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Abstract 
Recently Lakemeyer and Levesque proposed the 
logic AOC, which amalgamates both the situation 
calculus and Levesque\s logic of only knowing. 
While very expressive the practical relevance of the 
formalism is unclear because it heavily relies on 
second-order logic. In this paper we demonstrate 
that the picture is not as bleak as it may seem. In 
particular, we show that for large classes of AOL 
knowledge bases and queries, including epistemic 
ones, query evaluation requires first-order reason­
ing only. We also provide a simple semantic defini­
tion of progressing a knowledge base. For a partic­
ular class of knowledge bases, adapted from earlier 
results by Lin and Reiter, we show that progression 
is first-order representable and easy to compute. 

1 Introduction 
A knowledge-based agent in a dynamic environment needs 
powerful facilities to query its knowledge base. In par­
ticular, it does not suffice to only ask what the world is 
like after any number of actions have occurred. As has 
been argued both in the case of static knowledge bases [6; 
9] and in the context of reasoning about action [15; 17; 
4], the query language should be able to explicitly refer to 
the agent's knowledge1 in order to make distinctions such as 
knowing that versus knowing who [2] which otherwise can­
not be made. This is best illustrated by an example. 

Suppose we have a simple, stationary mail sorting robot 
whose task it is to pick up only the red letters in front of it. 
Initially the robot has no letters and it is told that there are two 
letters C and D and that at least one of them is red. (Let us 
also assume that, unbeknownst to the robot, both letters are 
red.) Then the robot should be able to answer the following 
queries: 

1. Is there a red letter? Answer: yes. 

2. Do you know which one is red? Answer: no. 

3. Assume the robot now senses the colour of C. 
Do you now know of a particular letter that it is red? 

1 While we freely use the term knowledge, we really mean belief, 
but the difference is not important for the purposes of this paper. 

Answer: yes. (Note that even if C were not red, the 
answer would still be yes.) 

4. The robot now picks up C. 
Are you holding all the red letters? Answer: unknown. 
(For all the robot knows, D could be red or not.) 

5. Are you holding all the known red letters? Answer: yes. 
(C is the only letter known to be red.) 

Recently, Lakemeyer and Levesque [4] have proposed the 
logic which amalgamates the situation calculus [14] 
and Levesque's logic of only-knowing [7] and which has the 
expressiveness to handle queries such as the above. However, 

employs heavy second-order machinery to achieve this 
and it is not clear how to use the logic in practice other than 
for specification purposes. In this paper we show that the pic­
ture is not as bleak as it may seem. In particular, we show 
that in the evaluation of queries like those in the exam­
ple requires first-order reasoning only. 

Another important issue is knowledge base progression. In 
principle, the only information necessary to answer queries 
after a number of actions have occurred is the initial knowl­
edge base together with the action sequence and the outcome 
of sensing actions. However, for long sequences of actions 
this seems hopelessly unrealistic from a computational point 
of view. It seems much more sensible to update the knowl­
edge base appropriately after each action has occurred. Lin 
and Reiter [13] studied progression in the context of the sit­
uation calculus without sensing and epistemic notions. They 
show that progression can only be represented using second-
order logic in general, but they identify interesting classes of 
theories where it remains first-order. Here we show how their 
approach can be applied to the more expressive language of 

both at the semantic and the representational level. In 
particular, we adapt Lin and Reiter's definition of context-free 
action theories and show that progression remains first-order 
and efficiently computable in corresponding knowl­
edge bases. 

The rest of the paper is organized as follows. In Section 2, 
we introduce the logic In Section 3, we define how to 
query and progress an agent's knowledge at an abstract level. 
In Section 4, we consider concrete knowledge bases and dis­
cuss the issue of first-order query evaluation and progression 
there. The paper ends with some concluding remarks.2 

2Some preliminary ideas about first-order query processing in 
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2 The Logic 
Here we only give a brief introduction to the semantics of 

The reader is referred to [41 for a more detailed ac­
count including a characterization using foundational axioms, 
which we omit here. (We also assume a basic familiarity with 
the situation calculus.) 

The language of is a dialect of the second-order pred­
icate calculus with equality and has all the primitives of the 
situation calculus, and some more. There are three sorts of in­
dividuals: ordinary objects, actions, and situations. For each 
sort there is an infinite supply of variables. The situation vari­
able now is reserved for special use. As in the situation calcu­
lus, we have the following primitives: the constant denotes 
the situation which corresponds to the real world before any 
actions have taken place; if is an action and s a situation, 
then denotes the situation resulting from doing in 
s; the special predicate has the intended meaning 
that is executable in .s; fluents like are relations, 
which have ordinary objects as arguments plus a situation ar­
gument in their final position, and are used to express how 
the world evolves from situation to situation; there are only 
finitely many fluents and action function symbols. 

We also require two new special predicates, and 
normally not present in the situation calculus, which 

are used to model sensing and knowledge and wil l be dis­
cussed in more detail in Section 2.2. 

For simplicity, we also make the following restrictions: 
there are no constants or functions of the situation sort other 
than So and do; action functions do not take situations as ar­
guments; there are no function symbols of type object; and 
all predicates other than those mentioned above are fluents. 

The language also includes a set of so-called standard 
names The intended use of a standard 
name is to uniquely identify an object across all possible in­
terpretations, which is useful when dealing with concepts like 
knowing that versus knowing who. Indeed, the semantics as­
sumes a fixed domain of objects and these are isomorphic 
with the standard names. (See [6; 9] for more details.) 

Atomic formulas are obtained in the usual way from the 
above primitives and formulas are built using the connec­
tives Other connectives like and will be 
used as abbreviations in the usual way. We wi l l use the 
following conventions: be a se­
quence of actions and s a situation. Then stands for 

denotes the empty se­
quence and we sometimes write . Finally, we 
use TRUE as an abbreviation for and FALSE for 

TRUE. 

2.1 Semantics 

Rather than appealing to the standard semantics of FOL, 
comes equipped with a nonstandard semantics derived 

from possible-world semantics 13], in particular, the seman­
tics of the logic 1.7], which was developed to specify static 

first appeared in [5]. Progression was not handled at all in 
that paper. 

knowledge bases. As in possible-world semantics, the ba­
sic semantic building-block is a world. However, unlike the 
static case, a world in determines what is true initially 
and after any number of actions have occurred. A situation is 
then interpreted simply as a world w indexed by a sequence 
of actions In particular, every world "starts" with an ini­
tial situation where no actions have occurred yet. Besides the 
real world, whose initial situation serves as the denotation of 

, a model in also features a set of worlds e. As in 
modal logics of knowledge like e should be understood 
as the set of worlds which the agent considers epistemically 
possible. In Section 2.2, we wi l l see how, using the special 
predicate , the worlds in e can be accessed and how this 
gives us a way to define knowledge in dynamic domains. 

To simplify the semantics, we assume that besides the stan­
dard names for objects there are also standard names for ac­
tions. These are terms of the form where A is 
an action function and each is a standard name of an object. 
A primitive formula is an atom of the form 
where each is a standard name, and is 
a relational fluent, or of the form Poss(A) or SF(A), where 
A is a standard name for an action. The set of all primitive 
formulas is 

Let Act* be the set of all sequences of standard names for 
actions including the empty sequence c. 

Definition 2.1: A world is a function: 

Let denote the set of all worlds. 

Definition 2.2: A situation is a pair where 
and . An initial situation is one where 

Definition 2.3: An action model M is a pair , where 
and 

w is taken to specify the actual world, and e specifies the epis-
temic state as those worlds an agent has not yet ruled out as 
being the actual one. As we wil l see below, a situation term s 
wil l be interpreted semantically as a situation consist­
ing of a world and a sequence of actions that have happened 
so far. A fluent p(s) wil l be considered true if 

A variable map is a function that maps object, action, 
and situation variables into standard names for objects and ac­
tions, and into situations, respectively. In addition, assigns 
relations of the appropriate type4 to relational variables. For 
a given denotes the variable map which is like except 
that is mapped into o. 

The meaning of terms 
We write for the denotation of terms with respect to 
an action model and a variable map Then 

action term; 

3The reader who prefers classical logic is referred to 14]. where 
we provide a second-order axiomatization which is sound and com­
plete with respect to the nonstandard semantics. 

4 Since the type will always be obvious from the context, we leave 
this information implicit. 
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Observe that in a model the only way to refer 
to a situation that does not use the given world w is to use a 
situation variable. 

The meaning of formulas 
We write to mean formula comes out true in 
action model M and variable map 

If does not mention , that is, the truth of does not 
depend on e we also write instead of 

Similarly, if does not mention and, hence, does not 
depend on the real world, we write If mentions 
neither nor we simply write Also, if is a 
sentence, we omit the variable map and write, for example, 

Finally, a formula a is valid in if for all action mod­
els and variable maps 

2.2 Knowledge and Action 

To determine what is known initially (that is, in situation So), 
we only need to consider More precisely, a sentence 
is known initially just in case it holds in all situations s for 
which holds. To find out what holds in successor situ­
ations, we use the predicates SF and Poss. First note that the 
logic itself imposes no constraints on either SF or Poss; it is 
up to the user in an application to write appropriate axioms. 
For Poss, these are the precondition axioms, which specify 
necessary and sufficient conditions under which an action is 
executable. So we might have, for example, 

Poss-(pickup 

as a way of saying that the robot is able to pick up only letters. 
For SF, the user must write sensed fluent axioms, one for each 
action type, as discussed in [8]. The idea is that.SF(A,,s) 
gives the condition sensed by action A in situation s. So we 
might have, for example, 

5F(senseRed 

as a way of saying that the senseRed action in situation s 
tells the robot whether or not is red. In case the action A 
has no sensing component (as in simple physical actions, like 
dropping an object), we require as a convention that the axiom 
states that SF(A, s) is identically TRUE. Actions without a 
sensing component are referred to as ordinary actions. 

With these terms, we can now define K(s', s) as an abbre­
viation for a formula that characterizes when a situation s' is 
accessible from an arbitrary situation 

where the ellipsis stands for the conjunction of 

Here Init(s) stands for -
If s is an initial situation, then the situations which are K-

related to s are precisely those initial situations s' for which 
KQ(S') holds. The general picture, after some actions have 
occurred, is best reflected by the following theorem, which 
shows that our definition yields the successor state axiom for 
a predicate K proposed in [17] as a solution to the frame 
problem for knowledge.6 

Theorem 2.4: [4]. The following sentence is valid: 

In other words, is X-related to do just in case there 
is some other which is A'-related to s and from which s' 
can be reached by doing Furthermore s and s" must agree 
on the values of SF and Poss for action a. 

Given A', knowledge can then be defined in a way similar 
to possible-world semantics [3; 1; 15] as truth in all acces­
sible situations. Knowing is then denoted using the follow­
ing macro, where a may contain the special situation vari­
able now. refer to with all occurrences of now 
replaced by s. Then 

Knows 
where s' is a new variable occurring nowhere else in 

Note that itself may contain Knows with the un­
derstanding that macro expansion works from the inner­
most occurrence of Knows to the outside. For example, 
Knows (-iKnows stands for 

and should be read as "the agent knows in S0 that it does not 
know that x is red." 

5 We could have defined K as a predicate in the language as is 
usually done, but we have chosen not to in order to keep the formal 
apparatus as small as possible. 

6Here we follow the notation from [8]. 
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3 Queries and Progression 
In this section, we wi l l consider two related ways of answer­
ing queries in For our purposes, a query is any for­
mula with a single free situation variable, now. An example 
is Knows(Red(x, now), now), which asks 
whether it is now the case that there is a red object which is 
not known yet. The now in this query is intended to refer to 
a particular situation, either an initial situation or one that is 
the result of a sequence of actions. With this view, it is not 
possible to answer queries wrt an action model M = 
alone, since we also need to specify what sequence of actions 
to use. 

In our first specification of query answering, we are given 
an initial M, and a sequence of actions .., and we answer 
according to what would be known in the situation resulting 
from doing In other words, we answer a query with yes 
if according to M, is known in do 

Note the difference between Knows as 
above, and Knows . In the former, we are 
asking if would be known after doing in the latter, we 
are asking if it is known initially that would be true after 
doing It is not hard to show that the former is implied by 
the latter, but not vice-versa. 

While this is a simple form of query answering, note that 
it needs to use the world in M to decide what is known. If 

consists of a single sensing action like senseRed(C), then 
after doing the sensing, the agent should know whether C is 
red or not. But which one is known is determined by which 
specifies (via SF) how sensing wil l turn out. 

There is, however, a different view where we only need the 
epistemic state e to answer a query. The idea is that while an 
agent performs her actions, her epistemic state gets updated 
to reflect the changes caused by those actions. In particular, 
a sensing action leads to the removal of worlds which con­
tradict the sensed value. We can define SUCC to be 
the epistemic state that results from executing starting with 
initial state e with sensing as specified by by the following: 

Now given an e that is equal to : we can de­
fine a new query operation for any query which does not 
mention 

Restricting ourselves to queries that do not mention is 
necessary since ASK does not carry with it the real world, 
which is needed as the denotation of In fact, mentioning 

within a query does not make much sense in the first place. 

Consider, for example. Asking whether a is 
true is completely independent of any epistemic state e and 
depends only on the initial state of the real world. 

In order to compare our two notions of ASK, it is necessary 
to restrict the class of queries even further. In fact, we restrict 
ourselves to queries whose only situation term is now. In 
particular, this has the effect that we cannot ask about other 
past or future situations. 

Definition 3.1: The interaction language 
Atomic formulas whose only situation term is now are 
formulas. If a and are -formulas, then 
where is an object variable, and Knows are 
formulas. Nothing else is an formula. From now on, un­
less stated otherwise, a query is an -formula where now is 
the only free variable. 

An example query in is 

The formula 

-Knows(Red 

on the other hand, is not in 
The formulas of are interpreted by first converting them 

into formulas using the definition of Knows introduced 
in the previous section. 

We then have the following relationship between ASKo 
and ASK: 

Theorem 3.2: For any 

The theorem can be strengthened considerably as it holds 
for many queries outside of as well. In a nutshell, the 
only restriction needed is that a query does not refer to what 
is known before the actions have occurred. Roughly, this is 
because SUCC knows more about the past than e be­
cause it has fewer worlds than e. However, the formulation of 
a broader class of queries for which the theorem holds turns 
out to be somewhat awkward. on the other hand, is sim­
ple and intuitive. Moreover, it is for which we develop a 
first-order query evaluation method in Section 4.2. 

3.1 Progression 
For ASK to make sense, we needed to assume that e reflected 
the epistemic changes that occurred during the execution of 
a, as reflected in SUCC. In a different context, Lin and Reiter 
(LR) [13] have called the process of updating a knowledge 
base of an acting agent progression and they studied it in de­
tail in the framework of the standard situation calculus. 

One major difference between progression and the SUCC 
operation above is that in the former we attempt to forget the 
history of actions, and treat the resulting knowledge base as 
if it were an initial one.7 Indeed, for many applications, it is 
sufficient to maintain information about a single "current" sit­
uation. Our definition of progression below adapts the ideas 
of LR to the more expressive language of In fact, our 

7See 112] for a formalization of forgetting. 
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formulation is somewhat simpler, which is possible because 
the semantics assumes a fixed set of worlds. It is also more 
general because LR do not deal with sensing. 

We can define a progression operator PROG anal­
ogous to SUCC that produces a new epistemic state, but 
which loses information about the past. Given worlds and 

, we say that agrees with after if for all and p, 
Note that and may differ ar­

bitrarily in all situations before the last action of has been 
performed. Then we define PROG by the following: 

When e = P R O G w e say that is a progression 
at 

The following theorem states that progression is faithful 
in that it agrees with the original epistemic state for queries 
in XC about what is true after a sequence of actions has oc­
curred. 

Theorem 3.3: Let , where 
is progression at wrt M. Then for all queries 

Note that in the case of the empty sequence of actions, 
follows immediately. 

4 AOL Knowledge Bases 
So far, we have only talked about the agent's knowledge in 
the abstract, namely as a set of worlds, which include all pos­
sible ways they could evolve in the future. Let us now turn 
to representing the agent's knowledge symbolically and see 
how this connects with the semantic view taken so far. 

In the situation calculus an application domain is typically 
characterized by the following types of axioms: action pre­
condition axioms, successor state axioms, and axioms de­
scribing the current (often initial) situation. Successor state 
axioms were proposed by Reiter as a solution to the frame 
problem [16]. When there are sensing actions, there is also 
a fourth type called sensed fluent axioms specifying what the 
outcome of sensing is. 

-knowledge bases, as we envisage them, consist of 
formulas of these types and they have a special syntactic 
form. We call a formula objective if it does not mention the 
predicate 

A formula is called simple in if is first-order and 
objective, is the only situation argument occurring in any 
of the predicates, and any variable in occurs only free 
in is simple in , whereas 

In the following, let A be an action and a fluent. Let 
denote a formula whose free variables are among the 

variables in 
Let s denote that situation s' is a successor of ,s which 

is defined as: 

with the ellipsis standing for the conjunction of 

Action Precondition Axioms: 

Sensed Fluent Axioms: 

Successor State Axioms: 

Current State Axioms: 

where contain the action pre­
conditions, sensed fuent axioms, and successor state axioms, 
respectively, and is the set of current state axioms for 
a fixed A knowledge base at t is called an initial knowledge 
base. 

We define the epistemic state corresponding to a KB as the 
set of all worlds satisfying the formulas in KB, where now is 
interpreted by initial situations. Formally, 

Defining the epistemic state this way reflects the intuition 
that the KB is all the agent knows, hence she cannot rule out 
any world compatible with the sentences in KB. (See [4] for 
how to formalize "all l know" in , 

4,1 An Example KB 

Here we consider the mail-sorting robot example in more de­
tail. There are letters of different colours laid out in front of 
the robot and its task is to pick up only the red letters. To keep 
matters simple, there are only two actions, pickup , which 
is possible if is a letter, and senseRed , which tells the 
robot whether the sensed object is red and which is always 
possible. There are three fluents, Letter, Red, and HoldRLs. 
Letter and Red never change and HoldRLs is true if the 
robot is holding the red letter x in situation s. 

We can formalize this by defining appropriate precondition 
axioms, sensed fluent axioms and successor state axioms, all 
parameterized by now. 

Let ALL(now) stand for the set of these formulas: 

In the situation calculus without epistemic concepts, $ ranges 
over all situations, namely those reachable from Here we need to 
relativize quantification wrt now because there are initial situations 
other than 

128 AUTOMATED REASONING 



Initially, the robot knows that there are at least two letters 
C and D and that one of them is red. Hence let 

Red{D, So), that is, the actions indeed behave as the robot ex­
pects them to and there are at least two red letters C and D. 
Finally, let be our action model. 

4.2 First-Order Query Evaluation 
By lifting results from Levesque 16; 9J, we show that answer­
ing epistemic queries for KB's like the above requires only 
first-order reasoning. 

For any formula simple in < let be 
with all occurrences of removed. For example, 

. Let denote the set of sentences 
expressing the unique names assumption for standard names 
and actions, and let denote classical first-order logical 
implication. 

The following definition of RES shows how to 
compute in FOL the known instances of and representing it 
as a first-order equality expression. 

Definition 4.1 : Let KB 
and an objective query and let be all the 

standard names occurring in KB and and let be a name 
not occurring in KB or Then RES is defined as: 

1. If . has no free variables, then 
TRUE, if 
FALSE, otherwise. 

If we consider our example KB, then RES| 
reduces (after simplification) to whereas 
RES[/ted reduces to FALSE because there are no 
known red things. The next definition applies RES to all 
occurrences of Knows within a query using a recursive de­
scent denoted by The idea is that any occurrence of 
Knows in a query is replaced by an equality expres­
sion describing the known instances of 

Definition 4.2: 
Given a KB as defined above and an arbitrary query 

is the objective formula simple in now defined by 

Theorem 4.3c Let KB be knowledge base at with current 
state axioms Then 

In essence, the theorem says that answering an epistemic 
query can be achieved by computing a finite number of first-
order implications. Restricting ourselves to queries in is 
essential in this case. 

To illustrate what this theorem says consider the ex­
ample KB and the query 
-iKnows Then ASK ves 
because of the following: RES KB] simplifies 
to FALSE because there are no known instances of red ob­
jects. Hence is equivalent to ­FALSE 
and, furthermore, 

Being able to reduce query evaluation in to first-
order reasoning under certain restrictions is somewhat analo­
gous to a result by Lin and Reiter 113] for the standard (non-
epistemic) situation calculus. They show that, even though 
their foundational axioms for the situation calculus include 
a second- order axiom to characterize the set of all situations, 
this axiom is not needed when doing temporal projection, that 
is, when inferring whether a formula simple in do 
follows from the domain theory together with the founda­
tional axioms. There are also other examples such as [11] 
which show that theories which are inherently second-order 
nevertheless have interesting special cases where lirst-order 
reasoning alone suffices. 

4.3 Context-Free Knowledge Bases 
Lin and Reiter showed that in their framework, progression 
is not always first-order definable. We conjecture that the 
same is true in but just as in LR's case there are 
interesting classes of knowledge bases which are not only 
first-order representablc but where progression is also easily 
computable. LR discuss in particular the classes they call 
relatively-complete and context-free action theories. Here we 
adapt and extend context-free action theories for and 
obtain very similar results. (The same is true for relatively 
complete theories, but we omit them for space reasons.) 

A fluent F is called situation independent if its successor 
state axiom has the form 

, that is, F never changes. Oth­
erwise F is called situation dependent. A formula is called 
situation independent if it contains only situation independent 
fluents. 
Definition 4.4: [Lin and Reiter] A KB is context-free if 

9The idea is that describes the conditions which cause F to 
be true and those which cause it to be false. 
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KBeUr consists of situation independent formulas and 
formulas of the form or 

where is a situation in­
dependent formula with free variables in x and now. 

For every action precondition axiom 

is situation independent. 
For every sensed fluent axiom 

is situation independent. 

The conditions on the sensed fluent and action precondition 
axioms are missing in L R s definition because they do not 
deal with sensing and they do not consider the case where an 
agent successfully performs an action even though she does 
not know that it is possible. In a sense, finding out that an ac­
tion is possible by doing it can be thought of as a special form 
of sensing. Note also that SF and Poss are treated completely 
symmetricly in our semantic definition of progression. 

Definition 4.5: Let KB 
be a context-free knowledge base at a world, 

an action, and let and 
do Let the action precondition and sensed fluent 
axioms for A be 

Then let where 
is constructed as follows; 

2. Let A be an ordinary action. Then: 
is sit. independent, then 

- for any situation dependent fluent F add to 

Note the different treatment depending on whether A is a 
sensing action or not. In the former case, the old contents 
of is simply copied to the new knowledge base with 
the new situation replacing the old If A is an ordi­
nary action, we need to treat the situation dependent fluents 
in in a special way in order to reflect the changes that 
result from doing A. In the case of a sensing action we also 
need to record the values of and depending on the 

truth value of Poss(A) and SF(A) If A is an or­
dinary action, this needs to be done only for because we 
assume that is equivalent to TRUE for ordinary actions. 

It is not hard to see that the property of being context-free 
is preserved by our syntactic form of progression. 

Lemma 4.6: Let KB, \ , and A be as in Definition 4.5. 
Then is context-free. 

In their paper [13], LR describe some very simple (and 
reasonable) consistency requirements for context-free knowl­
edge bases.10 We wi l l not repeat those conditions here and 
simply refer to them as LR-consistency. We are now ready 
to show that syntactic progression of context-free KB's con­
forms with our semantic definition. 

Theorem 4.7: Let KBo be an initial knowledge base, wo a 
world and Let KB, and A be as in Defi­
nition 4.5 such that R[KBJ is a progression at wrt 

If KB is LR-consistent, then is a progression of 

Note that, by definition, is itself a progression at 
wrt Hence, the theorem tells us that, starting in an 
initial context-free knowledge base, doing an action A wi l l 
lead to a progression which itself is represented by a context-
free knowledge base, and this process iterates. 

7b illustrate how progression works, let us consider 
the initial KB and the corresponding action model M = 

from Section 4.1. First, it is easy to verify that it 
conforms to the definition of a context-free KB. 

1. Let us consider progressing KB by A — senseRed(C) 
resulting in KBA with corresponding . Let stand for 
do(senseRed(C), now). 
Since A is a sensing action (case (1) of Def. 4.5), we ob­
tain simply by replacing every occurrence of now in 

by .sj and adding Red(C, s\) to it, because we assume 
that M SF(senseRed(C), . Then is a pro­
gression at A. 

Let Knows (Red 

Then ASK yes because now there is a 
known red letter, namely C. 

2. Let us now progress by A' = pickup(C) result­
ing in with corresponding Let stand for 
do{p\ckup(C), 

Starting with the empty set we construct by adding 
the following sentences:11 

(The disjunction is omitted be­
cause it is clearly subsumed by Red 

Given the successor state axiom for F — HoldRLs, we 
obtain 

10One such requirement is that and may never be true 
simultaneously. The example KB is LR-consistent. 

11 For simplicity, we omit adding sentences that turn out to be 
valid or subsumed by others. 
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Hence we add 

Finally, the last case of Definition 4.5 applies and we add 

Given the unique names assumption for standard names of 
objects and actions, is true just in case 
that is, the agent is holding precisely C in s-2. 

Given this progressed knowledge base it is then not hard to 
show that the robot does not know in s2 whether it is holding 
all the red letters. Formally, let 

Then unknown. This is be­
cause there are worlds in where C is the only red 
letter and others where there are red letters other than C after 
doing A - A!. 

5 Conclusions 
Using the second-order logic we specified a query fa­
cility for knowledge bases in dynamic worlds. Despite the 
expressiveness of the logic, we showed that query evaluation 
often requires only first-order reasoning. Moreover, by adapt­
ing and extending results by Lin and Reiter, we gave a seman­
tic definition of progression and showed that it is first-order 
representable in the case of context-free knowledge bases. 

Future work includes finding more powerful classes of 
knowledge bases with first-order progressions and applying 
the results to the action programming language GOLOG [10]. 
We defined progression in a way that is very close to the orig­
inal definition by Lin and Reiter. The exact relationship be­
tween the two still needs to be determined. Also, our earlier 
definition of SUCC can be thought of as a progression op­
erator in its own right. It is more powerful in that nothing 
about the past is forgotten. It is an interesting open problem 
to determine syntactic variants of this notion of progression. 
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