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A b s t r a c t 
This paper investigates the relationship be­
tween resolution and tableaux proof system for 
the satisfiability of general knowledge bases in 
the description logic We show that res­
olut ion proof systems can polynornially simu­
late their tableaux counterpart. Our resolution 
proof system is based on a selection refinement 
and utilises standard redundancy el imination 
criteria to ensure terminat ion. 

1 Introduction 
Recently a number of results concerning resolution de­
cision procedures for subclasses of first-order logic have 
been obtained. The considered subclasses are expres­
sive enough to encompass a variety of non-classical log­
ics, in part icular, description logics and extended modal 
logics. De Nivelle [1998] describes a resolution decision 
procedure for the guarded fragment using a non-liftable 
ordering refinement. The guarded fragment is a general­
isation of the restricted quantifier fragment correspond­
ing to basic modal logic and allows for the embedding 
of a variety of extended modal logics and description 
logics [Gradel, 1998]. Expressions and knowledge bases 
of the description logic ACC can also be embedded into 
Maslov's class K and its subclasses One-Free [Fermuller 
et a/., 1993] and the class of DL-clauses [Hustadt and 
Schmidt, 1999]. Again, ordering refinements of resolu­
t ion provide decision procedures for these classes. A non­
standard translation into the Bernays-Schonfinkel class 
combined w i th resolution and arbi trary refinements pro­
vide decision procedures for the satisfiability of ACC ex­
pressions [Schmidt, 1999]. This approach was adopted 
in the experiments of Hustadt, Schmidt, and Weiden-
bach [1997; 1998]. Experiments using the standard 
translation and a combination of a first-order theorem 
prover augmented w i th a finite-model finder are de­
scribed in [Paramasivam and Plaisted, 1998]. 

The problem of empirical investigations based on com­
petit ive testing is the diff iculty in identifying the major 
factors having a positive or negative influence on the per­
formance of a theorem prover. As long as the theorem 
provers which are being compared follow different proof 

strategies this difference is l ikely to have a dominating 
effect on the overall performance. This has two conse­
quences. One, we can say l i t t le about the other factors 
influencing the performance, for example, fundamental 
differences between the underlying proof systems or so­
phisticated redundancy el imination techniques used by 
the theorem prover. Two, while it is easy to find bench­
mark problems i l lustrat ing the superiority of one theo­
rem prover it is just as easy to find benchmark problems 
showing the opposite. Therefore, it is always advisable 
to complement empirical investigations w i th a theoreti­
cal analysis of the relative proof and search complexity 
of the underlying proof systems. In the first case, the 
task is to determine whether a proof system A is able 
to polynornially simulate a proof system This is to 
say, for any given theorem there is a function com­
putable in polynomial t ime, mapping proofs of in B 
to proofs of in In the second case, the task is to 
determine the relative size of the search space, that is 
the potential number of inference steps performed unt i l 
a proof is found [Plaisted and Zhu, 1997]. 

In this paper we focus on the aspect of relative 
proof complexity of tableaux proof systems and res­
olut ion proof systems for the description logic 
w i th general terminological sentences and ABox ele­
ments. This logic is of part icular interest, since all 
tableaux proof systems presented in the l i terature re­
quire some form of blocking or loop-checking to force 
terminat ion [Buchheit et o/., 1993; Donini et a/., 1996; 
Horrocks, 1997]. We describe a resolution proof system 
based on a selection refinement of resolution, instead of 
an ordering refinement, which provides a new resolution 
decision procedure for this logic. We show that this 
proof system is able to polynornially simulate tableaux 
proof systems for this logic. The technique for simulat­
ing blocking described in this paper can also be applied 
for obtaining other simulation results, for example, ana­
lyt ic modal KE tableaux proof systems or sequent proof 
systems for modal logics. 

The structure of the paper is as follows. Section 2 de­
fines the syntax and semantics of and describes a 
standard tableaux proof system. We adopt the resolu­
t ion framework of Bachmair and Ganzinger [1998] which 
is described briefly in Section 3. Section 4 presents the 
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simulation result for the tableaux proof system and Sec­
t ion 5 shows how terminat ion of the resolution proof sys­
tem can be enforced in analogy to blocking in tableaux 
systems. In Section 6 we discuss some optimisations 
which are natural ly available in the resolution framework 
and can be transferred to the corresponding tableaux 
proof systems. 

2 Inference for 
We work wi th a signature given by a tuple 
of three disjoint alphabets, the set C of concept sym­
bols, the set R of role symbols, and the set 0 of objects. 
Concept terms (or just concepts) are defined as follows. 
Every concept symbol is a concept. If C and D are con­
cepts, and R is a role symbol, then 

C, and R.C are concept terms. A concept 
symbol is also called a primitive concept. 

A knowledge base has two parts: A comprising 
of terminological sentences of the form and an 

comprising of assertional sentences of the form 
and R, where C and D are concepts, R is 

a role, and a and b are objects. 
Although the language does contain any role forming 

operators, it is sti l l possible to express properties of the 
domain and range of a role R. [Buchheit et al., 1993]. 

The semantics is specified by the embedding into first-
order logic as follows. For sentences: 

where and are constants uniquely associated wi th 
and For terms: 

where X and Y are meta-variables for variables and con­
stants, and PA (respectively denotes a unary (bi­
nary) predicate symbol uniquely associated w i th the con­
cept symbol A (role symbol R). The variable is distinct 
from X. 

A l l common inferential services for knowledge bases, 
like subsumption tests for concepts, TBox classification, 
realization, retrieval, can be reduced to tests of the satis­
fiability of a knowledge base. Our definit ion of a tableaux 
proof system, also called a constraint system, largely 
follows Buchheit et al. [1993]. A l l terminological sen­
tences are assumed to have been replaced by 

and ail concepts in the resulting knowl­
edge based are assumed to have been transformed into 
negation normal form. 

Let I be a subset of 0 such that no element of occurs 
in Let be a well-founded total ordering on The 
elements of are called introduced objects. We assume 
that the elements of are introduced during inference 
according to that is, if is introduced into then 
for all w i th 6 already occurs in 

Following Buchheit et al [1993] we define the following 
set of transformation rules for the purpose of testing the 
satisfiability of a knowledge base: 

Let be the transitive closure of the union of the 
transformation rules given above. A knowledge base 
contains a clash if is in A knowledge base is 
satisfiable if there exists a knowledge base such that 

(ii) no further applications of 
are possible, and (ii i) is clash-free. Note that the rule 

is don't know nondetcrmmistic. 

3 The Resolution Framework 
As usual clauses are assumed to be multisets of liter­
als. The components in the variable part i t ion of a clause 
are called split components, that is, split components 
do not share variables. A clause which is identical to 
its split component is indecomposable. The condensa­
tion Cond(C) of a clause C is a minimal subclause of C 
which is a factor of C. 

The calculus is parameterised by an ordering and 
a selection function 5. The ordering has to satisfy cer­
tain restrictions as detailed in [Bachmair and Ganzinger, 
1998], in particular, it is required to be a reduction or­
dering. A selection function assigns to each clause a 
possibly empty set of occurrences of negative literals. If 
C is a clause, then the literal occurrences in S(C) are 
selected. No restrictions are imposed on the selection 
function. 

The calculus consists of general expansion rules (over 
clause sets) 

each representing a finite derivation of the leaves 
from the root TV. The following rules de­

scribe how derivations can be expanded at leaves. 
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Deduce: 

if C is either a resolvent or a factor of clauses in N. 

Delete : 

if C is a tautology or N contains a clause which is a 
variant of C. 

Split: 

if C and D are variable-disjoint. 

Resolvents and factors are derived by the following rules. 

Ordered Resolut ion: 

where (i) is the most general unifier of A1 and A2, (ii) 
no literal is selected in C and is s t r i c t l y m a x i m a l 
wi th respect to and (i i i) -A2 is either selected, or 

is maximal in and no l i teral is selected in D. 
C A\ is called the positive premise and the 
negative premise.1 

► 

Ordered F a c t o r i n g : 

where (i) is the most general unifier of A1 and A2 and 
(ii) no l i teral is selected in C and i s - m a x i m a l w i th 
respect to 

Let N be a set of ground clauses. A ground clause C 
is redundant in N if there are clauses in iV 
such that are smaller than C w i th respect 
to and logically imply C. The notion of redundancy 
is l ifted to the non-ground case in the expected way. An 
inference is redundant if one of the parent clauses or its 
conclusion is redundant. 

T h e o r e m 1 (Bachmair and Ganzinger [1998]). 
Let N be a set of clauses. Then N is unsatisfiable iff the 
saturation of N up to redundancy contains the empty 
clause. 

4 Simulation by Resolution 
Our intention is to restrict resolution inferences in such 
a way that admissible resolution steps correspond to in­
ference steps in tableaux proof systems. Furthermore, 
the resolution proof system wi l l be a decision procedure 
whenever the tableaux system terminates wi thout the 
help of loop-checking or blocking techniques. 

It is necessary to modify the translat ion mapping 
slightly. Wi thout loss of generality, all expressions oc­
curring in are assumed to be in negation normal form. 
Let be a concept symbol not occurring in In tu ­
itively, has the same semantics as the concept symbol 

But while is translated to the true formula and 
wi l l vanish during the conversion to clausal form, the 
translation treats as an ordinary concept symbol. By 
adding certain formulae to the translation of the knowl­
edge base we provide sufficient information about to 

ensure that the introduct ion of preserves satisfiability 
equivalence. This allows us to obtain the desired com­
putat ional behaviour in our resolution proof system. 

The modified translation is defined as follows. 

The occurrence of on the left-hand side of the 
impl icat ion ensures that all clauses in the clausal form 
contain the negative l i teral Since 

it is immaterial whether the terminological sentences in 
F take the first or second form. 

The conversion to clausal form of first-order formulae 
resulting f rom the translation of knowledge bases, 
makes use of a part icular form of structural transforma­
tion [Baaz et a/., 1994], which is based on two map­
pings and 

Let Pos be the set of positions of a formula If 
is a position in then denotes the subformula of 
at position and is the result of replacing 
at position by We associate w i th each element 
of Pos a predicate symbol and a l i teral 

, where the are the free variables of 
does not occur in and two symbols and 

are equal iff and are variant formulae, 
uses definitions of the form 

1As usual we implicitly assume that the premises have no 
common variables. 

where is maximal in w i th respect to the prefix 
ordering on positions. Let be the set of positions 
of subformulae of corresponding to positions of non-
pr imit ive concepts in the knowledge base we 
denote the transformation taking to its definitional 
form 

Note that in this case, every predicate symbol is a 
unary predicate associated w i th a concept C (although 
not necessarily uniquely associated). Thus, we wi l l 
henceforth denote we denote the func­
t ion which produces for every unary predicate symbol p 
occurring in the conjunction of all formulae 

Finally, let 

T h e o r e m 2. Let be any knowledge base. can 
be computed in polynomial time, and is satisfiable iff 

is satisfiable. 

The clausal form of consists of three types of 
clauses: (i) clauses stemming from terminological axioms 
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which all contain an occurrence of the negative l iteral 
(ii) clauses stemming from formulae introduced 

by i which all contain an occurrence of some 
negative l i teral and (i i i) clauses originating from 
the translation of assertional sentences which are ground 
unit clauses. 

Our selection function selects the literal in 
clauses of type (i) and - i in clauses of types (i i) . In 
addit ion, a binary l i teral of the form is selected 
whenever s is a ground term and is a variable. A l l 
clauses stemming f rom a terminological sentence or from 
an addit ional formula introduced by contain negative 
literals, one of which is selected. We wi l l mark selected 
literals by For Theorem 3 an arbi trary reduction 
ordering may be used. 

For every concept C and every role R, which may pos­
sibly occur in a knowledge base during a satisfiability 
test, there exist corresponding predicate symbols pc and 
PR in the clausal form of Likewise every object 
a is associated w i th a term 

We show that every application of one of the trans­
formation rules is simulated by at most two resolution 
inference steps. 
1. The rule, by two resolution inference steps 

between the ground clause and clauses 

Note that all the inference steps str ict ly obey the restric­
tions enforced by the selection function , and are in 

accordance wi th the resolution calculus. This proves: 

T h e o r e m 3. The resolution proof system with selection 
function p-simulates the tableaux proof system for 

Interestingly, factoring plays no role for the clause sets 
under consideration, that is, the only possible factoring 
steps are condensations of ground conclusions. More­
over, no resolution inference steps other than those of 
the simulation are possible. Thus, the following stronger 
result holds. 

T h e o r e m 4. Let F be a knowledge base and N the 
clausal form of Then the search space of the 
resolution procedure for N can be polynornially reduced 
to the search space of the tableaux procedure for 

5 Termination 
By we denote the set of all concept such that 

is an element of the knowledge Two 
objects I a r e e q u i v a l e n t , denoted b y , i f 

and then is a 
witness for a. Similarly, let P(N,t) denote the set of 
predicate symbols in a clause set N. 
(Remember whenever is an element o f t h e n 
the positive clause is an element of TV.) 

The strategy (S) employed by Buchheit et al. [1993] 
restricts the application of rules as follows: (i) apply a 
transformation to an introduced object only if no rule 
is applicable to an object (ii) apply a rule 
to an introduced object only if no rule is applicable 
to an introduced object such that , (iii) apply 

only if no other rule is applicable, and (iv) apply 
to an introduced object in only if there is no 

witness for Restrictions (i) (ii i) ensure that whenever 
becomes applicable to an introduced object a in a 

knowledge base , then for every wi th we 
have The strategy guarantees the 
termination of the tableaux proof system. 

Restriction (iv) may be viewed as an instance of the 
Leibniz principle, identifying two objects which are in­
distinguishable wi th respect to their properties. Since 
we confine ourselves to applications of this principle to 
introduced objects, it is sufficient to consider properties 
expressible by concepts. In this case, the principle can 
be expressed as a set of first-order formulae of the form 

wi th the antecedents representing all possible t ru th as­
signments to concepts and subconcepts occurring in 
(That is, each corresponds to a concept in and 
for every subconcept C in either or occurs in 
each formula.) The notion of -equivalence also has a 
non-monotonic aspect: Dur ing a tableaux derivation it 
can happen that one state and at a later 
state. But restrictions ( i ) - ( i i i ) ensure that eventually ei­
ther holds for all future states in the 
derivation. Furthermore, it is assumed that for concepts 
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C not occurring in we can assume that 
neither nor are in the semantical interpretation of C. 

To account for these aspects and to reduce the com­
putat ional overhead introduced by these formulae we 
choose to add a special expansion rule instead. 

Blocking: 

where and tb are distinct ground, functional terms, 
and (ii) I is the equality symbol.) 

This rule is sound. Using the correspondence between 
the application of one of the propagation rules and par­
ticular resolution inference steps, we can restrict our­
selves to a corresponding strategy in the resolution proof 
system. It follows that whenever resolution inference 
steps corresponding to become applicable to a term 
t in the clause set TV, then for every clause set N' deriv­
able from N we have P 

On the basis of the ordering on introduced objects 
we wil l now define a reduction ordering Suppose a 
and b are introduced objects and and are the corre­
sponding terms according to the simulation result above. 
Let be a reduction ordering w i th the following prop­
erties: i , and (ii) for arbi trary 
non-equality atoms A, if then 
and . It is not diff icult to show that 
such a reduction ordering exists. Note that it is sufficient 
that only ground expressions are ordered by 

Assume now that by restriction (iv) of strategy (S) 
the rule is not applicable to an introduced object 

in because there is a witness b for a. Then there 
are terms and such that In 
this situation an application of the blocking expansion 
rule wi l l add an equation to N. Since 
it follows , and the ground clauses 
and are smaller t h a n w i t h respect 
t o . A l s o , and logically imply 

. Consequently, the clause is redun­
dant and does not participate in any further inferences. 
This mimics restriction (iv) of strategy (S). To establish 
logical implications of this form, the redundancy elimi­
nation algorithm wi l l require some form of equality rea­
soning, for example, superposition. In our special case, 
all that is required are one-step rewrite transformations. 

T h e o r e m 5. The strategy (S) for tableaux proof systems 
can be polynomially simulated by blocking and redun­
dancy elimination as outlined above. 

It is now straightforward to show that any inference 
in our resolution proof system terminates. 

T h e o r e m 6. Let be knowledge base and let N be 
the clausal form of . Then any derivation from N 
by (ordered) resolution with selection as determined by 

and blocking following the strategy outlined above 
terminates. 

C o r o l l a r y 7. The resolution proof system and the 
tableaux proof system have the same time complexity, 
namely NEXPTIME [Duchheit et al., 1998]. 

6 Optimisations 
In practice a principal cause for intractabi l i ty is the pres­
ence of a large number of terminological sentences. Ev­
ery application of the rule to an object and ter­
minological sentence D w i l l be followed by 
an application of The number of 
branches in the search space generated in this way is too 
large to be manageable for implementations relying on 
chronological backtracking to systematically investigate 
all the branches. 

As indicated by Horrocks and Patel-Schneider [1998] 
and Hustadt and Schmidt [1998] one possible optimisa­
t ion is the use of more sophisticated backtracking tech­
niques like backjumping or branch condensing. However, 
it is even more desirable to avoid unnecessary branching 
in the first place. A closer look at the intention be­
hind the introduct ion of in the modified translation 
reveals one possible optimisation in this direction. Sup­
pose the knowledge base contains a terminological sen­
tence of the form Using the standard embed­
ding we obtain a clause which contains 
no negative l i teral we could select. Using we obtain 

which contains a selectable l i t ­
eral. However, whenever for a terminological sentence 

_ the concept nnf contains a negative 
occurrence of a pr imi t ive concept A, the corresponding 
clauses under the standard embedding wi l l contain 
a selectable negative l i teral . The transformation 

is modified such that these occurrences are preserved. 
Now the selection function can select an arbi trary nega­
tive l i teral. For example, if we have a terminological sen­
tence o f the form . t h e selection function 
can choose an arbi t rary among the negative l i t ­
erals in . This pre­
vents any inference wi th C\ unt i l a uni t clause 
has been derived. Independent of these consideration, 
this optimisation has been incorporated in the FaCT sys­
tem [Horrocks, 1997]. 

From correspondences w i th propositional dynamic 
logic it is known that the satisfiability problem for gen­
eral knowledge bases is in E X P T I M E . The algo­
ri thms presented in Sections 2 and 4 require double ex­
ponential t ime in the worst case. Buchheit et al. [1993] 
note that this can be improved by caching contradic­
tory sets of previously investigated branches in­
troduced by applications of the rule. This has been 
formalised in [Donini et a/., 1996]. Evidently, this form 
of caching wi l l have the same effects for the resolution 
procedure described in this paper. 

7 Conclusion 
The prime motivat ion for this work has been our in­
terest in possible links between different proof systems 
for description logics and modal logics. This paper fo­
cuses on a particular tableaux proof system for descrip­
t ion logics w i th general inclusion sentences and shows 
how this system and certain optimisations can be sim­
ulated w i th polynomial overhead in the context of reso-
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lut ion. Our results provide new insight into the relative 
proof complexity of these systems similar to correspond­
ing results for proposit ional logic. Al though we have 
considered only the logic our results may be ex­
tended to description logics w i th role conjunction and 
role hierarchies. We expect similar results can also be 
obtained for other forms of tableaux proof systems or se­
quent calculi. Resolution procedures following tableaux 
proof strategies have the advantage that proofs may 
be easily translated back into tableaux or sequent-style 
proofs of the original source logic. Related work on 
backward translation is by Caferra and Demri [1993; 
1995]. 

The resolution decision procedure described in this 
paper offers just one of many possible search strate­
gies. Other resolution strategies utilised in the litera­
ture, mentioned in the Int roduct ion, are implemented 
by ordering strategies which do not rely on blocking or 
loop-checking techniques. Such techniques arc also not 
needed in the ordered chaining calculus for modal log­
ics w i th transitive modalities, or w i th transitive 
roles [Ganzinger et ai, 1999]. 

Although experimental results w i th SPASS using or­
dered resolution are encouraging [Hustadt and Schmidt, 
1997; Hustadt et a/., 1998], there are classes of prob­
lems on which tableaux proof systems have better per­
formance. The results of this paper now provide a ba­
sis for the scientific testing of the comparative perfor­
mance of the two orthogonal strategies for resolution 
proof systems, and for establishing guidelines indicating 
which strategy is most appropriate for particular classes 
of problems. 
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