adding 
layers that create maps and layers that reason about and 
update explicit beliefs about the world. We are currently 
working on incorporat ing vision sensory capabilities and 
implementing concurrency. 

This work is a first step towards our long-term goal 
of creating a general logic-based AI architecture that is 
efficient and scalable, and that supports reactivity. 
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