
Query Evaluation and Progression in AOL Knowledge Bases
Gerhard Lakemeyer

Depatment, of C o n s c i e n c e
Aachen University of Technology

D-52056 Aachen
Germany

gerhard@cs.rwth-aachen.de

Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 3A6

hector@cs.toronto.edu

Abstract
Recently Lakemeyer and Levesque proposed the
logic AOC, which amalgamates both the situation
calculus and Levesque\s logic of only knowing.
While very expressive the practical relevance of the
formalism is unclear because it heavily relies on
second-order logic. In this paper we demonstrate
that the picture is not as bleak as it may seem. In
particular, we show that for large classes of AOL
knowledge bases and queries, including epistemic
ones, query evaluation requires first-order reason­
ing only. We also provide a simple semantic defini­
tion of progressing a knowledge base. For a partic­
ular class of knowledge bases, adapted from earlier
results by Lin and Reiter, we show that progression
is first-order representable and easy to compute.

1 Introduction
A knowledge-based agent in a dynamic environment needs
powerful facilities to query its knowledge base. In par­
ticular, it does not suffice to only ask what the world is
like after any number of actions have occurred. As has
been argued both in the case of static knowledge bases [6;
9] and in the context of reasoning about action [15; 17;
4], the query language should be able to explicitly refer to
the agent's knowledge1 in order to make distinctions such as
knowing that versus knowing who [2] which otherwise can­
not be made. This is best illustrated by an example.

Suppose we have a simple, stationary mail sorting robot
whose task it is to pick up only the red letters in front of it.
Initially the robot has no letters and it is told that there are two
letters C and D and that at least one of them is red. (Let us
also assume that, unbeknownst to the robot, both letters are
red.) Then the robot should be able to answer the following
queries:

1. Is there a red letter? Answer: yes.

2. Do you know which one is red? Answer: no.

3. Assume the robot now senses the colour of C.
Do you now know of a particular letter that it is red?

1 While we freely use the term knowledge, we really mean belief,
but the difference is not important for the purposes of this paper.

Answer: yes. (Note that even if C were not red, the
answer would still be yes.)

4. The robot now picks up C.
Are you holding all the red letters? Answer: unknown.
(For all the robot knows, D could be red or not.)

5. Are you holding all the known red letters? Answer: yes.
(C is the only letter known to be red.)

Recently, Lakemeyer and Levesque [4] have proposed the
logic which amalgamates the situation calculus [14]
and Levesque's logic of only-knowing [7] and which has the
expressiveness to handle queries such as the above. However,

employs heavy second-order machinery to achieve this
and it is not clear how to use the logic in practice other than
for specification purposes. In this paper we show that the pic­
ture is not as bleak as it may seem. In particular, we show
that in the evaluation of queries like those in the exam­
ple requires first-order reasoning only.

Another important issue is knowledge base progression. In
principle, the only information necessary to answer queries
after a number of actions have occurred is the initial knowl­
edge base together with the action sequence and the outcome
of sensing actions. However, for long sequences of actions
this seems hopelessly unrealistic from a computational point
of view. It seems much more sensible to update the knowl­
edge base appropriately after each action has occurred. Lin
and Reiter [13] studied progression in the context of the sit­
uation calculus without sensing and epistemic notions. They
show that progression can only be represented using second-
order logic in general, but they identify interesting classes of
theories where it remains first-order. Here we show how their
approach can be applied to the more expressive language of

both at the semantic and the representational level. In
particular, we adapt Lin and Reiter's definition of context-free
action theories and show that progression remains first-order
and efficiently computable in corresponding knowl­
edge bases.

The rest of the paper is organized as follows. In Section 2,
we introduce the logic In Section 3, we define how to
query and progress an agent's knowledge at an abstract level.
In Section 4, we consider concrete knowledge bases and dis­
cuss the issue of first-order query evaluation and progression
there. The paper ends with some concluding remarks.2

2Some preliminary ideas about first-order query processing in

124 AUTOMATED REASONING

mailto:gerhard@cs.rwth-aachen.de
mailto:hector@cs.toronto.edu

2 The Logic
Here we only give a brief introduction to the semantics of

The reader is referred to [41 for a more detailed ac­
count including a characterization using foundational axioms,
which we omit here. (We also assume a basic familiarity with
the situation calculus.)

The language of is a dialect of the second-order pred­
icate calculus with equality and has all the primitives of the
situation calculus, and some more. There are three sorts of in­
dividuals: ordinary objects, actions, and situations. For each
sort there is an infinite supply of variables. The situation vari­
able now is reserved for special use. As in the situation calcu­
lus, we have the following primitives: the constant denotes
the situation which corresponds to the real world before any
actions have taken place; if is an action and s a situation,
then denotes the situation resulting from doing in
s; the special predicate has the intended meaning
that is executable in .s; fluents like are relations,
which have ordinary objects as arguments plus a situation ar­
gument in their final position, and are used to express how
the world evolves from situation to situation; there are only
finitely many fluents and action function symbols.

We also require two new special predicates, and
normally not present in the situation calculus, which

are used to model sensing and knowledge and wil l be dis­
cussed in more detail in Section 2.2.

For simplicity, we also make the following restrictions:
there are no constants or functions of the situation sort other
than So and do; action functions do not take situations as ar­
guments; there are no function symbols of type object; and
all predicates other than those mentioned above are fluents.

The language also includes a set of so-called standard
names The intended use of a standard
name is to uniquely identify an object across all possible in­
terpretations, which is useful when dealing with concepts like
knowing that versus knowing who. Indeed, the semantics as­
sumes a fixed domain of objects and these are isomorphic
with the standard names. (See [6; 9] for more details.)

Atomic formulas are obtained in the usual way from the
above primitives and formulas are built using the connec­
tives Other connectives like and will be
used as abbreviations in the usual way. We wi l l use the
following conventions: be a se­
quence of actions and s a situation. Then stands for

denotes the empty se­
quence and we sometimes write . Finally, we
use TRUE as an abbreviation for and FALSE for

TRUE.

2.1 Semantics

Rather than appealing to the standard semantics of FOL,
comes equipped with a nonstandard semantics derived

from possible-world semantics 13], in particular, the seman­
tics of the logic 1.7], which was developed to specify static

first appeared in [5]. Progression was not handled at all in
that paper.

knowledge bases. As in possible-world semantics, the ba­
sic semantic building-block is a world. However, unlike the
static case, a world in determines what is true initially
and after any number of actions have occurred. A situation is
then interpreted simply as a world w indexed by a sequence
of actions In particular, every world "starts" with an ini­
tial situation where no actions have occurred yet. Besides the
real world, whose initial situation serves as the denotation of

, a model in also features a set of worlds e. As in
modal logics of knowledge like e should be understood
as the set of worlds which the agent considers epistemically
possible. In Section 2.2, we wi l l see how, using the special
predicate , the worlds in e can be accessed and how this
gives us a way to define knowledge in dynamic domains.

To simplify the semantics, we assume that besides the stan­
dard names for objects there are also standard names for ac­
tions. These are terms of the form where A is
an action function and each is a standard name of an object.
A primitive formula is an atom of the form
where each is a standard name, and is
a relational fluent, or of the form Poss(A) or SF(A), where
A is a standard name for an action. The set of all primitive
formulas is

Let Act* be the set of all sequences of standard names for
actions including the empty sequence c.

Definition 2.1: A world is a function:

Let denote the set of all worlds.

Definition 2.2: A situation is a pair where
and . An initial situation is one where

Definition 2.3: An action model M is a pair , where
and

w is taken to specify the actual world, and e specifies the epis-
temic state as those worlds an agent has not yet ruled out as
being the actual one. As we wil l see below, a situation term s
wil l be interpreted semantically as a situation consist­
ing of a world and a sequence of actions that have happened
so far. A fluent p(s) wil l be considered true if

A variable map is a function that maps object, action,
and situation variables into standard names for objects and ac­
tions, and into situations, respectively. In addition, assigns
relations of the appropriate type4 to relational variables. For
a given denotes the variable map which is like except
that is mapped into o.

The meaning of terms
We write for the denotation of terms with respect to
an action model and a variable map Then

action term;

3The reader who prefers classical logic is referred to 14]. where
we provide a second-order axiomatization which is sound and com­
plete with respect to the nonstandard semantics.

4 Since the type will always be obvious from the context, we leave
this information implicit.

LAKEMEYER AND LEVESQUE 125

Observe that in a model the only way to refer
to a situation that does not use the given world w is to use a
situation variable.

The meaning of formulas
We write to mean formula comes out true in
action model M and variable map

If does not mention , that is, the truth of does not
depend on e we also write instead of

Similarly, if does not mention and, hence, does not
depend on the real world, we write If mentions
neither nor we simply write Also, if is a
sentence, we omit the variable map and write, for example,

Finally, a formula a is valid in if for all action mod­
els and variable maps

2.2 Knowledge and Action

To determine what is known initially (that is, in situation So),
we only need to consider More precisely, a sentence
is known initially just in case it holds in all situations s for
which holds. To find out what holds in successor situ­
ations, we use the predicates SF and Poss. First note that the
logic itself imposes no constraints on either SF or Poss; it is
up to the user in an application to write appropriate axioms.
For Poss, these are the precondition axioms, which specify
necessary and sufficient conditions under which an action is
executable. So we might have, for example,

Poss-(pickup

as a way of saying that the robot is able to pick up only letters.
For SF, the user must write sensed fluent axioms, one for each
action type, as discussed in [8]. The idea is that.SF(A,,s)
gives the condition sensed by action A in situation s. So we
might have, for example,

5F(senseRed

as a way of saying that the senseRed action in situation s
tells the robot whether or not is red. In case the action A
has no sensing component (as in simple physical actions, like
dropping an object), we require as a convention that the axiom
states that SF(A, s) is identically TRUE. Actions without a
sensing component are referred to as ordinary actions.

With these terms, we can now define K(s', s) as an abbre­
viation for a formula that characterizes when a situation s' is
accessible from an arbitrary situation

where the ellipsis stands for the conjunction of

Here Init(s) stands for -
If s is an initial situation, then the situations which are K-

related to s are precisely those initial situations s' for which
KQ(S') holds. The general picture, after some actions have
occurred, is best reflected by the following theorem, which
shows that our definition yields the successor state axiom for
a predicate K proposed in [17] as a solution to the frame
problem for knowledge.6

Theorem 2.4: [4]. The following sentence is valid:

In other words, is X-related to do just in case there
is some other which is A'-related to s and from which s'
can be reached by doing Furthermore s and s" must agree
on the values of SF and Poss for action a.

Given A', knowledge can then be defined in a way similar
to possible-world semantics [3; 1; 15] as truth in all acces­
sible situations. Knowing is then denoted using the follow­
ing macro, where a may contain the special situation vari­
able now. refer to with all occurrences of now
replaced by s. Then

Knows
where s' is a new variable occurring nowhere else in

Note that itself may contain Knows with the un­
derstanding that macro expansion works from the inner­
most occurrence of Knows to the outside. For example,
Knows (-iKnows stands for

and should be read as "the agent knows in S0 that it does not
know that x is red."

5 We could have defined K as a predicate in the language as is
usually done, but we have chosen not to in order to keep the formal
apparatus as small as possible.

6Here we follow the notation from [8].

126 AUTOMATED REASONING

3 Queries and Progression
In this section, we wi l l consider two related ways of answer­
ing queries in For our purposes, a query is any for­
mula with a single free situation variable, now. An example
is Knows(Red(x, now), now), which asks
whether it is now the case that there is a red object which is
not known yet. The now in this query is intended to refer to
a particular situation, either an initial situation or one that is
the result of a sequence of actions. With this view, it is not
possible to answer queries wrt an action model M =
alone, since we also need to specify what sequence of actions
to use.

In our first specification of query answering, we are given
an initial M, and a sequence of actions .., and we answer
according to what would be known in the situation resulting
from doing In other words, we answer a query with yes
if according to M, is known in do

Note the difference between Knows as
above, and Knows . In the former, we are
asking if would be known after doing in the latter, we
are asking if it is known initially that would be true after
doing It is not hard to show that the former is implied by
the latter, but not vice-versa.

While this is a simple form of query answering, note that
it needs to use the world in M to decide what is known. If

consists of a single sensing action like senseRed(C), then
after doing the sensing, the agent should know whether C is
red or not. But which one is known is determined by which
specifies (via SF) how sensing wil l turn out.

There is, however, a different view where we only need the
epistemic state e to answer a query. The idea is that while an
agent performs her actions, her epistemic state gets updated
to reflect the changes caused by those actions. In particular,
a sensing action leads to the removal of worlds which con­
tradict the sensed value. We can define SUCC to be
the epistemic state that results from executing starting with
initial state e with sensing as specified by by the following:

Now given an e that is equal to : we can de­
fine a new query operation for any query which does not
mention

Restricting ourselves to queries that do not mention is
necessary since ASK does not carry with it the real world,
which is needed as the denotation of In fact, mentioning

within a query does not make much sense in the first place.

Consider, for example. Asking whether a is
true is completely independent of any epistemic state e and
depends only on the initial state of the real world.

In order to compare our two notions of ASK, it is necessary
to restrict the class of queries even further. In fact, we restrict
ourselves to queries whose only situation term is now. In
particular, this has the effect that we cannot ask about other
past or future situations.

Definition 3.1: The interaction language
Atomic formulas whose only situation term is now are
formulas. If a and are -formulas, then
where is an object variable, and Knows are
formulas. Nothing else is an formula. From now on, un­
less stated otherwise, a query is an -formula where now is
the only free variable.

An example query in is

The formula

-Knows(Red

on the other hand, is not in
The formulas of are interpreted by first converting them

into formulas using the definition of Knows introduced
in the previous section.

We then have the following relationship between ASKo
and ASK:

Theorem 3.2: For any

The theorem can be strengthened considerably as it holds
for many queries outside of as well. In a nutshell, the
only restriction needed is that a query does not refer to what
is known before the actions have occurred. Roughly, this is
because SUCC knows more about the past than e be­
cause it has fewer worlds than e. However, the formulation of
a broader class of queries for which the theorem holds turns
out to be somewhat awkward. on the other hand, is sim­
ple and intuitive. Moreover, it is for which we develop a
first-order query evaluation method in Section 4.2.

3.1 Progression
For ASK to make sense, we needed to assume that e reflected
the epistemic changes that occurred during the execution of
a, as reflected in SUCC. In a different context, Lin and Reiter
(LR) [13] have called the process of updating a knowledge
base of an acting agent progression and they studied it in de­
tail in the framework of the standard situation calculus.

One major difference between progression and the SUCC
operation above is that in the former we attempt to forget the
history of actions, and treat the resulting knowledge base as
if it were an initial one.7 Indeed, for many applications, it is
sufficient to maintain information about a single "current" sit­
uation. Our definition of progression below adapts the ideas
of LR to the more expressive language of In fact, our

7See 112] for a formalization of forgetting.

LAKEMEYER AND LEVESQUE 127

formulation is somewhat simpler, which is possible because
the semantics assumes a fixed set of worlds. It is also more
general because LR do not deal with sensing.

We can define a progression operator PROG anal­
ogous to SUCC that produces a new epistemic state, but
which loses information about the past. Given worlds and

, we say that agrees with after if for all and p,
Note that and may differ ar­

bitrarily in all situations before the last action of has been
performed. Then we define PROG by the following:

When e = P R O G w e say that is a progression
at

The following theorem states that progression is faithful
in that it agrees with the original epistemic state for queries
in XC about what is true after a sequence of actions has oc­
curred.

Theorem 3.3: Let , where
is progression at wrt M. Then for all queries

Note that in the case of the empty sequence of actions,
follows immediately.

4 AOL Knowledge Bases
So far, we have only talked about the agent's knowledge in
the abstract, namely as a set of worlds, which include all pos­
sible ways they could evolve in the future. Let us now turn
to representing the agent's knowledge symbolically and see
how this connects with the semantic view taken so far.

In the situation calculus an application domain is typically
characterized by the following types of axioms: action pre­
condition axioms, successor state axioms, and axioms de­
scribing the current (often initial) situation. Successor state
axioms were proposed by Reiter as a solution to the frame
problem [16]. When there are sensing actions, there is also
a fourth type called sensed fluent axioms specifying what the
outcome of sensing is.

-knowledge bases, as we envisage them, consist of
formulas of these types and they have a special syntactic
form. We call a formula objective if it does not mention the
predicate

A formula is called simple in if is first-order and
objective, is the only situation argument occurring in any
of the predicates, and any variable in occurs only free
in is simple in , whereas

In the following, let A be an action and a fluent. Let
denote a formula whose free variables are among the

variables in
Let s denote that situation s' is a successor of ,s which

is defined as:

with the ellipsis standing for the conjunction of

Action Precondition Axioms:

Sensed Fluent Axioms:

Successor State Axioms:

Current State Axioms:

where contain the action pre­
conditions, sensed fuent axioms, and successor state axioms,
respectively, and is the set of current state axioms for
a fixed A knowledge base at t is called an initial knowledge
base.

We define the epistemic state corresponding to a KB as the
set of all worlds satisfying the formulas in KB, where now is
interpreted by initial situations. Formally,

Defining the epistemic state this way reflects the intuition
that the KB is all the agent knows, hence she cannot rule out
any world compatible with the sentences in KB. (See [4] for
how to formalize "all l know" in ,

4,1 An Example KB

Here we consider the mail-sorting robot example in more de­
tail. There are letters of different colours laid out in front of
the robot and its task is to pick up only the red letters. To keep
matters simple, there are only two actions, pickup , which
is possible if is a letter, and senseRed , which tells the
robot whether the sensed object is red and which is always
possible. There are three fluents, Letter, Red, and HoldRLs.
Letter and Red never change and HoldRLs is true if the
robot is holding the red letter x in situation s.

We can formalize this by defining appropriate precondition
axioms, sensed fluent axioms and successor state axioms, all
parameterized by now.

Let ALL(now) stand for the set of these formulas:

In the situation calculus without epistemic concepts, $ ranges
over all situations, namely those reachable from Here we need to
relativize quantification wrt now because there are initial situations
other than

128 AUTOMATED REASONING

Initially, the robot knows that there are at least two letters
C and D and that one of them is red. Hence let

Red{D, So), that is, the actions indeed behave as the robot ex­
pects them to and there are at least two red letters C and D.
Finally, let be our action model.

4.2 First-Order Query Evaluation
By lifting results from Levesque 16; 9J, we show that answer­
ing epistemic queries for KB's like the above requires only
first-order reasoning.

For any formula simple in < let be
with all occurrences of removed. For example,

. Let denote the set of sentences
expressing the unique names assumption for standard names
and actions, and let denote classical first-order logical
implication.

The following definition of RES shows how to
compute in FOL the known instances of and representing it
as a first-order equality expression.

Definition 4.1 : Let KB
and an objective query and let be all the

standard names occurring in KB and and let be a name
not occurring in KB or Then RES is defined as:

1. If . has no free variables, then
TRUE, if
FALSE, otherwise.

If we consider our example KB, then RES|
reduces (after simplification) to whereas
RES[/ted reduces to FALSE because there are no
known red things. The next definition applies RES to all
occurrences of Knows within a query using a recursive de­
scent denoted by The idea is that any occurrence of
Knows in a query is replaced by an equality expres­
sion describing the known instances of

Definition 4.2:
Given a KB as defined above and an arbitrary query

is the objective formula simple in now defined by

Theorem 4.3c Let KB be knowledge base at with current
state axioms Then

In essence, the theorem says that answering an epistemic
query can be achieved by computing a finite number of first-
order implications. Restricting ourselves to queries in is
essential in this case.

To illustrate what this theorem says consider the ex­
ample KB and the query
-iKnows Then ASK ves
because of the following: RES KB] simplifies
to FALSE because there are no known instances of red ob­
jects. Hence is equivalent to ­FALSE
and, furthermore,

Being able to reduce query evaluation in to first-
order reasoning under certain restrictions is somewhat analo­
gous to a result by Lin and Reiter 113] for the standard (non-
epistemic) situation calculus. They show that, even though
their foundational axioms for the situation calculus include
a second- order axiom to characterize the set of all situations,
this axiom is not needed when doing temporal projection, that
is, when inferring whether a formula simple in do
follows from the domain theory together with the founda­
tional axioms. There are also other examples such as [11]
which show that theories which are inherently second-order
nevertheless have interesting special cases where lirst-order
reasoning alone suffices.

4.3 Context-Free Knowledge Bases
Lin and Reiter showed that in their framework, progression
is not always first-order definable. We conjecture that the
same is true in but just as in LR's case there are
interesting classes of knowledge bases which are not only
first-order representablc but where progression is also easily
computable. LR discuss in particular the classes they call
relatively-complete and context-free action theories. Here we
adapt and extend context-free action theories for and
obtain very similar results. (The same is true for relatively
complete theories, but we omit them for space reasons.)

A fluent F is called situation independent if its successor
state axiom has the form

, that is, F never changes. Oth­
erwise F is called situation dependent. A formula is called
situation independent if it contains only situation independent
fluents.
Definition 4.4: [Lin and Reiter] A KB is context-free if

9The idea is that describes the conditions which cause F to
be true and those which cause it to be false.

LAKEMEYER AND LEVESQUE 129

KBeUr consists of situation independent formulas and
formulas of the form or

where is a situation in­
dependent formula with free variables in x and now.

For every action precondition axiom

is situation independent.
For every sensed fluent axiom

is situation independent.

The conditions on the sensed fluent and action precondition
axioms are missing in L R s definition because they do not
deal with sensing and they do not consider the case where an
agent successfully performs an action even though she does
not know that it is possible. In a sense, finding out that an ac­
tion is possible by doing it can be thought of as a special form
of sensing. Note also that SF and Poss are treated completely
symmetricly in our semantic definition of progression.

Definition 4.5: Let KB
be a context-free knowledge base at a world,

an action, and let and
do Let the action precondition and sensed fluent
axioms for A be

Then let where
is constructed as follows;

2. Let A be an ordinary action. Then:
is sit. independent, then

- for any situation dependent fluent F add to

Note the different treatment depending on whether A is a
sensing action or not. In the former case, the old contents
of is simply copied to the new knowledge base with
the new situation replacing the old If A is an ordi­
nary action, we need to treat the situation dependent fluents
in in a special way in order to reflect the changes that
result from doing A. In the case of a sensing action we also
need to record the values of and depending on the

truth value of Poss(A) and SF(A) If A is an or­
dinary action, this needs to be done only for because we
assume that is equivalent to TRUE for ordinary actions.

It is not hard to see that the property of being context-free
is preserved by our syntactic form of progression.

Lemma 4.6: Let KB, \ , and A be as in Definition 4.5.
Then is context-free.

In their paper [13], LR describe some very simple (and
reasonable) consistency requirements for context-free knowl­
edge bases.10 We wi l l not repeat those conditions here and
simply refer to them as LR-consistency. We are now ready
to show that syntactic progression of context-free KB's con­
forms with our semantic definition.

Theorem 4.7: Let KBo be an initial knowledge base, wo a
world and Let KB, and A be as in Defi­
nition 4.5 such that R[KBJ is a progression at wrt

If KB is LR-consistent, then is a progression of

Note that, by definition, is itself a progression at
wrt Hence, the theorem tells us that, starting in an
initial context-free knowledge base, doing an action A wi l l
lead to a progression which itself is represented by a context-
free knowledge base, and this process iterates.

7b illustrate how progression works, let us consider
the initial KB and the corresponding action model M =

from Section 4.1. First, it is easy to verify that it
conforms to the definition of a context-free KB.

1. Let us consider progressing KB by A — senseRed(C)
resulting in KBA with corresponding . Let stand for
do(senseRed(C), now).
Since A is a sensing action (case (1) of Def. 4.5), we ob­
tain simply by replacing every occurrence of now in

by .sj and adding Red(C, s\) to it, because we assume
that M SF(senseRed(C), . Then is a pro­
gression at A.

Let Knows (Red

Then ASK yes because now there is a
known red letter, namely C.

2. Let us now progress by A' = pickup(C) result­
ing in with corresponding Let stand for
do{p\ckup(C),

Starting with the empty set we construct by adding
the following sentences:11

(The disjunction is omitted be­
cause it is clearly subsumed by Red

Given the successor state axiom for F — HoldRLs, we
obtain

10One such requirement is that and may never be true
simultaneously. The example KB is LR-consistent.

11 For simplicity, we omit adding sentences that turn out to be
valid or subsumed by others.

130 AUTOMATED REASONING

Hence we add

Finally, the last case of Definition 4.5 applies and we add

Given the unique names assumption for standard names of
objects and actions, is true just in case
that is, the agent is holding precisely C in s-2.

Given this progressed knowledge base it is then not hard to
show that the robot does not know in s2 whether it is holding
all the red letters. Formally, let

Then unknown. This is be­
cause there are worlds in where C is the only red
letter and others where there are red letters other than C after
doing A - A!.

5 Conclusions
Using the second-order logic we specified a query fa­
cility for knowledge bases in dynamic worlds. Despite the
expressiveness of the logic, we showed that query evaluation
often requires only first-order reasoning. Moreover, by adapt­
ing and extending results by Lin and Reiter, we gave a seman­
tic definition of progression and showed that it is first-order
representable in the case of context-free knowledge bases.

Future work includes finding more powerful classes of
knowledge bases with first-order progressions and applying
the results to the action programming language GOLOG [10].
We defined progression in a way that is very close to the orig­
inal definition by Lin and Reiter. The exact relationship be­
tween the two still needs to be determined. Also, our earlier
definition of SUCC can be thought of as a progression op­
erator in its own right. It is more powerful in that nothing
about the past is forgotten. It is an interesting open problem
to determine syntactic variants of this notion of progression.

References
[11 Hintikka, J., Knowledge and Belief: An Introduction to

the Logic of the Two Notions. Cornell University Press,
1962.]

[2] Kaplan, D., Quantifying In, in L. Linsky (ed.), Refer­
ence and Modality, Oxford University Press, Oxford,
1971.

[3] Kripke, S. A., Semantical considerations on modal
logic. Acta Philosophica Fennica 16, 1963, pp. 83-94.

14] Lakemeyer, G. and Levesque, H. J. a logic
of acting, sensing, knowing, and only knowing. Proc.
of the Sixth International Conference on Principles
of Knowledge Representation and Reasoning, Morgan
Kaufmann, San Francisco, 1998.

15] Lakemeyer, G. and Levesque, H. J. Querying
Knowledge Bases. Preliminary Report. Festschrift in
Honour of W. Bibel, Kluwer Academic Press, to appear.

16] Levesque, H. J., Foundations of a Functional Approach
to Knowledge Representation, Artificial Intelligence,
23,1984, pp. 155-212.

17] Levesque, H. J., Al l 1 Know: A Study in Autoepistemic
Logic. Artificial Intelligence, North Holland, 42, 1990,
pp. 263-309.

18] Levesque, H. J., What is Planning in the Presence of
Sensing. AAAI-96, AAAI Press, 1996.

[9] Levesque, H. J. and Lakemeyer, G., The Logic of
Knowledge Bases, Monograph, forthcoming.

[10] Levesque, H. J., Reiter, R., Lesperance, Y., Lin,F. and
Scherl., R. B., GOLOG: A logic programming language
for dynamic domains. Journal of Logic Programming,
31,59-84, 1997.

[11] Lifschitz, V., Computing Circumscription, Proceedings
of the 9th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann, San Francisco, 1985,
pp. 121-127.

[12] Lin, F. and Reiter, R., Forget It!, in Proc. of the AAAI
Fall Symposium on Relevance, New Orleans, 1994, pp.
154-159.

[13] Lin, F. and Reiter, R., How to Progress a Database. Ar­
tificial Intelligence, 92, 1997, pp. 131-167.

[14] McCarthy, J., Situations, Actions and Causal Laws.
Technical Report, Stanford University, 1963. Also in M.
Minsky (ed.). Semantic Information Processing, MIT
Press, Cambridge, MA, 1968, pp. 410-417.

[15] Moore, R. C, A Formal Theory of Knowledge and Ac­
tion. In J. R. Hobbs and R. C. Moore (eds.), Formal The­
ories of the Commonsense World, Ablex, Norwood, NJ,
1985, pp. 319-358.

[16] Reiter, R., The Frame Problem in the Situation Calcu­
lus: A simple Solution (sometimes) and a Completeness
Result for Goal Regression. In V. Lifschitz (ed.), Artifi­
cial Intelligence and Mathematical Theory of Computa­
tion, Academic Press, 199], pp. 359-380.

[17] Scherl, R. and Levesque, H. J., The Frame Problem and
Knowledge Producing Actions, in Proc. of the National
Conference on Artificial Intelligence (AAAI-93), A A A I
Press, 1993,689-695.

LAKEMEYER AND LEVESQUE 131

