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Abstract 

Computing the least common subsunier (les) 
is an inference task that can be used to sup­
port, the "bot tom-up" construction of knowl­
edge bases for KR systems based on descrip­
tion logics. Previous work on how to compute 
the lcs has concentrated on description logics 
that allow for universal value restrictions, but 
not for existential restrictions. The main new 
contribution of this paper is the treatment of 
description logics with existential restrictions. 
Our approach for computing the lcs is based 
on an appropriate representation of concept de­
scriptions by certain trees, and a characteri­
zation of subsumption by homomorphisins be­
tween these trees. The lcs operation then cor­
responds to the product operation on trees. 

1 Introduction 
Knowledge representation systems based on description 
logics (DL) can be used to describe the knowledge of an 
application domain in a structured and formally well-
understood way. Tradit ionally, the knowledge base of" 
a DL system is bui l t in a "top-down'' fashion by first 
formalizing the relevant concepts of the domain (its ter­
minology) by concept descriptions, i.e., expressions that 
are built from atomic concepts (unary predicates) and 
atomie roles (binary predicates) using the concept con­
structors provided by the DL language. In a second 
step, the concept descriptions are used to specify proper­
ties of objects and individuals occurring in the domain. 
DL systems provide their users with inference services 
that support both steps: classification of concepts and 
of individuals. Classification of concepts determines sub-
concept/supereoncept relationships (called subsumption 
relationships) between the concepts of a given terminol­
ogy, and thus allows one to structure the terminology in 
the form of a subsumption hierarchy. Classification of 
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individuals (or objects) determines whether a given in­
dividual is always an instance of a certain concept (i.e., 
whether this instance relationship is implied by the de­
scriptions of the individual and the concept). 

This tradit ional " top-down" approach for construct­
ing a DL knowledge base is not always adequate, how­
ever. On the one hand, it need not be clear from 
the outset, which are the relevant concepts in a par­
ticular application. On the other hand, even if it is 
clear which (intuit ive) concepts should be introduced, 
it is sometimes difficult to come up wi th formal defi­
nitions of these concepts wi th in the available descrip­
tion language. For example, in one of our applica­
tions in chemical process engineering [Sattler, 1998; 
Baader and Sattler, 1996], the process engineers prefer 
to construct the knowledge base (which consists of de­
scriptions of standard bui lding blocks of process models, 
such as reactors) in the following "bot tom-up" fashion: 
first, they introduce several " typical" examples of the 
standard bui lding block as individuals, and then they 
generalize (the descriptions of) these individuals into a 
concept description that (i) has all the individuals as in­
stances, and (ii) is the most specific description satisfying 
property (i). The task of computing a description satis­
fying (i) and (ii) can be split into two subtasks: comput­
ing the most specifie concept of a single individual, and 
computing the least common subsumer of a given finite 
number of concepts. The most specific concept (mse) 
of an individual b is the most specific concept descrip­
tion C (expressible in the given DL) that has b as an 
instance, and the least common subsumer (lcs) of con­
cept descriptions is the most specific concept, 
description in the given DL that subsumes 

The present paper investigates the second subtask for 
the sub-language of the DL employed in our process 
engineering application. This language allows both for 
value restrictions and existential restrictions, but not for 
ful l negation and disjunction (since the lcs operation is 
tr iv ial in the presence of disjunction, and thus does not 
provide useful information). It can, e.g., be used to in­
troduce the concept of a reactor wi th cooling jacket by 
the description Reactor to.Cooling-Jacket 

functionality.-Vaporize, where is a pr imit ive 
concept (i.e., not further defined). Previous work on 
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how to compute the les [Cohen and Hirsh, 1994; Frazier 
and P i t t , 1996] has concentrated on sub-languages of the 
DL used by the system CLASSIC [Brachman et al, 1991], 
which allows (among other constructors) for value re­
strictions, but not for existential restrictions. Thus, the 
main new contr ibution of the present paper is the treat­
ment of existential restrictions. 

For didactic reasons, we wil l start by showing how to 
compute the les in the small language which allows 
for conjunction and existential restrictions only and ex­
tend our treatment in two steps to by adding value 
restrictions, and then to by further adding prim­
itive negation. For all three languages, we proceed in 
the following manner. First, we introduce an appropri­
ate data structure for representing concept descriptions 
(so-called description trees), and show that subsurnption 
can be characterized by the existence of homomorphisms 
between description trees. From this characterization we 
then deduce that the les operation on concept descrip­
tions corresponds to the product operation on descrip­
tion trees, which can easily be computed. We wi l l also 
comment, on the complexity of subsurnption and the les 
for the languages under consideration. Because of the 
space l imi tat ion, we cannot give all the technical details. 
These details as well as complete proofs can be found in 
[Baader et a/., 1998]. 

2 Preliminaries 
Concept descriptions are inductively defined with the 
help of a set of constructors, start ing wi th a set A'Nc 
of primitive concepts and a set NR of primitive roles. 
The constructors determine the expressive power of the 
DL. In this paper, we consider concept descriptions built 
from the constructors shown in Table 1. In the descrip­
tion logic concept, descriptions are formed using the 
constructors top-concept , conjunction. and 
existential restriction . The description logic 
additionally provides us w i th value restrictions 
and allows for all the constructors shown in Table 1. 

The semantics of a concept description is defined in 
terms of an interpretation . The domain of 

is a non-empty set of individuals and the interpretation 
function maps each pr imit ive concept to a 
set and each pr imit ive role to a binary 
relation The extension of to arbitrary 
concept descriptions is inductively defined, a-s shown in 
the th i rd column of Table 1. 

One of the most important tradit ional inference ser­
vices provided by DL systems is computing the subsurnp­
tion hierarchy. The concept description C is subsumed 
by the description holds for all 
interpretations The concept descriptions C and D are 
equivalent iff they subsume each other. 

In this paper, we are interested in the non-standard 
inference task of computing the least common subsumer 
(les) of concept descriptions. Given 2 concept de­
scriptions in a description logic a concept 
description C of C is an les of (for short, 

Figure 1: -description trees. 

and 
(ii) (7 is the least concept, description wi th this property, 
i.e., if C satisfies for all 1 , then 

Depending on the DL under consideration, the les of 
two or more descriptions need not always exist, but if it 
exists, then it is unique up to equivalence. In the follow­
ing, we will show that, for the and 
the les always exists and can effectively be computed. 
We wi l l mostly restrict the attention to the problem of 
computing the les of two concept descriptions, since the 
les of 2 descriptions can be obtained by iterated 
application of the binary les operation. 

3 Gett ing started the les in 
As mentioned in the introduct ion, our method for com­
put ing the les is based on an appropriate representation 
of concept descriptions by trees. In the case of the small 
DL these trees, c a l l e d - d e s c r i p t i o n trees, are of 
the form where is a tree with root, 

whose edges vrw G E are labeled with primit ive roles 
NR, and whose nodes V are labeled wi th sets 

(v) of pr imit ive concepts from The empty label 
corresponds to the top-concept. 

Intuit ively, such a tree is merely a graphical represen­
tat ion of the syntax of the concept description. More 
formally, every -concept description C can be writ ten 
(modulo equivalence) as 

wi th This descrip­
tion can now be translated into an description tree 

as follows. The set of all pr imit ive con­
cepts occurring in the top-level conjunction of C yields 
the label of the root VQ, and each existential restric­
tion in this conjunction yields an t successor that 
is the root of the tree corresponding to For example, 
the -concept description 

yields the tree depicted on the left-hand side of Fig. 1. 
Conversely, every description tree 

can be translated into an concept description In­
tuit ively, the pr imit ive concepts in the label of yield 
the primit ive concepts in the top-level conjunction of 

and each -successor of yields an existential 
restriction where C is the -concept description 
obtained by translating the subtree of wi th root v. 
For a leaf V, the empty label is translated into the 
top-concept. For example, the description tree in 
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Table 1: Syntax and semantics of concept descriptions. 

Fig. 1 yields the concept description 

These translations preserve the semantics of concept de­
scriptions in the sense that 

Subsumption in can be characterized using the fol­
lowing notion: a homomorphism from an description 
tree to an -description tree 

is a mapping : such 
that for all , 
and for all 

T h e o r e m 1 Let concept descriptions and 
_ the corresponding description trees. Then 

iff there exists a homomorphism from to 

In our example, the -concept description _ subsumes 
C, because mapping onto for all 0 4 yields a 
homomorphism from = to (see Fig. 1). 

Theorem 1 is a special case of the characterization 
of subsumption between simple conceptual graphs in 
[Chein and Mugnier, 1992], and of the characterization of 
containment of conjunctive queries in [Abiteboul et al., 
1995]. In the more general setting of simple conceptual 
graphs and conjunctive queries, testing for the existence 
of a homomorphism is an NP-complete problem. In the 
restricted case of description trees, however, testing 
for the existence of a homomorphism can be realized 
in polynomial t ime [Reyner, 1977; Baader et al., 1998], 
which shows that subsumption between -concept de­
scriptions is a tractable problem. 

Least c o m m o n s u b s u m e r i n 
The characterization of subsumption by homomorphisms 
allows us to characterize the les by the product of 

-description trees. The product of two 
-description trees and 

is denned by induction on the depth 
of the trees. denote the subtree of G wi th root 

We define (vo,wo) to be the root of labeled 
wi th . For each -successor of in 
and of in , we obtain an successor of 

in that is the root of the product of 
and 

For example, consider the description tree 
(Fig. 1) and the description tree (Fig. 2), where 

corresponds to the -concept description D := 
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The product is depicted 
on the r ight-hand side of Fig. 2. 

T h e o r e m 2 Let C, D be two -concept descriptions 
and the corresponding description trees. 
Then , is the les of C and D. 

In our example, we thus obtain 

The size of the les of two , concept descriptions C, D 
can be bounded by the size of which is poly­
nomial in the size of and . Since the size of the 
description tree corresponding to a given description is 
linear in the size of the description, we obtain: 

Proposit ion 3 The size of the les of two -concept 
descriptions C,D is polynomial in the size of C and D, 
and the les can be computed in polynomial time. 

In our process engineering application, however, we 
are interested in the les of 2 concept descriptions 

This les can be obtained from the product 
of their corresponding -description 

trees. Therefore, the size of the les can be bounded by 
the size of this product. It has turned out [Baader et a/., 
1998] that , even for the small DL this size cannot be 
poly normally bounded. 

Proposi t ion 4 The size of the les of n concept de­
scriptions of size linear in n may grow expo­
nential in n. 

4 Extending the results to TfX 
Our goal is to obtain a characterization of the les in 
analogous to the one given in Theorem 2 for . To 
achieve this goal, we first extend the notion of a descrip­
t ion tree from . In order to cope wi th value 



Figure 3: description trees. 

restrictions occurring in -concept descriptions, we al­
low for two types of edges, namely those labeled wi th a 
pr imit ive role (corresponding to existential re­
strictions of the form and those labeled with for 

(corresponding to value restrictions of the form 
. Just as for there is a 11 correspondence 

between -concept descriptions and description 
trees. 

The notion of a homomorphism also extends to 
description trees in a natural way. A homomorphism 
from a n description t r e e i n t o 
an -description tree is a map­
ping : that satisfies the conditions (1) (3) 
on homomorphisms between -description trees, and 
additionally 

However, these straightforward extensions are not suf­
ficient to obtain a sound and complete characteriza­
t ion of subsumption in based on homomorphisms 
between description trees. For example, consider 
the -concept descriptions and their translations into 

description trees depicted in Fig. 3. ft is easy to 
see that , but there exists neither a 
homomorphism from Qp to Qc nor one from 

To avoid these problems, we must normalize the 
concept descriptions before translating them into 
description trees. The normal form of an concept 
description C is obtained from C by exhaustively apply­
ing the following normalization rules: 

Since each normalization rule preserves equivalence, the 
resulting normalized concept description is equiva­
lent to the original one. The rules should be read modulo 
eommutat ivi ty of conjunction; e.g., is also 
normalized to 

Now, the description tree corresponding to C 
is obtained from C by first normalizing C\ and then 
translating the resulting normalized -concept de­
scription into a tree. Each . -description tree 

obtained this way satisfies the following 
properties [Baader et al, 1998]: 

• For each node V and each pr imit ive role NR, 
has at most one outgoing edge labeled 

• Let E, and let C denote the 
concept description corresponding to the subtree of 
(/ w i th root and C" the one corresponding to the 
subtree of G wi th root Then 

• Leaves in Q labeled wi th the empty set cannot be 
reached via an edge labeled for some NR, 
i.e., does not contain a subconcept of the form 

The proof of soundness and completeness of the char­
acterization of subsumption in stated in the next 
theorem makes heavy use of these properties [Baader et 
a/., 1998]. 

Theorem 5 Let C, D be two -concept descriptions 
and their corresponding-description trees. 
Then iff there exists a homomorphism from 
to Gc. 

It should be noted that there is a close relation­
ship between the normalization rules introduced above 
and some of the so-called propagation rules employed 
by tableaux-based subsumption algorithms, as e.g. in­
troduced in [Donini et al., 1992]. The main idea un­
derlying our second normalization rule and the prop­
agation rule treating value restrictions is to make the 
knowledge impl ici t ly given by a conjunction of the form 

F explicit by propagating E onto the existential 
restriction according to the equivalence 

As shown in [Donini et al., 1992], this 
propagation rule may lead to an exponential blow-up of 
the tableau, and the same is true for our normalization 
rule. More precisely, applying the normalization rules 
introduced above to an -concept, description C may 
lead to a normalized concept description, and hence a 
corresponding description tree , of size exponen­
tial in the size of C. This exponential blow-up cannot 
be avoided since (i) as for existence of a homomor­
phism between -description trees can be tested in 
polynomial t ime; and (ii) subsumption in is an NP-
complete problem [Donini et a/., 1992]. 

Least c o m m o n subsumer in 
Just as for we can now use the characterization 
of subsumption in ' by homomorphisms to charac­
terize the les of two -concept descriptions by the 
product of -description trees. The product 
of two -description trees and 

is again defined by induction on 
the depth of the trees. As before, is the root 
of , and -successors of (VO,WQ) are obtained in 
the same way as for Addit ionally, we now obtain a 

successor of ) in is the 
successor of in Q and the one of WQ in , and 
is the root, of the product of and 

T h e o r e m 6 Let C\ D be two concept descriptions 
and their corresponding-description trees. 
Then , is the les of C and D. 

BAADER, KUSTERS, AND MOLITOR 99 



As mentioned above, differs f r o m i n that 
the -description t r e e c o r r e s p o n d i n g to an 
concept description C may be of size exponential in the 
size of C. Therefore, even for two concept descrip­
tions C, D, the size of their les cannot be poly normally 
bounded by the size of C and D [Baader et a/., 1998]. 

Proposit ion 7 The size of the les of two -concept 
descriptions C, D may be exponential in the size of C 
and D. 

5 Extending the results to 
In order to characterize the les of two -concept 
descriptions by the product of description trees, we 
must adapt the notions description tree, homomorphism, 
and product appropriately, taking into account the ad­
dit ional constructors pr imit ive negation and bottom-
concept. 

First, we extend the notion of -description trees 
to description trees by additionally allowing for 
negated pr imit ive concepts -P and the bottom-concept 

in the labels of nodes. Again, as for and 
there is a 11 correspondence between -concept de­
scriptions and -description trees. 

Since is an extension of and since we are 
again interested in a characterization of subsumption 
by homomorphisms, we must normalize -concept de­
scriptions before translating them into their correspond­
ing -description trees. In addit ion to the normaliza­
tion rules for , we need three more rules, which deal 
wi th the fact that . . concept descriptions may con­
tain inconsistent sub-descriptions 
for : 

Starting wi th an concept description C, the exhaus­
tive application of these rules, together wi th the rules 
for yields an e q u i v a l e n t - c o n c e p t description 
in normal form, which is used to construct the 
description tree corresponding to C. 

In addit ion to the conditions for description trees, 
the -description trees obtained this way satisfy the 
following condit ion: if the labe' of a node contains 
then its label is and it is a leaf that cannot be 
reached by an edge wi th label 

Unfortunately, the straightforward adaptation of the 
notion of a homomorphism from -description trees to 

-description trees does not yield a sound and com­
plete characterization of subsumption in , . As an ex­
ample, consider the following -concept descriptions: 

The description D is already in normal form, and the 
normal form of C is C The 
corresponding description trees Qc and are de­
picted in Figure 4. 
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Figure 4: description trees. 

It is easy to see that there does not exist a homomor­
phism (in the sense of Section 4) from into , al­
though we have _ In part icular, the -concept 
description P corresponding to the subtree 
wi th root of subsumes which is the concept 
description corresponding to the subtree wi th root 
in Therefore, a homomorphism from into 
should be allowed to map the whole tree corresponding 
to ', i.e., the nodes , onto the tree 
corresponding to i.e., onto 

In our example, if we map and 
onto o n t o a n d onto , then the above 

conditions are satisfied, i.e., this mapping yields a ho­
momorphism from into 

Wi th this new notion of a homomorphism between 
description trees, we can again characterize sub­

sumption in in a sound and complete way [Baader 
et al., 1998].1 

T h e o r e m 8 Let C, D be two -concept descriptions 
and the corresponding-description trees. 
Then iff there exists a homomorphism from 
into 

Least common subsumer in 
The definition of the product of -description trees 
must be adapted to the modified notion of a homomor­
phism. In part icular, this definit ion must treat leaves 
wi th label in a special manner. In fact, such a leaf 
corresponds to the bottom-concept, and since for 
all concept descriptions C \ w e have l e s C . 
Thus, our product operation should be defined such that 

More precisely, the product of two 
description trees and 

is defined as follows. if 
, then we define G x H by replacing each 

node w in ' Otherwise, we 

1Note that subsumption in is also an NP-cornplete 
problem [Donini et a/., 1992]. 



define by induction on the depth of the trees anal­
ogous to the definition of the product of description 
trees. 

In the example, can be obtained from bv 
replacing wo by i for i = 1,2,3, 
by ( a n d b y (see Fig. 4). 

T h e o r e m 9 Let (7, D be two concept descriptions 
and their' corresponding description trees. 
Then is the les of C and D. 

The proof of Proposition 7 also works if we view the 
concept descriptions used in this proof as special 
concept descriptions. Tims, we have: 

Proposi t ion 10 The size of the les of two -concept 
descriptions C,D may be exponential in the size of CD. 

6 Conclusion and fu ture work 
We have described a method for computing the least, 
common subsuiner in the description logic . In the 
worst ease, the result of this computation may be expo­
nential in the size of the input descriptions. However, the 
examples that show this exponential behavior [Baader et 
ai, 1998] are rather art i f icial, and thus we believe that 
this complexity wil l not pose a problem in practice. 

Our method depends on the characterization of sub-
sumption by homomorphisms on description trees, be­
cause this allows us to construct the les as the prod­
uct of the description trees. For sub-languages of CLAS­
SIC, a similar method has been used to construct the 
les [Cohen and Hirsh, 1994; Frazier and P i t t , 1996], 
even though the characterization of subsumption (via 
a structural subsumption algorithm [Borgida and Patel-
Schneider, 1994]) is not explicit ly given in terms of ho­
momorphisms. The main difference is that these lan­
guages do not allow for existential restrictions. The re­
sults for simple conceptual graphs (conjunctive queries) 
mentioned below Theorem 1 characterize subsumption 
(resp. containment) wi th the help of homomorphisms, 
but they do not consider the les, and they cannot han­
dle value restrictions. 

The language is expressive enough to be quite use­
ful in our process engineering application. In fact,, the 
descriptions of standard building blocks of process mod­
els that we currently represent in our DL system can all 
be expressed within this language. However, in order 
to support the "bot tom-up" approach for constructing 
knowledge bases outl ined in the introduction, we must 
also be able to compute the most specific concept for 
individuals. Unfortunately, the msc need not always ex­
ist i n For the D L i t was shown i n [Baader 
and Kiisters, 1998] that this problem can be overcome by 
allowing for cyclic concept descriptions, but does 
not allow for existential restrictions. Thus, we must ei­
ther extend the approach of [Baader and Kiisters, 1998 
to , or resort to an approximation of the mse, as 
proposed in [Cohen and Hirsh, 1994]. In the process 
engineering application, we can also use the les opera­
t ion directly to structure the existing knowledge base. 

In fact, it has turned out that the subsumption hierar­
chy obtained from the knowledge base of standard bui ld­
ing blocks is rather flat. To obtain a deeper hierarchy 
(which better supports search and hence reuse of bui ld­
ing blocks), we wi l l t ry to construct intermediate levels 
of concepts by applying the les operation. Of course, 
this only makes sense if the les yields concepts that have 
an intuit ive meaning in the application domain. 
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