
Logic-Based Subsumption Archi tecture

Eyal A m i r and Pedrito Maynard-Reid I I
Computer Science Department

Stanford University
Stanford, CA 94305

{ eyala, pedmay n} @cs. stanford.edu

Abstract

We describe a logic-based AI architecture based
on Brooks' subsumption architecture. In this
architecture, we axiomatize different layers of
control in First-Order Logic (FOL) and use
independent theorem provers to derive each
layer's outputs given its inputs. We implement
the subsumption of lower layers by higher lay­
ers using circumscription to make assumptions
in lower layers, and nonmonotonically retract
them when higher layers draw new conclusions.
WTe also give formal semantics to our approach.
Finally, we describe four layers designed for the
task of robot control and an experiment that
empirically shows the feasibility of using fully
expressive FOL theorem provers for robot con­
t ro l wi th our architecture.

1 Introduction
In [Brooks, 1986], Rodney Brooks provided a decompo­
sition of the problem of robot control into layers corre­
sponding to levels of behavior, rather than a sequential,
functional form. W i th i n this sett ing, he introduced the
idea of subsumption, that is, that more complex layers
not only depend on lower, more reactive layers, but could
also influence their behavior. The resulting architecture
was one that could simultaneously service mult iple, po­
tential ly confl icting goals in a reactive fashion, giving
precedence to high-pr ior i ty goals.

Because of its realization in hardware, the architecture
lacks declarativeness, making it diff icult to implement
higher-level reasoning and making its semantics unclear.
The increasing hardware complexity w i th new layers in­
troduces scaling problems. And, relying on hardware
specifications, the architecture is specifically oriented to
wards robot control and is not applicable to software-
based intell igent agents. The problem of extending simi­
lar architectures to more complex tasks and goals and to
agents that are not necessarily physical has already been
raised and discussed in general terms by [Minsky, 1985]
and [Stein, 1997], but to our knowledge, no practical AI
architecture has been developed along these lines.

In this paper we describe an architecture that is mod­
eled in the spirit of Brooks' subsumption architecture
but relies on a logical framework and has wider applica­
bi l i ty and extendibi l i ty in the manner described above.
Our Logic-Based Subsumption Architecture (LSA) in­
cludes a set of First-Order Logic (FOL) theories, each
corresponding to a layer in the sense of Brooks' archi­
tecture. Each layer is supplied w i th a separate theorem
prover, allowing the system of layers to operate concur­
rently. We use nonmonotonic reasoning to model the
connections between the theories. In addi t ion, by allow­
ing the layers to make nonmonotonic assumptions, we
have made each layer's performance independent of the
performance of other layers, thus support ing reactivity.

We demonstrate our architecture by modeling four
layers for the task of robot control , the bot tom two of
which are Brooks1 first, two layers. We show empirically
that the layer in greatest need of reactivi ty is sufficiently
fast (0.1-0.3 seconds per control-loop cycle). This result
shows that general-purpose theorem provers can be used
in intelligent agents wi thout sacrificing react iv i ty

The remainder of the paper is organized as follows:
After giving a brief int roduct ion to Brooks' system and
behavioral decomposition, we describe the LSA and give
formal semantics to the approach using circumscription.
We then describe the robot control system we have im­
plemented using the architecture. We conclude wi th a
discussion of implementation issues, comparisons to re­
lated work and a description of future directions.

2 Subsumption and Decomposition
2.1 Brooks' Subsumption Architecture
Brooks showed that it is often advantageous to decom­
pose a system into parallel tasks or behaviors of increas­
ing levels of competence rather than the standard func­
t ional decomposition. Whereas a typical functional de­
composition might resemble the sequence

sensors perception modeling planning
task recognition motor control.

Brooks would decompose? the same domain as
avoid objects wander explore bui ld maps

monitor changes identify objects plan
actions reason about object behavior

AMIR AND MAYNARD-REID II 147

where denotes increasing levels of competence. Po­
tential benefits f rom this approach include increased ro­
bustness, concurrency support, incremental construction
and ease of testing.

Figure 1: Layers 0 and 1 of Brooks' subsumption archi­
tecture robot control system.

In general, the different layers are not completely in­
dependent. In the decomposition above, wandering and
exploring depend on the robot's abi l i ty to avoid objects.
But the system may be able to service mult iple goals in
parallel, despite the dependence. The goals of one layer
wi l l occasionally conflict w i th those of another layer, in
which case higher-prior i ty goals should override lower-
pr ior i ty ones. Consequently, the subsumption architec­
ture provides mechanisms by which higher, more compe­
tent layers may observe the state of lower layers, inhibi t
their outputs and override their inputs, thus adjusting
their behavior. High-pr ior i ty tasks in lower layers (such
as reflexively hal t ing when an object is dead ahead) wi l l
st i l l have a default precedence if the designer disallows
any tampering w i th these part icular tasks.

Brooks implemented a control system of layers corre­
sponding to the first three levels of competence described
above (avoidance, wandering and exploration). The first
two layers are shown in Figure 1. Briefly, the a v o i d
layer endows the robot wi th obstacle avoidance capabil­
ities by moving it in directions that avoid obstacles as
much as possible and forcing it to stop if a head-on col­
lision is imminent. The wander layer causes the robot
to move around aimlessly when u is not otherwise occu­
pied. The e x p l o r e layer gives the robot some pr imi t ive
goal-directed behavior by periodically choosing a loca­
t ion in the distance and heading the robot towards it
if idle. Whi le in explore mode, this layer inhibits the
wander layer so that the robot remains on track towards
its destination. When either the wander or the e x p l o r e
layer is active, it overrides the default heading computed
by the a v o i d layer, but the a v o i d layer sti l l ensures that
the robot does not have a collision. We refer the reader
to [Brooks, 1986] for further details.

2.2 Behavioral Decomposition
The first impor tant idea we borrow from Brooks' ar­
chitecture is that of decomposing the domain along be­
havioral lines rather than along the standard, sequen­

t ia l functional lines. A Logic-Based Subsumption Archi­
tecture (LSA) is composed of a sequence of F O L the­
ories. Each represents a layer w i th an axiomatization
of the layer's behavior, that is, the layer's inputs, out­
puts (goal), state and any dependencies between them.
The inputs are axioms coming f rom either the sensors
or higher layers. The outputs are proved theorems de­
termined by running a separate theorem prover for that
layer only. These outputs may be sent to lower layers or
to the robot effectors.

Because the axiomatizat ion of a layer is usually much
smaller than that of the whole system, each cycle is less
computational ly expensive than running one theorem
prover over the whole compound axiomatizat ion, leading
to an overall higher performance. Another advantage of
the layer-decoupling is the possibil i ty of achieving more
reactive behavior. As in Brooks' system, lower layers
control l ing basic behaviors are trusted to be autonomous
and do not need to wait on results from higher layers
(they assume some of them by default) before being able
to respond to situations. Because these layers typical ly
have simpler axiomatizations, and given the default as­
sumptions, the cycle t ime to compute their outputs can
be shorter than that of the more complex layers.

2.3 Subsumption Principles
Of course, the layers are not ful ly independent. We adopt
the view that , together w i th the task-based decompo­
sition idea, the coupling approach represented by sub­
sumption in the subsumption architecture is an impor­
tant and natural paradigm for intell igent agents in gen­
eral, and robot control in part icular (see [Stein, 1997]).
We want each layer in an LSA to be able to communicate
wi th those underneath it in the hierarchy.

In general, however, when one layer overrides another,
the two disagree on what some part icular input should
be. In a classical logic sett ing, the two corresponding
theories wi l l be inconsistent. We need to formalize the
higher-layer theory's precedence over the lower layer's in
such a way that (a) if there is no conflict, both layers
keep their facts and the higher layer asserts its relevant
conclusions in the lower layer, and (b) if there is conflict,
the lower layer tries to give up some assumptions to ac­
commodate the higher layer's conclusions. A number of
techniques developed in the logic community are appli­
cable, e.g., nonmonotonic techniques and belief revision.
We have chosen to use circumscript ion, although other
approaches may be equally interesting and appropriate.

3 Logical Subsumption
This section describes in detai l how we implement the
principles discussed above.

3.1 Basic Machinery
We distinguish three parts of the logical theory associ­
ated w i th each layer: (1) the Body of the layer, (2) the
Sensory and Input Latches, and (3) the Output The
Body of the layer is the invariant theory for that layer.

148 AUTOMATED REASONING

The Latches are used to accept the input and replace it
at the beginning of every cycle (rather than accumulate
i t) . The Output is the set of goal sentences proved from
the layer's theory (including the latches).

The processing loop of each layer proceeds as follows:
First , collect any pert inent sensor data and assert it in
the form of logical axioms. Simultaneously, assert any
inputs from higher-level theories. The theorem prover of
that layer then attempts to prove the layer's goal. Upon
reaching the conclusions, transmit the relevant ones ei­
ther to the layer below or (in the case of layer 0) to the
robot manipulators. Figure 2 il lustrates this process.

Figure 2: A detailed look at two layers.

3.2 Circumscription-Based Subsumption
In the logical paradigm, McCarthy's circumscription
[McCarthy, 1986] is one of the first major nonmonotonic
reasoning tools. McCarthy's circumscription formula

says that in the theory .4, w i th parameter relations and
function sequences P , Z , P is a minimal element such
that A(P, Z) st i l l holds while Z is allowed to vary in
order to allow P to become smaller.

Take, for example, the theory
block(B2). The circumscription of block in T, varying
nothing, is
block)] and is equivalent to
B2)). By minimizing block, we have concluded that there
are no other blocks in the world besides those mentioned
in the original theory T.

In the LSA, we use circumscription for two distinct
tasks: assuming defaults in the layers and giving seman­
tics to the system of layers as one big logical system.

To implement the idea of subsumption, we let each
layer make default "assumptions" about the inputs that
later may be adjusted by other (higher-level) layers.
These assumptions take the form of the Closed-World
Assumption (CWA) by minimizing a predicate in the
layer's input language (Extended CWA, a generalization
of CWA, was shown to be equivalent to circumscription
[Gelfond et a/., 1989]).

More formally, let be the theory of layer and
a set of predicates in for which we wish

to assert CWA. Then, subsumption is achieved for layer
by using the parallel circumscript ion policy

When implemented, this formula often can be substi­
tuted wi th a simple (external to the logic) mechanical in ­
terference determining the value of the minimized pred­
icates; we discuss this issue in section 5.

AMIR AND MAYNARD-REID II 149

3.3 Semantics for LSA
If we ignore the t ime differences between the theorem
provers in different layers and consider the entire system
of layers as one logical theory, we can give the system
a simple semantics. Let be the theory of layer i
(including any CWA as a FOL schemata), be the
goal formula of layer (i.e., the formula that we t r y to
prove in that layer) and be its translation to

's input. We call such a system of layers T a
layered theory. For we wri te if the
mechanical entailment we described above derives

, where
every abi is a relation symbol that does not show in T.
Def in i t ion 3.1 (Semantics for Layered Theories)

is a model of the layered theory T
iff it is a first-order model of the circumscriptions

This semantics assumes (1) we are interested in the
set of results for some (as opposed to

for example) and (2) all the
symbols in the various theories are different (e.g., the
symbol 1 actually has the name 1 in layer 0 and
in layer 2).

Let be the F O L language including only =,
and the constant and function symbols of
For a sentence be the translation of by
replacing G w i th G' and every term t by The
following theorem validates the semantics for our proof-
theoretic system of transferring goals from one layer to
another.
T h e o r e m 3.2 (Completeness) Assume that

is layered theory and is formula in the
language . I f T h e n there i s a n d
sequence of sentences

, and 1
Our LSA obeys this semantics, assuming that transfer­
r ing a single instantiat ion of the goal between any pair
of layers is sufficient. In case one layer proves only a
disjunction of goal instantiations, we need to refine our
LSA to support such a transfer, but this refinement can
be done for any size of disjunctions. Addit ional ly, there
is no need to consider quantif ication in our LSA since we
assume skolemization of the clauses (see Section 5).

We omit the proof for lack of space, but mention that
it relies on Craig's Interpolat ion Theorem for FOL and
on the following lemma.

For soundness, we need to assume that the set of layers
of is consistent w i th and that all
the circumscriptions in tor T have smooth preference
relations (i.e., every model is either minimal or has a
minimal model that is preferred to i t) .

4 A Model of Brooks' System
We briefly describe the logical theories for a control sys­
tem we have implemented for a robot operating in a
mult i -story office bui lding. The first two layers corre­
spond roughly to the first three layers in Brooks' system.
For simplicity, we list only selected axioms from the the­
ories and refer the reader to the ful l version of the paper
for the complete system.

We assume the architecture is used to control a cyl in­
drical robot w i th sonar sensors on its perimeter and
wheels that control its mot ion. We also assume that it
is able to determine its current location and orientation.

4.1 L A Y E R 0: Obstacle-avoidance
Layer 0 takes its input , asserted in the form of the axiom
schema S'onarReading (sonar .number) = (list, from the
physical sonars and translates it into a map of objects,
recording their distance and direction (relative to the
robot)1 . It may also discover "v i r tua l " objects by way
of layer l 's subsumption latch.

Layer 0 checks to see if it has detected objects ly ing
directly in front of i t , and halts the robot if it has.

Object Ahead

ObjectAhead HaltRobot. The robot's 0-radians reference point is straight ahead,
the front sonar is numbered 0, and the sonars are numbered
consecutively, counter-clockwise from 0 to NSONARS — 1.

Using the map, layer 0 executes the function GetForce,
computing the combined "repulsive force" exerted on
the robot by the detected objects as Force -direction and
Force.strength. It uses the former to specify a heading
angle for the robot away from this force. Once headed
in the right direct ion, the robot is commanded to move
away at a speed proport ional to the strength of the force,
slowing down as it moves farther away from the objects.

Dur ing each cycle of layer 0, it applies the CWA to
the symbols HaltRobot, Object, Distance, Direction in
the input language. It then uses its theorem prover to
t ry to prove Fwd(speed) and Turn(angle), where speed
and angle are instantiated by the proof. The results are
translated into the appropriate actuator commands.

4.2 LAYER 1: Destination-seeking
Layer 1 supports simple movements towards a goal lo­
cation, more closely resembling the exploration layer
of Brooks' system than the wandering layer. Given
a part icular pair of coordinates specified by the input
MoveCmd from layer 2 and given the robot's current
location,2 it makes a simple calculation to find in which
of the eight quadrants surrounding the robot this goal
position is, and asserts the existence of a "v i r tual push­
ing object" in the opposing quadrant.

Object(PUSH .OBJECT).

Dur ing each cycle, layer l 's theorem prover at­
tempts to prove Object(obj), Direction (obj) = dir, and
Distance(obj) = dist, and introduces them into layer 0's
input latch if successful. The avoidance capabilities of
layer 0 effectively push the robot away from the object
in the direction of the goal, al though it may deviate from
a direct path if there are physical objects in the vicinity.

4.3 LAYER 2: Mid-Level Planning
Layer 2 performs two tasks: (1) translate logical loca­
tions into Cartesian coordinates and (2) reason in the
situation calculus [McCarthy and Hayes, 1969] about us­
ing the elevators.

2These coordinates are with respect to the fixed coordi­
nate system of the domain.

150 AUTOMATED REASONING

The inputs for this layer are the current location
data from the robot (CurrLandmark) and the out­
put from layer 3 (Tar get Landmark). Dur ing each cy­
cle, it tries to plan for the next landmark and prove
MoveCmd (next-landmark).

The situation calculus theory includes three fluents:
the two elevators' locations and the robot's location (we
explicit ly state frame axioms). Since the domain and
depth are small, planning here is simple.

4.4 LAYER 3: High-level planning
Layer 3 performs high-level robot motion planning using
situation calculus. Mere there is only one fluent (the
robot's location); thus, deeper reasoning can be per­
formed in a reasonable t ime.

The input for this layer is the current location of the
robot. The goal is TargetLandmark(land.inark).

5 Implementat ion Issues
We have implemented the above theory using the P T T P
theorem prover ([Stickel, 1988], [Stickel, 1992]) on a Sun
Sparc stat ion, running Quintus Prolog as the underlying
interpreter for PTTP . P T T P (Prolog Technology The­
orem Prover) is a model-el imination theorem prover.
Given a theory made of clauses (not necessarily dis­
junctive) wi thout quantifiers, P T T P produces a set of
Prolog-like Horn clauses, makes sure only sound unif i­
cation is produced, and avoids the negation-as-failure
proofs that are produced by the Prolog inference algo­
r i t hm. It is sound and complete.

We subjected our system to a battery of experiments
in a simulated office bui lding environment. Figure 3
summarizes the results for three scenarios of varying dif­
f iculty: (1) planning a path towards a location on the
same floor as the robot, (2) creating a plan that requires
a low-level plan for using the elevator, and (3) planning
a path towards a location on a different floor. In each
scenario, we experimented w i th various robot orienta­
tions and obstacle positions in the robot's vicinity. For

each layer, we measured the number of inference steps
and t ime taken to prove its goal.3

Layer 0, the crit ical layer, achieved its results in an
average of 0.1 seconds when a tu rn action was required,
and 0.3 seconds when a forward action was required.
(Because of space concerns, we have included in Figure 3
only the data for easels of the former kind.) Layers 1,
2, and 3 worked fair ly fast, although the long planning
involved in Scenario 1 took more than 10 seconds (for a
depth of 30 in the proof space). However, because we rely
on the speed of only layer 0, safety is not compromised;
the avoidance capabilities ensure that the robot does not
fall off a cliff while planning a way to avoid the cliff edge.

We at t r ibute the speed achieved to three optimiza­
tions. First, we used a few semantic attachments in
Layer 0. In part icular, the predicate Get Force was em­
bodied in a C function that returns the force vector
[Strength, Direction]. It calls Prolog's bagof operator to
collect all the objects for which existence proofs can be
found, then computes the sum of the forces contributed
by each object. This CWA is achieved by l imi t ing proofs
to be no longer than a specified constant (after some ex­
perimentation, we settled on a constant of 20.)

Second, we applied caching to the proof of GetForce.
Since every proof "re-proved" GetForce many times, this
improved the performance of Layer 0 significantly (from
approximately 10 seconds to 0.1 seconds per proof) .

Th i rd , we divided the planning so that layer 2 executes
"local planning" for the elevator domain. This allowed
layer 3 to avoid an explosion of the proof space, which
otherwise would have occurred since there are four pr in­
cipal actions as well as a number of frame axioms asso­
ciated w i th the robot and the elevator. The separation
also helped prevent complex unifications.

6 Related Work
Compared to other approaches to agent architecture and
robot control using logic, LSA is the only one using full
FOL theorem provers for the low-level control loop and
the first one to propose an architecture bui l t on theorem
provers that is suitable for realizing complex tasks.

[Shanahan, 1996] describes a map-bui lding process us­
ing abduct ion, but then implements his theory in an al­
gor i thm that is proved to have his abductive semantics.
Baral and Tran, 1998] define control modules to be of

a form of Stimulus-Response (S-R) agents (see [Nilsson,
1998]), relating them to the family of action languages
A (e.g., [Gelfond and Lifschitz, 1993], [Giunchiglia et al,
1997]). They provide a way to check that an S-R module
is correct w i th respect to an action theory in A or A7\
and provide an algori thm to create an S-R, agent from
an action theory. [Levesque et a/., 1997], [Giacomo et
a/., 1998], and other work in the G O L O G project have a
planner that computes/plans the GOLOG program off­
line, only later let t ing the robot execute the GOLOG

3We do not list averages or standard deviations for layers
2 and 3 because their performances are independent of both
the robot's orientation and sonar readings.

AMIR AND MAYNARD-REID II 151

Seen. 1
Seen. 2
Seen. 3

Layer 0
Time Infer.

Mean SD Mean SD
0.09 0.02
0.10 0.01
0.09 0.02

3598 629
3703 613
3575 640

Layer 1
Time Infer.

Mean SD Mean SD
0.02 0.01 394 2
0.02 0.01 384 4
0.02 0.01 389 1

Layer 2
Time Infer.

0.01 4
0.52 27184
0.00 4

Lay
Time

0.00
0.47

11.24

er 3
Infer.

20
34056

694966

Figure 3: Proof t ime and inference steps measurements for the LSA dur ing experiments in three different scenarios:
(1) single-floor planning, (2) lower-level elevator planning, and (3) mult i- f loor planning. (SD is standard deviation.)

program on-line. Here again, logic is used only to give
semantics for GOLOG programs by way of situation cal­
culus ([McCarthy and Hayes, 1969]).

None of this work uses FOL theorem provers for con­
tro l l ing robots at run-t ime. To our knowledge, there has
been no such system since Shakey [Nilsson, 1984].

7 Conclusion
We have shown that theorem provers can be used for
robot control by employing them in a layered architec­
ture. We demonstrated that the architecture and the
versati l i ty of theorem provers allow us to realize complex
tasks, while keeping indiv idual theories simple enough
for efficient theorem proving. Furthermore, we have
grounded our proposal by giving it formal semantics
based on circumscript ion.

At this t ime, the system is implemented in four layers
on a simulating computer. Besides instal l ing the system
on a mobile robot, our future work plan includes adding
layers that create maps and layers that reason about and
update explicit beliefs about the world. We are currently
working on incorporat ing vision sensory capabilities and
implementing concurrency.

This work is a first step towards our long-term goal
of creating a general logic-based AI architecture that is
efficient and scalable, and that supports reactivity.

8 Acknowledgments
We wish to thank Mark Stickel for allowing us to use
his P T T P sources (both for PROLOG and LISP) and
providing helpful answers to our inquiries regarding its
use. This research was supported by an A I IP A (ONR)
grant N00014-94-1-0775 and by a National Physical Sci­
ence Consort ium (NPSC) fellowship.

References
[Baral and Tran, 1998] C. Baral and S.C. Tran. Relat­

ing theories of actions and reactive control. Electronic
Trans, on Artificial Intelligence, 1998. Under review.

[Brooks, 1986] Rodney A. Brooks. A robust layered con­
t ro l system for a mobile robot. IEEE J. Robotics and
Automation, RA-2(1):14 23, March 1986.

[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifs-
chitz. Representing actions and change by logic pro­
grams. J. Logic Programming, 17:301 322, 1993.

[Gelfond et al, 1989] M. Gelfond, H. Przymusinska,
and T. C. Przymusinski. On the relationship between
circumscript ion and negation as failure. Artificial In­
telligence, 38(l) :75-94, February 1989.

[Giacomo et a/., 1998] G. De Giacomo, R. Reiter, and
M. Soutchanski. Execution moni tor ing of high-level
robot programs. In Proc. KR-98, pages 453-464,1998.

[Giunchiglia et al, 1997] E. Giunchigl ia, G.N. Kar tha,
and V. Lifschitz. Representing action: Indeterminacy
and ramifications. Artificial Intelligence, 95(2):409
438, 1997.

[Levesque et al, 1997] H.J. Levesque, R. Reiter, Y. Les-
perance, F. L in , and R. Scherl. Golog: A logic pro­
gramming language for dynamic domains. J. Logic
Programming, 31:59-84, 1997.

[McCarthy and Hayes, 1969] J. McCar thy and P.J.
Hayes. Some philosophical problems from the stand­
point of art i f ic ial intelligence. In Machine Intelligence,
volume 4, pages 463 502. 1969.

[McCarthy, 1986] John McCarthy. Applications of Cir­
cumscription to Formalizing Common Sense Knowl­
edge. Artificial Intelligence, 28:89 116, 1986.

[Minsky, 1985] M. Minsky. The Society of Mind. Simon
and Schuster, 1985.

[Nilsson, 1984] N. J. Nilsson. Shakey the robot. Techni­
cal Report 323, SRI Internat ional , CA, 1984.

[Nilsson, 1998] N.J. Nilsson. Artificial Intelligence: A
New Synthesis. Morgan-Kaufmaim, 1998.

[Shanahan, 1996] M. P. Shanahan. Robotics and the
common sense informatic si tuat ion. In Proc. EC A1-96,
pages 684-688, 1996.

[Stein, 1997] L.A. Stein. Postmoduiar systems: Archi­
tectural principles for cognitive robotics. Cybernetics
and Systems, 28(6):471 487, September 1997.

[Stickel, 1988] M.E. Stickel. A Prolog Technology The­
orem Prover: implementat ion by an extended Prolog
compiler. J. Automated Reasoning, 4:353-380, 1988.

[Stickel, 1992] M.E. Stickel. A Prolog Technology Theo­
rem Prover: a new exposition and implementation in
Prolog. Theoretical Computer Science, 104:109-128,
1992.

152 AUTOMATED REASONING

