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Abs t rac t 
We study the complexity of model checking 
in proposit ional nonmonotonic logics. Specif­
ically, we first define the problem of model 
checking in such formalisms, based on the fact 
that several nonmonotonic logics make use of 
interpretation structures (i.e. default exten­
sions, stable expansions, universal Kripke mod­
els) which are more complex than standard in­
terpretations of propositional logic. Then, we 
analyze the complexity of checking whether a 
given interpretation structure satisfies a non­
monotonic theory. In particular, we character­
ize the complexity of model checking for Reit-
er's default logie and its restrictions, Moore's 
autoepistemie logic, and several nonmonotonic 
modal logics. The results obtained show that, 
in all such formalisms, model checking is com­
putationally easier than logical inference. 

1 I n t r o d u c t i o n 
In recent years the problem of model checking has 
been widely studied in knowledge representation and AT 
[Levesque, 1986; Halpern and Vardi, 1991]. Informally, 
model checking for a logical formalism L corresponds to 
the following problem: given an interpretation structure 
l and a logical formula does l satisfy according to 
the semantics of 

Model checking has been convincingly advocated as an 
alternative to classical reasoning, i.e. logical inference. 
The main advantage of model checking lies in the fact 
that in general it is computationally easier than logical 
inference: For instance, it is well-known that, in first-
order logic, model checking is polynomial in the size of 
the interpretation structure. Besides "classical11 applica­
t ion domains (like hardware verification), model check­
ing techniques have been recently employed in the field 
of planning and cognitive robotics [Cimatt i at a/., 1997]. 

Lately, model checking has been studied in some 
propositional nonmonotonic settings [Cadoli, 1992; Lib-
eratoreand Schaerf, 1998]. In particular, [Liberatore and 
Schaerf, 1998] analyze the problem of checking whether a 
classical (propositional) interpretation "satisfies" a given 

default theory, in the sense that such interpretation sat­
isfies at least one extension of the default theory. 

The results obtained show that for propositional de­
fault logic this kind of model checking is in general as 
hard as logical inference, hence the computational ad­
vantages of model checking over theorem proving do not 
seem to hold in the case of default logie. 

The work presented in this paper originates from a 
different definition of model checking for default logic 
and several other nonmonotonic logics. Such a notion is 
an immediate consequence of the fact that many non­
monotonic formalisms make use of interpretation struc­
tures (i.e. default extensions, autoepistemic expansions, 
universal Kr ipke models) which are more complex than 
standard interpretations of classical logic, and which can 
be represented in a compact way by means of logical for­
mulas. Hence, we argue that model checking in such 
frameworks corresponds to verify whether a given inter­
pretation structure of this form satisfies a nonmonotonie 
theory, according to the semantics of the formalism. 
E.g., according to this not ion, a model of a default theory 
is a default- extension, and model checking for proposi­
tional default logic corresponds to verify whether a given 
propositional formula represents an extension of a given 
default theory. Hence, the notion of model checking in 
such nonmonotonic formalisms is peculiar in the sense 
that the interpretat ion structure is represented by means 
of a logical formula. 

We thus provide a computational analysis of the above 
notion of model checking for several propositional non­
monotonic logics. In part icular, we characterize the com­
plexity of model checking in Reiter's default logic [Reiter, 
1980], disjunctive default logie [Gelfond et a/., 1991], and 
for several syntactie restrictions of such formalisms; we 
also study model checking in Moore's autoepistemic logic 
A EL [Moore, 1985], and in several other nonmonotonic 
modal logics, including McDermott and Doyle's (MDD) 
modal logics [Marek and Truszczyriski, 1993], the modal 
logic of minimal knowledge S5r; [Halpern and Moses, 
1985], and the logic of minimal knowledge and negation 
as failure M K N F [Lifschitz, 1991]. 

Our analysis shows that the problem of model check­
ing is easier than logical inference in all the cases ex­
amined: typically, model checking for propositional non-
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monotonic formal isms is complete w i t h respect to the 
class [Ei ter and Go t t l ob , 1997], whi le logical infer-
ence is typ ica l ly complete in such logics. We also 
provide model checking a lgor i thms for bo th default logic 
and several nonmonotonic modal logics. 

In the fo l lowing, we f irst br ief ly recall Rcitor 's default 
logic and Moore 's autoepistemic logic. Then , in Sec­
t ion 3 we analyze model checking in default logic, and 
in Section 4 we study model checking in nonmonotonic 
moda l logics. F inal ly , in Section 5 we compare our ap­
proach w i t h recent related work , and conclude in Sec­
t ion 6. 

2 Preliminaries 
We star t by brief ly recal l ing Reiter 's default logic [Reiter, 
1980]. Let be the usual proposi t ional language. A 
default rule is a rule of the form 

any proposi t ional fo rmula equivalent to Moreover, 
the proposi t ional formula provides 
a f inite representat ion of an inf in i te s t ructure (i.e. the 
extension). 

In [Gelfond et a/., 1991] default logic has been ex­
tended to the case of d is junct ive conclusions, in the fol­
lowing way. A disjunctive default rule is a rule of the 
form 

where 0 and A dis­
junct ive default theory is a pair where W 
and D is a set of d is junct ive default rules. The char­
acter izat ion of d is junct ive default theories is given by 
changing (in a conservative way) the above not ion of ex­
tension as follows. 

The reduct. D(E) w r t of a set of dis junct ive 
defaults D is the set 

We say that a set, is closed under a set of 
just i f icat ion-free dis junct ive default rules D if, for each 

then E for some i such tha t 
is an extension for a dis junct ive 

default theory iff W E and E i s a m in ima l set 
closed under deduct ion and under the set D(E). 

We f inal ly brief ly recall Moore's autoepistemie logic 
( A E L ) . We denote1 w i t h the modal extension of 
w i th the modal i tv A*. Moreover, we denote w i t h the 
set, of flat modal formulas, that is the set of formulas 
f rom in which each proposi t ional symbol appears in 
the scope of exactly one modal i ty . 

D e f i n i t i o n 2 A consistent set of formulas T from 
is stable expansion for formula T satisfies 
the following equation: 

where CnKD45 is the logical consequence operator of 
modal logie KD45. 

Given belongs to all the 
stable expansions of Notab ly , each stable expansion 
T is a stable set i.e. (i) T is closed under proposi t ional 
consequence; (i i) if T; ( i i i ) if 
T then - . We recall that each stable set S 
corresponds to a maximal universal S5 model such 
tha t 5 is the set of formulas satisfied by (see e.g. 
[Marek and Truszczynski , 1993]). 

W i t h the term A E L model for we wi l l refer to an 
model whose set of theorems corresponds to a stable 

expansion for in A E L : w i thou t loss of generality, we 
wi l l ident i fy such a model w i th the set of in terpretat ions 
it contains. Moreover, each model corresponding to a 
stable expansion S of a formula can be characterized 
by a proposi t ional formula such tha t 

is called the objective kernel of the stable expansion 
5. As in the case of defaul t logic, provides a f in i te 
representation of an in f in i te s t ructure. 
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where 0 and (called the prerequisite), 
(called justifications), and (called the conclusion) are 
all formulas f rom A default tlieory is a pair 
where W and D is a set of default rules. 

Defaul t theories in which each rule is of the form 
are called normal (i.e. the jus t i f i ca t ion is equal to the 
consequence of the defaul t ) . Moreover, if each default is 
of the fo rm then the default theory is called super­
normal. 

The character izat ion of default theories is given 
th rough the not ion of extension, i.e. a deductively closed 
set of proposi t ional formulas. In the fo l lowing, given a 
set of proposi t ional formulas 6\ we denote w i th 
the deduct ive closure of G, i.e. the set of proposi t ional 
formulas logical ly impl ied by G. 

Let and let D be a set of default rules. We 
denote w i t h D(E) (and say tha t D(E) is the reduct of 
D w i t h respect to E) the set 

We say tha t a set is closed under a set of 
just i f icat ion-f ree defaul t rules D if, for each if 

E then 

D e f i n i t i o n 1 [Gelfond et a l . , 1991, Theorem 2.3] Let 
be a default theory, and let E E is an 

extension for iff WE and E is the minimal set 
closed under deduction and closed under the set D{E). 

We recall tha t each extension is fu l ly characterized by 
the set of conclusions of the default rules applied dur ing 
th is const ruct ion: in fact , it is easy to see tha t , for each 
extension of {D, W ) , there exists a subset G of the set of 
conclusions of the default rules in D (which 
is denoted as Con(D)) such tha t 
Hence, each extension of a given default theory can be 
represented in terms of a proposi t ional formula (or 



Finally, notice that , as in e.g. [Marek and 
Truszczyriski, 1993], we have adopted the notion of con­
sistent autoepistemie logic, i.e. we do not allow the in­
consistent theory consisting of all modal formulas to be a 
(possible) stable expansion. The results we present can 
be easily extended to this case (corresponding to Moore's 
original proposal). 

We finally briefly introduce the complexity classes 
mentioned throughout the paper (we refer to [Johnson, 
1990] for further details). A l l the classes we use reside in 
the polynomial hierarchy. In particular, the complexity 
class is the class of problems that are solved in poly­
nomial t ime by a nondeterministic Tur ing machine that 
uses an NP-oracle (i.e., that solves in constant t ime any 
problem in NP) , and is the class of problems that 
are complement of a problem in The class [Eiter 
and Gott lob, 1997] (also known as is the 
class of problems that are solved in polynomial time by 
a deterministic Tur ing machine that makes a number of 
calls to an NP-oracle which is logarithmic in the size of 
the input. Hence, the class is "mi ld ly" harder than 
the class NP, since a problem in can be solved by 
solving ''few" (i.e. a logarithmic number of) instances of 
problems in NP. It is generally assumed that the poly­
nomial hierarchy does not collapse, and that a problem 
in the class is computationally easier than a hard 
or hard problem. 

3 Model checking in default logic 
In this section we analyze the complexity of model check­
ing for propositional default logic. We start by proving 
that such a problem belongs to the complexity class 
To this aim, we define the algori thm DL-Check (reported 
in Figure 1) for checking whether a propositional formula 

represents an extension of a default theory 
The algorithm first computes D,' the reduct of D w i th 
respect to then computes a formula representing the 
extension of (D',W), and finally checks whether such a 
formula is equivalent to 

In the algor i thm, we make use of the well-known fact 
that a justif ication-free default theory has ex­
actly one extension. We denote as the 
propositional formula representing such an extension, 
which can be naively computed through a quadratic (in 
the cardinality of D') number of NP-calls, start ing from 

W and conjoining to the 
conclusions of each default rule in D' such 
that is logically implied by Ext((D',W)). 

Correctness of the algori thm follows immediately from 
Definit ion 1. 

L e m m a 3 Let ( D , W) be default theory, and let f 
£. Then, Cn(f) is an extension of (D,W) iff DL-
Check(\ returns true. 

The computational analysis of the algorithm DL-
Check provides an upper bound for the model checking 
problem in default logic. 

T h e o r e m 4 Let be a default theory, and let 
Then, the problem of establishing whether Cn is 

an extension of 

Proof sketch. First, we prove that it is possible to com­
pute the formula Ext((D', W)) through a linear number 
(in the cardinality of D') of calls to an NP-oracle, by 
using the following procedure: 

Then, based on the use of the above procedure for 
computing . we show that the algorithm 
DL-Check can be reduced to an NP-tree [Eiter and Got­
t lob, 1997], which immediately implies an upper bound 
of for the problem of model checking in propositional 
default logic. 

We now turn our attent ion to establishing lower 
bounds for model checking in default logic. We first 
prove that, such a problem is hard even if default 
rules are normal. 

T h e o r e m 5 Let ( I ) , W) be a normal default theory, and 
let f Then, the problem of establishing whether 
Cn(f) is an extension of (Z), W) is hard. 

Proof sketch. We reduce the -complete problem PAR-
ITY(SAT) [Eiter and Got t lob, 1997] to model check­
ing for a normal default theory. Informally, an in­
stance of PARITY(SAT) is a set of propositional for­
mulas , such that if is not satisfiable then, 
for each is not satisfiable. The problem is to 
establish if the number of satisfiable formulas is odd. 

Given an instance of such a problem, in which we as­
sume n odd wi thout loss of generality, we construct the 
normal default theory in which W = true and 
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Figure 1: A lgor i thm DL-Check. 



where p' is a prepositional symbol not appearing in 

We prove that there is an odd number of satisfiable 
formulas in iff true is an extension of (D , W). 
Informally, this is due to the fact that the number of 
satisfiable formulas is even if and only if either all for­
mulas are not satisfiable is not satsfiable) or, for 
some even i, it holds that is satisfiable and is not 
satisfiable. Now, the rules in D are bui l t in such a way 
that , if this situation occurs, then there is a default rule 
which is applied, thus forcing knowledge o f , in the ex­
tension. Therefore, in this case true is not an extension 
for (D,W). 

The above property, together wi th Theorem 4, imme­
diately implies that model checking is -complete both 
for general prepositional default theories and for normal 
default theories. 

Then, wi th a proof similar to the previous one, it is 
possible to show that model checking is hard also in 
the case of prerequisite-free default theories. 

T h e o r e m 6 Let be prerequisite-free default 
theory, and let Then, the problem, of establishing 
whether is αn extension of hard. 

Again, the above theorem and Theorem 4 prove that 
model checking is complete for prerequisite-free de­
fault theories. 

We now turn our attention to supernormal (i.e. both 
normal and prerequisite-free) default theories, and prove 
that in this case model checking is computationally easier 
than for unrestricted default theories. 

T h e o r e m 7 Let (D,W) be α supernormal default the­
ory, and let The problem of establishing whether 
Cn(f) is an extension of is coNP-complete. 

Proof sketch. As for membership in coNP, we reduce the 
problem to a prepositional validity problem. The key 
property is the fact that , given 

Cn(f) is an extension of (D,W) iff the following two 
conditions hold: 

1. for each either 

2. W is equivalent to 

We prove that it is possible to encode each of the 
two above conditions in terms of a prepositional valid­
i ty problem, through two polynomial transformation of 
the input. We thus obtain two prepositional formulas 

and such that condition 1. 
holds iff " is valid and condition 2. holds iff 

is valid. Then, by simply using two dis­
t inct alphabets for the two formulas, it is possible to 
reduce the two problems to a single validity problem. 

Hardness wi th respect to coNP follows from the fact 
that proposit ions! validity of a formula / can be reduced 
to the problem of establishing whether / is an extension 
of 

Figure 2: Algor i thm AEL-Check. 

As for disjunctive default logic, the easiest way to 
characterize model checking is to exploit known corre­
spondences between such a formalism and nonmonotonic 
modal logic M K N F [Lifschitz, 1991]. In particular, the 
existence of a polynomial embedding of disjunctive de­
fault theories in the flat fragment of the logic M K N F 
makes it possible to shew that model checking is in 

Moreover, hardness follows from Theorem 5 and 
from the fact that disjunctive default logic is a conserva­
tive generalization of default logic. Hence, the following 
property holds. 

T h e o r e m 8 Let be α disjunctive default theory, 
and let. Then, the problem of establishing whether 
Cn(f) is an extension of is complete. 

The above property and Theorem 6 also imply 
completeness of model checking for prerequisite-free dis­
junctive default theories. 

In Table 1 we summarize the complexity results de­
scribed in this section. Each column of the table corre­
sponds to a different condition on the conclusion part of 
default rules. 

The results reported in the table, together wi th known 
complexity characterizations of the inference problem in 
default logic (for a survey see [Cadoli and Schaerf, 1993]), 
show that model checking is easier than logical inference 
in all the cases considered. In fact, logical inference is 
already -hard (skeptical reasoning) or hard (cred­
ulous reasoning) for supernormal default theories, while 
model checking is always in 

4 Model checking in nonmonotonic 
modal logics 

In this section we analyze model checking for non­
monotonic modal logics. Due to lack of space, in the 
following we only sketch our complexity analysis, and 
refer to [Marek and Truszczyiiski, 1993; Lifschitz, 1991] 
for a formal definition of M D D logics and M K N F : all the 
results obtained are summarized in Table 2. 
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Table 1: Complex i ty of model checking for default, logic 

Table 2: Complex i ty of model checking for nonmonoton ic moda l logics 

We start by examin ing the case of autoepistemic logic. 
In Figure 2 we report, the a lgor i thm AEL-Check for 
checking whether a proposi t ional fo rmula represents an 
autoepistemic model of a moda l formula. In the algo­
r i t h m , true) represents the formula obtained 
f rom by replacing each occurrence of the subformula 

w i t h true, whi le represents the for­
mu la obta ined f rom by replacing each occurrence of 
the subformula w i t h false. 

In formal ly , the a lgor i thm i terat ive ly computes the 
value of al l modal subformulas (wi thout nested occur­
rences of the moda l i t y ) in according to / , un t i l al l 
modal subformulas have been replaced by a t r u t h value. 
The resul t ing proposi t ional fo rmula is compared w i t h / , 
and the a lgor i thm returns true i f and only i f the two 
formulas are equivalent. 

Correctness of the a lgor i thm can be established by 
means of previous results on reasoning in autoepistemic 
logic [Marek and Truszczyriski , 1993]. 

L e m m a 9 Let 
is an A E L model of 

The above proper ty allows us to prove 
completeness of model checking in A E L . 

T h e o r e m 10 Let . Then, the problem of 
establishing whether is an A E L model 
of complete. 

Proof sketch. Membersh ip in follows f rom Lemma 9 
and f rom the fact tha t the a lgor i thm AEL-Check can be 
po lynomia l ly reduced to an NP-t ree. Hardness fol lows 
f rom the fact that it is possible to reduce an instance 
of the problem of model checking for prerequisite-free 
default theories to model checking in A E L : the reduct ion 
is based on the correspondence* between the prerequisite-
free default and the modal f o r m u l a i n 
autoepistemie logic. 

I t can actual ly be shown tha t model checking for A E L 
is hard (and thus, f rom the above theorem, 
complete) even under the restr ic t ion tha t the formula 

is f lat, i.e. each proposi t ional symbol in lies w i t h in 
the scope of exact ly one modal i ty . The proof of this 
proper ty can be obta ined through a reduct ion f rom PAR­
I T Y ( S A T ) . 

A simi lar analysis allows for establ ishing the same 
complex i ty character izat ion for the prob lem of model 
checking in two wel l -known nonmonoton ic modal for­
malisms of the M c D e r m o t t and Doyle's ( M D D ) fami ly, 
i.e. the nonmonoton ic logics based on the modal systems 
SW5 and S4F [Marek and Truszczynski , 1993]. 

T h e o r e m 11 Let Then, the problem 
of establishing whether M = \ is an S 4 F M D D 

model m o d e l ) c o m p l e t e . 

As in the case of autoepistemic logic, the above prop­
erty also holds if wre restr ic t to f lat formulas. 

For modal logics based on the minimal kmowledge par­
ad igm, we prove tha t model checking is harder than for 
the above presented nonmonoton ic logics. In par t icu lar , 
it is a -complete prob lem. However, logical inference 
in such logics of m in ima l knowledge is harder than in 
default logic and autoepistemic logic, since it is a I I3-
complete prob lem bo th in M K N F and in S 5 G [Donin i e t 
a/., 1997; Rosat i , 1997). Hence, also in such formal isms 
model checking is easier than logical inference. We first, 
analyze moda l logic S 5 G , I .e. the logic of m in ima l knowl ­
edge in t roduced in [Halpern and Moses, 1985]. 

T h e o r e m 12 Let Then, the problem of 
establishing whether is an S5G model 
of complete. 

Interest ingly, i f we impose tha t the modal fo rmula 
is flat, then model checking in S5G becomes easier. 

T h e o r e m 13 Let Then, the problem of 
establishing whether is an model 
of -complete. 

The same computa t iona l character izat ion of model 
checking can be shown for the logic M K N F , i.e. the logic 
of m in ima l knowledge and negation as fai lure int roduced 
in [Li fschitz, 1991], which extends w i t h a second 
modal operator in terpreted in terms of negat ion as fa i l ­
ure. 

Compar ing the above results w i t h known computa­
t ional character izat ions of the inference prob lem in non­
monotonic moda l logics, i t tu rns ou t tha t model checking 
is easier than logical inference in a l l the cases consid­
ered. Moreover, we remark tha t logical inference in the 
f la t f ragment of S5G; and M K N F is -complete. Th is 
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implies that, for each of the cases reported in the table, 
if logical inference is -complete, then model checking 
is -complete, and if logical inference is -complete, 
then model checking is complete. 

5 Related work 
Model checking has been recently studied in some non­
monotonic settings (see e.g. [Cadoli, 1992; Liberatore 
and Schaerf, 1998]). In particular, the work reported 
in [Liberatore and Schaerf, 1998] is the closest to the 
approach presented in this paper, since it deals with the 
model checking problem for prepositional default logic. 

The notion of model checking introduced in [Liber­
atore and Schaerf, 1998] for default logic corresponds 
to check whether a prepositional interpretation / "sat­
isfies" a given default theory , in the sense that 
/ satisfies at least one extension of . Such a no­
t ion of model checking relies on the usage of standard 
prepositional interpretations, thus avoiding the need to 
resort to the representation of an interpretation struc­
ture in terms of a logical formula. On the other hand, 
a prepositional interpretation cannot be considered as 
a "model" of a default theory: in fact, model-theoretic 
characterizations of default, logic are based on possible-
world structures analogous to universal S5 models intro­
duced for autoepistemic logic. Hence, a prepositional 
interpretation is a component of an interpretation struc­
ture of a default theory. Instead, our formulation of the 
model checking problem is based on the idea of checking 
a whole interpretation structure of this form against a 
nonmonotonic theory: in this sense, our notion is a more 
natural extension to nonmonotonic logics of the "classi­
cal" notion of model checking. 

From the computational viewpoint, it turns out that 
Liberatore and Schaerf's notion of model checking is 
harder than the one presented in this paper. In fact, 
comparing Table 1 wi th the results reported in [Liber­
atore and Schaerf, 1998], it can be seen that our for­
mulation of model checking is computationally easier in 
almost all the cases examined, wi th the exception of nor­
mal and supernormal default theories, for which the com­
plexity of the two versions of model checking is the same. 

6 Conclusions 
In this paper we have studied the complexity of model 
checking in several nonmonotonic logics. Our results 
show that, as in classical logic, model checking is com­
putationally easier than logical inference in many non­
monotonic formalisms. We have also provided algo­
ri thms for model checking in default logic and nonmo-
tonic modal logics. 

Our results provide a positive answer to the question 
whether it is convenient to use "model-based" represen­
tations of knowledge in the case of nonmonotonic log­
ics. It therefore* appears possible to use the analysis pre­
sented in this paper as the basis for the development of 
model checking techniques in knowledge* representation 
systems wi th nonmonotonic abilities. 
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