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Abstract 

Description logics are formalisms for the represen­
tation of and reasoning about conceptual knowl­
edge on an abstract level. Concrete domains allow 
the integration of description logic reasoning with 
reasoning about concrete objects such as numbers, 
time intervals, or spatial regions. The importance 
of this combined approach, especially for building 
real-world applications, is widely accepted. How­
ever, the complexity of reasoning with concrete do­
mains has never been formally analyzed and effi­
cient algorithms have not been developed. This pa­
per closes the gap by providing a tight bound for 
the complexity of reasoning with concrete domains 
and presenting optimal algorithms. 

1 Introduction 
Description logics are knowledge representation and reason­
ing formalisms dealing with conceptual knowledge on an ab­
stract logical level. However, for a variety of applications, it 
is essential to integrate the abstract knowledge with knowl­
edge of a more concrete nature. Examples of such "concrete 
knowledge" include all kinds of numerical data as well as 
temporal and spatial information. Important application ar­
eas which have been found to depend on integrated reasoning 
with concrete knowledge are, e.g., mechanical engineering 
iBaader and Hanschke, 1993], reasoning about aggregation 
in databases [Baader and Sattler, 1998], as well as temporal 
and spatial reasoning (see [Haarslcv et at., 1998] and [Lutz, 
1998]). Many description logic systems such as e.g. C L A S S I C 
and K'RIS (see iBorgida et ai, 1989], IBaader and Hollun-
der, 1991], resp.), provide interfaces that allow the attachment 
of external reasoning facilities which deal with concrete in­
formation. Surprisingly, the complexity of combined reason­
ing with abstract and concrete knowledge has, to the best of 
our knowledge, never been formally analyzed and provably 
optimal algorithms have not been developed. Recent efficient 
implementations of expressive description logics like F A C T 
(see [Horrocks, 1998]) concentrate on logics for which rea­
soning is in PS PACE. An important reason why these systems 
fail to integrate concrete knowledge is that no complexity re­
sults and no efficient algorithms are available. 

Baader and Hanschke [1991] extend description logics by 
concrete domains, a theoretically well-founded approach to 
integrated reasoning with abstract and concrete knowledge. 
On basis of the well-known description logic they de­
fine the description logic which can be param­
eterized by a concrete domain In this paper, we ex­
tend . by the operators feature agreement and fea­
ture disagreement. This leads to the new logic 
which combines with the logic [Hollun-
der and Nutt, 1990]. Algorithms for deciding the concept 
satisfiability and ABox consistency problems for the logic 

are given. Furthermore, the complexity of rea­
soning with is formally analyzed. Since reason­
ing with involves a satisfiability check for the 
concrete domain, the complexity of the combined formal­
ism depends on the complexity of reasoning in the con­
crete domain. The proposed algorithms are proved to need 
polynomial space which implies that, first, reasoning with 

is PSPACE-complcte provided that reasoning with 
the concrete domain is in PS PACE, and, second, the devised 
algorithms are optimal. The obtained complexity results carry 
over to the description logic The algorithmic tech­
niques introduced in this paper are vital for efficient imple­
mentations of both and 

As a simple example illustrating the expressivity of 
consider the concept Man 

wage, {wife wage). In this example, Man is a primi­
tive concept, wife and wage are features (i.e., single valued 
roles), and is a concrete predicate. The given concept de­
scribes the set of men whose boss coincides with their wife 
and who, furthermore, have a higher wage than their wife. In 
this example, the wage of a person is knowledge of a con­
crete type while being a man is knowledge of a more abstract 
nature. The coincidence of wife and boss is described using 
the feature agreement operator and cannot be expressed in 

The syntax used is defined in the next section. 

2 The Description Logic 
In this section, the description logic is introduced. 
We start the formal specification by recalling the definition of 
a concrete domain given in [Baader and Hanschke, 1991]. 

Definition 1. A concrete domain is a pair 
where is a set called the domain, and is a set of pred-
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icate names. Each predicate name P in is associated with 
an arity and an ary predicate A concrete 
domain is called admissible i f f (1) the set of its predicate 
names is closed under negation and contains a name for 

and (2) the satisfiability problem for finite conjunctions 
of predicates is decidable. 

On the basis of concrete domains, the syntax of 
concepts can be defined. 

Definition 2. Let C, R, and F be disjoint sets of concept, 
role, and feature names1. A composition of fea­
tures is called a feature chain. Any element of C is a con­
cept. If C and D are concepts, R is a role or feature, 
is a predicate name with arity and are feature 
chains, then the following expressions are also concepts: 

• - iC (negation), (conjunction), (disjunction), 
(value restriction), (exists restriction), 

(predicate operator) 

• (feature a g r e e m e n t ) , ( f e a t u r e disagree­
ment). 

A simple feature is a feature chain of length one. For a feature 
chain C and .C wi l l be used as abbrevi­
ations for and respectively. As 
usual, a set theoretic semantics is given. 

Definition 3. An interpretation consists 
of a s e t ( t h e abstract domain) and an interpretation 
function . The sets and must be disjoint. The 
interpretation function maps each concept name C to a 
subset of , each role name R to a subset of 

, and each feature name to a partial function 
from , w h e r e w i l l b e written 
as is a feature chain, then 
is defined as the composition of the partial 
functions Let the symbols C, D, R, P, and u1, 

be defined as in Definition 2. Then the interpretation 
function can be extended to complex concepts as follows: 

'In the following, the notion role [feature) is used synonymously 
for role name (feature name). 

An interpretation is a model of a concept C i f f 
A concept C is satisfiable i f f there exists a model of C. A 
concept C subsumes a concept D (written iff 

for all interpretations 

Subsumption can be reduced to satisfiability since C iff 
the concept -C is unsatisfiable. Please note that the fea­
ture agreement and feature disagreement operators consider 
only objects from and no objects from . Agreement 
and disagreement over concrete objects can be expressed by 
using a concrete domain which includes an equality predicate. 
Using disjunction, "global" agreement and disagreement over 
both the concrete and the abstract domain can then also be ex­
pressed (see [Lutz, 1998)). This approach was chosen since 
global agreement and disagreement are not considered to be 
very "natural" operators. We wi l l now introduce the asser-
tional formalism of 

Definition 4. Let and OA be disjoint sets of ob­
ject names. Elements of OD are called concrete objects 
and elements of OA are called abstract objects. If C, 
R, f, and P are defined as in Definition 2, and b 
are elements of 0,4 and are elements of 
O D , then the following expressions are assertional axioms: 

A finite set of assertional axioms is called an 
ABox. An interpretation for the concept language can 
be extended to the assertional language by mapping 
every object name from to an element of 
and every object name from to an element of 

The unique name assumption is not imposed, i.e. 
may hold even if and b are distinct ob­

ject names. An interpretation satisfies an assertional axiom 

An interpretation is a model of an ABox A iff it satisfies all 
assertional axioms in A. An ABox is consistent iff it has a 
model. 

Satisfiability of concepts, as introduced in Definition 3, can 
be reduced to ABox consistency since a concept C is satisfi­
ahle iff the ABox is consistent. In the next section, an 
algorithm for deciding the consistency of, ABoxes 
is presented. 

3 Algorithms 
Completion algorithms, also known as tableau algorithms, 
are frequently used to decide concept satisfiability and ABox 
consistency for various description logics. Completion algo­
rithms work on (possibly generalized) ABoxes and are char­
acterized by a set of completion rules and a strategy to apply 
these rules to the assertional axioms of an ABox. The algo­
rithm starts with an initial ABox whose consistency is to 
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be decided. If the satisfiability of a concept C is to be decided, 
the ABox is considered. The algorithm repeatedly ap­
plies completion rules adding new axioms, and, by doing so, 
makes all knowledge implicitely contained in the ABox ex­
plicit. If the algorithm succeeds to construct an ABox which 
is complete (i.e., to which no more completion rules are appli­
cable) and which does not contain an obvious contradiction, 
then has a model. Otherwise, does not have a model. 

In [Hollunder and Nutt, 1990], a completion algorithm for 
deciding the satisfiability of concepts is given which 
can be executed in polynomial space. In [Baader and Han-
schke, 1991], an algorithm for deciding the consistency of 

without feature agreement and dis­
agreement) ABoxes is given. However, this algorithm needs 
exponential space in the worst case. This is due to the fact that 
the algorithm collects all axioms of the form : P 
(concrete domain axioms) obtained during rule application, 
conjoins them into one big conjunction and finally tests 
for satisfiability w.r.t. the concrete domain. Unfortunately, the 
size of this conjunction may be exponential in the size of 
(see [Lutz, 1998) for an example). To obtain a polynomial 
space algorithm for deciding the consistency of 
ABoxes, the concrete domain satisfiability test has to be bro­
ken up into independent "chunks" of polynomial size. 

The completion algorithm for deciding the consistency of 
ABoxes is developed in two steps: First, an algo­

rithm for deciding the satisfiability of, concepts is 
devised. Second, an algorithm is given which reduces ABox 
consistency to concept satisfiability by constructing a num­
ber of "reduction concepts" for a given ABox Ao. A similar 
reduction can be found in [Hollunder, 1994]. 

Before giving a formal description of the completion 
algorithms themselves, the completion rules are defined. To 
define the rules in a succinct way, the functions succjA and 
chain A are introduced. Let A be an ABox. For an object 

and a feature chain u, sua denotes the object 
b that can be found by following u starting from in A. If 
no such object exists, succ, denotes the special object 

that cannot be part of any ABox. An object name OA 

is called fresh in A if is not used in A. Let a be an object 
from b e a n object from O D , a n d b e 
a feature chain. The function chain is defined as follows: 

Now, the set of completion rules can be formulated. Please 
note that the completion rule is nondeterministic, i.e., 
there is more than one possible outcome of a rule application. 
Definition 5. The following completion rules replace a given 
ABox A nondeterministically by an ABox A''. An ABox .4 
is said to contain a fork (for a feature/) iff it contains the 
two axioms and or the two axioms 
and where and A fork can be 
eliminated by replacing all occurrences of c in A with b, or 
of x with y, resp. It is assumed that forks are eliminated as 
soon as they appear (as part of the rule application) with the 
proviso that newly generated objects are replaced by older 
ones and not vice versa. In the following, C and D denote 
concepts, a role, f a feature, P a predicate name from 

with arity feature chains, and b objects from 
O A , and objects from 

Rule applications that generate new objects are called 
generating. A l l other rule applications are called non-
generating. A l l applications of the rule are generating. 
Application of the rules are usually 
generating but may be non-generating if fork elimination 
takes place. 

A formalized notion of contradictory and of complete 
ABoxes is introduced in the following. 

Definition 6. Let the same naming conventions be given as 
in Definition 5. An ABox A is called contradictory if one 
of the following clash triggers is applicable. If none of the 
clash triggers is applicable to an ABox A, then A is called 
clash-free. 

• Primitive clash: 

• Feature domain clash: 

• All domain clash: 

• Agreement clash: 
An ABox to which no completion rule is applicable is called 
complete. An ABox A is called concrete domain satisfi-
able iff there exists a mapping from . s u c h that 

is true in 
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Figure 1: The sat algorithm. 

We are now ready to define the completion algorithm sat for 
deciding the satisfiability of concepts. Sat takes 
an ABox as input, where C has to be in negation 
normal form, i.e., negation is allowed only in front of concept 
names. Conversion to NNF can be done by exhaustively ap­
plying appropriate rewrite rules to push negation inwards. We 
only give the conversion rules needed for the new construc­
tors feature agreement and feature disagreement, and refer 
to [Baadcr and Hanschke, 1991] for the rule set. 

Any concept can be converted into an equivalent 
concept in NNF in linear time. Some comments about the 
application of nondeterministic completion rules are in order. 
The application of the nondeterministic rule yields more 
than one possible outcome. It is not specified which possibil­
ity is chosen in a given run of a completion algorithm. This 
means that the algorithms to be specified are nondeterministic 
algorithms. Such algorithms returns a positive result if there 
is any way to make the nondeterministic decisions such that 
a positive result is obtained. 

The satisfiability algorithm makes use of two auxiliary 
functions which wi l l be described only informally. The func­
tion apply takes two arguments, an ABox .4 and a completion 
rule It applies r once to arbitrary axioms from A match­
ing 's premise and (nondeterministically) returns a descen­
dant of A that is obtained by rule application. The function 
satisfiable? takes as arguments a concrete domain and a set 
C of concrete domain axioms. It returns yes if the conjunction 
of all axioms in is satisfiable w.r.t. and no otherwise. The 
sat algorithm is given in figure 1. Based on sat, we define the 
ABox-cons algorithm for deciding ABox consistency. This 
algorithm can be found in figure 2. 

A formal correctness proof for the algorithms is omitted 
for the sake of brevity and can be found in [Lutz, 1998]. A 

Figure 2: The ABox-cons algorithm. 

short, informal discussion of the employed strategies is given 
instead. The sat algorithm performs depth-first search over 
role successors. This technique, first introduced by Schmidt-
Schau and Smolka [ 1991 ] for the logic , allows to keep 
only a polynomial fragment (called "trace") of the model in 
memory, although the total size of the model may be expo­
nential. Tracing algorithms usually expand the axioms be­
longing to a single object, only, and make a recursive call 
for each role successor of this object. This is not feasible in 
the case of since more than a single object may 
have to be considered when checking concrete domain sat­
isfiability. The central idea to overcome this problem is to 
expand axioms not for single objects but for "clusters" of ob­
jects which are connected by features. This is done by the 
feature-complete function. During cluster expansion, chunks 
of concrete domain axioms are collected. Any such chunk 
can separately be checked for satisfiability. To see this, it is 
important to note that roles arc not allowed inside the pred­
icate operator, and thus concrete domain axioms cannot in­
volve objects from different clusters (which are connected by 
roles). A similar strategy is employed for in (Hollun-
der and Nutt, 19901. The ABox-cons reduces ABox consis­
tency to satisfiability by performing preprocessing on the ini­
tial ABox and then constructing a reduction concept for each 
role successor of any object in the resulting ABox. In the next 
section, the complexity of both algorithms is analyzed. 

4 Complexity of Reasoning 

To characterize space requirements, a formal notion for the 
size of an ABox is introduced. 
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The size of an axiom is if is of the form C and 1 
otherwise. The size of an ABox A is the sum of the sizes of 
all axioms in A. 

For the analysis of the space needed by sat, two lemmata are 
needed. 

Lemma 8. For any input A, the function feature-complete 
constructs an ABox A' with 

Proof: The upper bound for the size of A' is a consequence 
of the following two points: 

1. feature-complete generates no more than 
ioms. 

2. For each axiom a, we have 

The second point is obvious, but the first one needs to be 
proven. The rules and wil l not be considered 
since they are not applied by feature-complete. For all other 
completion rules, the most important observation is that they 
can be applied at most once per axiom : C This is also 
true for axioms and t h e r u l e since there is at 
most one axiom per feature f and object We make 
the simplifying assumption that the premise of the _ rule 
does only contain the axiom i.e., that it is applied 
to every axiom of this form regardless if there is an axiom 
(a, b) : f or not. This may result in too high an estimation of 
the number of generated axioms but not in one that is too low. 
We now prove the first point from above by showing that, for 
each axiom a in A, no more than axioms are generated 
by feature-complete. 

No new axioms arc generated for axioms of the form 
P since they do 

not appear in the premise of any completion rule (please re­
call the simplification we made about The remaining 
axioms are of the form C. For these axioms, the property 
in question can be proved by induction on the structure of C. 

For the induction start, let C be 
or a concept name. In any of these cases, 

it is trivial to verify that at most new axioms may be gen­
erated. For the induction step, we need to make a case distinc­
tion according to the form of C. Let C be of the form 
The application of the rule generates two axioms D 
and : E. By induction hypothesis, from these two axioms, 
at most axioms may be generated, respectively. 
Hence, from , at most 
new axioms may be generated, the cases tor the remaining 
operators and are analogous. Because of the 
simplifying assumptions made, the case does not need a 
special treatment. 

Lemma 9. For any input Ao, the recursion depth of sat is 
hounded by 

Proof: The role depth of a concept C is the maximum nesting 
depth of exists and value restrictions in C. The role depth 
of an ABox A is the maximum role depth of all concepts 
occurring in A. As an immediate consequence of the way 
in which the input ABoxes of recursive calls are constructed, 
we have that the role depth of the arguments ABoxes strictly 
decreases with recursion depth. 

The space requirements of sat can now be settled. 

Proposition 10. For any input sat can be executed in 
space polynomial in provided that this also holds for 
the function satisfiableY. 

Proof: We wil l first analyze the maximum size of the argu­
ments passed to sat in recursive calls. The argument to sat 
is an ABox which contains axioms : C for a single object 

It is obvious that there can be at most as many such ax­
ioms per object as there are distinct (sub)concepts appearing 
in . This number is bounded by . Furthermore, the 
size of any axiom is at most . It follows that the max­
imum size of arguments given in a recursive call is 
Using feature-complete, the argument ABox is extended by 
new axioms. Combining the argument size with the result 
from Lemma 8, we find that the maximum size of ABoxes 
constructed during recursive calls is To­
gether with Lemma 9, it follows that sat can be executed in 

space. ■ 

This result completes the analysis of the sat algorithm. The 
ABox-cons algorithm performs some preprocessing on the in­
put ABox and then repeatedly calls sat. Its space require­
ments are investigated in the next Proposition. 

Proposition 11. Started on input A, ABox-cons can be ex­
ecuted in space polynomial in provided that this also 
holds for the function satisfiableY. 

Proof: It was already proven that sat can be executed in poly­
nomial space if this also holds for satisfiable?. Thus, it re­
mains to be shown that, for an ABox A the size of 
preprocess(„4) is polynomial in We wil l only give a 
sketch of the proof, for the full version see [Lutz, 1998]. Ob­
jects are called old if they are used in A and new if they are 
used in but not in The proof relies on the fact that the 
preprocess function is identical to the feature-complete func­
tion except that preprocess does also apply the rule. An 
upper bound for the number of applications performed 
by preprocess can be given as follows: If is applied to 
axioms and then both a and b are old ob­
jects. This is the case since preprocess does not apply 
and, hence, no new axioms of the form (a, b): where R is 
a role, are generated. Furthermore, there are at most old 
objects which means that the number of applications is 
bounded by . Together with Lemma 8, it can be shown 
that ■ 

94 AUTOMATED REASONING 



The results just obtained allows us to determine the formal 
complexity of reasoning with concrete domains. 
Theorem 12. Provided that the satisfiability test of the con­
crete domain is in PS PACE, the following problems are 
PSPACE-complete: 

J. Consistency of A Boxes. 
2. Satisfiability and sub sumption of concepts. 
3. Satisfiability and subsumption of concepts. 
4. Consistency of and A Boxes. 

If the satisfiability test of V is in a complexity class with 
PSPACE X, then all of the above problems are PSPACE-
hard. 
Proof: (1) Since is a proper subset of , 
and the satisfiability problem for is PSPACE-complete 
[Sehmidt-SchauB and Smolka, 1991], deciding the consis­
tency of ABoxes is PSPACB-hard. It remains to 
be shown that it is in PS PACE if this is also the case for the 
concrete domain satisfiability test. This follows from Propo­
sition 11 together with the well-known fact that PSPACE = 
N P S P A C E [Savitch, 1970]. (2) is true since satisfiability as 
well as subsumption can be reduced to ABox consistency, cf. 
Section 2. (3) and (4) hold since is a proper subset of 
both logics and which are in turn proper sub­
sets of 

Examples of useful concrete domains for which the satisfia­
bility test is in PSPACE are given in ILutz, 1998]. 

5 Conclusions and Future Work 
We have presented optimal algorithms for deciding the con­
cept satisfiability and the ABox consistency problems for the 
logic . In contrast to existing decision procedures, 
the devised algorithms can be executed in polynomial space 
provided that this does also hold for the concrete domain sat-
isfiability test. Based on this result, it was proven that reason­
ing with is a PSPACE-complete problem. The rule 
application strategy used by the proposed algorithm is vital 
for efficient implementations of description logics with con­
crete domains. An interesting new result in this context is that 
in the case of and satisfiability w.r.t. TBoxes 
is a NExpTlMB-hard problem [Lutz, 19981. As future work, 
we wil l consider the combination of concrete domains with 
more expressive logics for which reasoning is in PSPACE, see 
e.g. [Sattler, 1996]. Furthermore, the logic seems 
to be a promising candidate for the reduction of some tempo­
ral description logics in order to obtain complexity results for 
them. 
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