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Abstract 

Disjunctive logic programming (DLP) with sta­
ble model semantics is a powerful nonmono­
tonic formalism for knowledge representation 
and reasoning. Reasoning with DLP is harder 
than with normal (V-free) logic programs; lie-
cause stable model checking - deciding whether 
a given model is a stable model of a proposi-
tional DLP program is co-NP-complete, while 
it is polynomial for normal logic programs. 
This paper proposes a new transformation 

which reduces stable model checking to 
UNSAT - i.e., to deciding whether a given CNF 
formula is unsatisfiable. Thus, the stabil i ty of 
a model A/ for a program caw be verified 
by calling a Satisfiability Checker on the CNF 
formula The transformation is parsi­
monious and efficiently computable, as it runs 
in logarithmic space. Moreover, the size of the 
generated CNF formula never exceeds the size 
of the input. 
The proposed approach to stable model check­
ing lias been implemented in a DLP system, 
and a number of experiments and benchmarks 
have been run. 

1 In t roduct ion 
Disjunctive logic programming (DLP) with stable model 
semantics is a powerful nonmonotonic formalism for 
knowledge representation and eommonsense reasoning 
[Baral and Gelfond, 1994; Lobo et. a/., 1992]. DLP 
has a very high expressive power [Eiter et. a/., 1997a], 
and it allows to represent complex problems in a simple 
and easy-to-understand fashion [Eiter et. a/., 1998]. As 
for the other main nonmonotonic formalisms, reasoning 
wi th DLP (under stable model semantics) is very hard. 
The high complexity of DLP reasoning depends also on 
the hardness of stable model cheeking - deciding whether 
a. given model is a stable model of a propositional DLP 
program which is co-NP-complete. The hardness of 
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this problem ha»s discouraged the implementation of DLP 
engines. Indeed, at the t ime being only one system, 
namely the d l v system (Eiter et. a/., 1998], is avail­
able which fully supports (function-free) DLP wi th sta­
ble model semantics. 

This paper proposes a new transformation, which re­
duces stable model checking to UNSAT i.e., to decid­
ing whether a given CNF formula is unsatisfiable - the 
complement of Satisfiability, a problem for which very 
efficient systems have been developed in Al 

Besides providing an elegant characterization of stable 
models, which sheds new light on their intrinsic nature, 
the proposed transformation has also a strong practical 
impact. Indeed, by using this transformation, the huge 
amount of work done in Al on the design and implemen­
tation of efficient algorithms for checking Satisfiability 
can be profitably used for the implementation of DLP 
engines supporting stable model semantics. Thus, this 
transformation opens "new frontiers" in the implementa­
tion of Disjunctive Logic Programming which can benefit 
now from efficient AI techniques and implementations. 

We have implemented the proposed technique in the 
DLP system d l v , and we have run a number of experi­
ments and benchmarks. 

In sum, the main contributions of this paper are the 
following: 
• We define a new transformation from stable model 
checking for general DLP wi th negation to UNSAT of 
propositional CNF formulas. The transformation is par­
simonious (i.e., it does not add any new symbol) and 
efficiently computable, since it runs in logspace (and, 
therefore, in polynomial t ime). Moreover, the size of the 
generated CNF formula never exceeds the size of the in­
put (it is usually much smaller). 
• We realize our approach in the DLP system d l v , by 
using an implementation of the Davis-Putnam procedure 
a.s the Satisfiability checker. 

Our implementation exploits also novel modular eval­
uation techniques, which follow from our main results. 
• We carry out an experimental act iv i ty which witnesses 
the efficiency of our approach to stable model checking. 

It is worth noting that , since stable model checking of 
DLP programs generalizes minimal model checking for 
Horn CNF formulas, our results can be employed also for 
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reasoning w i th minimal models and wi th circumscrip­
t ion. 

The d l v system, which implements the results 
described in this paper, can be downloaded from 
www.dbai.tuwien.ac.at/proj/dlv. From the same 
Web page, one can also retrieve the benchmark prob­
lems that we used in our experiments. 

The remainder of the paper is organized as follows: 
Setions 2 and 3 contain preliminary notions on DLP, 
stable model semantics, and its characterization in terms 
of unfounded sets. Section A describes our new reduction 
from stable model checking to UNSAT. Section 5 reports 
on our experiments. 

2 Dis junct ive Logic Programming w i t h 
Stable Mode l Semantics 

In this section, we provide an overview of disjunctive 
logic programming wi th stable model semantics. (For 
further details, see [Lobo et. al, 1992].) 

The terms of the language are inductively defined. A 
variable or constant is a term: a function symbol with 
terms as arguments is a term. An atom is 
where is a predicate of arity // and are 
terms. A literal is either a positive literal p or a 
negative literal -p, where p is an atom. 

A (disjunctive) rule r is a clause of the form 

occurring positively (resp.. negatively) in B . A (dis­
junctive) program (also called DLP program) is a set of 
rules. A free (resp., free) program is called positive 
(resp., normal). A term, an atom, a l i teral, a rule, or a 
program is ground if no variables appear in it. A finite 
ground program is also called a prepositional program. 
A function-free, program is a finite program where no 
function symbol occurs. 

Let be a program. The Herbrand universe and the 
Herbrand base of are defined in the standard way and 
denoted by Up and , respectively. Given a rule 
occurring in a , a ground instance of r is a rule obtained 
from r by replacing every variable in r by where 

is a mapping from the variables occurring in r to the 
terms in Up. We denote by ground the set of all the 
ground instances of the rules occurring in 

An interpretation for is a set of ground atoms, that 
is, an interpretation is a subset / of . A ground posi­
tive l iteral A is true (resp., false) w.r.t. if A I (resp.. 

A ground negative literal -4 is true w.r.t. / if 
A is false w.r.t. l otherwise A is false w.r.t. 7. 

Let r be a ground rule in ground{V). The head ol 
is true w.r.t . if The body of is true 
w.r.t. / if all body literals of r are true w.r.t. / (i.e., 

and and is false w.r. t . / 
otherwise. The rule r is satisfied (or true) w.r.t . / if its 
head is true w.r.t. / or its body is false w.r.t. /. 

A model for is an interpretation M for such that 
every rule ground is true w.r.t. A/. A model M 
for is minimal if no model /V for exists such that N 
is a proper subset of M. The set of all minimal models 
for is denoted by M M ( P ) . 

A generally acknowledged semantics for DLP pro­
grams is the extension of the stable model semantics 
to take into account; disjunction [Gelfond and Lifschitz, 
1991: Przymusinski, 1991]. Given a program and an 
interpretation /, the Gelfond-Lifschitz (GL) transforma­
tion of w.r.t. l, denoted is the set of positive rules 
defined as follows: 

D e f i n i t i o n 2 1 [Przymusinski, 1991: Gelfond and Lif­
schitz. 1991] Let / be an interpretation for a program 

stable model for (i.e., 1 is a 
minimal model of the positive program 

Clearly, if is positive, then coincides wi th 
ground,(V). It turns out that for n positive program, 
minimal and stable models coincide. 

3 Stable Models and Unfounded Sets 
Next, we present a characterization of the stable mod­
els of disjunctive logic programs in terms of unfounded 
sets. This characterization wil l be used to prove the cor­
rectness of our reduction from stable model checking to 
UNSAT in the next section. 

The characterization presented here is obtained by 
slight modifications of the results presented in [Leone 
et. al. 1997]. In particular, providing the notion of un­
founded sets directly for total (2-valued) interpretations, 
we obtain a simpler characterization than in [Leone et. 
a/., 1997], where unfounded sets were defined w.r.t. par­
tial (3-valued) interpretations. 

D e f i n i t i o n 3.1 (Definition 3.1 in [Leone et. a/., 1997]) 
Let / be an interpretation for a program 

of ground atoms is an unfounded set for V w.r.t. 1 
if. for each rule ground such that A" 
at least one of the following conditions holds: 
1. that is the body of 
is false w.r.t. /. 

distinct from the elements in X, is true w.r.t. I. 
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I n p u t : A ground D L P program and a model M for 
O u t p u t : A propositional CNF formula (V) over M. 
var : DLP Program; S: Set of Clauses; 
b e g i n 
1. Delete from each rule whose body is false 

w.r. t . M ; 
2. Remove all negative literals from the (bodies of the) 

remaining rules; 
3. Remove all false atoms (w.r.t. M) from the heads 

of the resulting rules; 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
end. 

Figure 1: The transformation (V) 
D e f i n i t i o n 3.2 An interpretation / for a program V is 
unfounded-free iff no nonempty subset of / is an un­
founded set for w.r.t. /. 

The unfounded-free condit ion singles out precisely the 
stable models. 

T h e o r e m 3.3 (Theorem 4.6 in [Leone et. al. , 1997]) 
Let M be a model for a program M is stable model 
for V iff M is unfounded-free. 

E x a m p l e 3.4 Let is a 
stable model of since there is no nonempty subset of 

which is an unfounded set. On the other hand, for 
due to Condit ion 3, both and are 

unfounded sets. M2 is not unfounded-free, and therefore, 
it is not a stable model. 

4 From Stable Model Checking to 
UNSAT 

In this section we present a reduction from stable model 
checking to UNSAT, the complement of Satisfiability, a 
problem which is better explored in AI and for which 
efficient algorithms and systems are available. 

Recall that a CNF formula, over a set A of atomic 
propositions is a conjunction of the form 
cn, where are clauses over A. Wi thou t loss of 
generality, in this paper a clause 

wi l l be wr i t ten as 
thus, a CNF wi l l be a conjunction of these implications. 

A formula is satisfiable if there exists a t r u th as­
signment to the propositions of A which makes true; 
otherwise, is unsatisfiable (or inconsistent). 

UNSAT is the following decision problem. 

Given a CNF formula is it true that is 
unsatisfiable? 

Our reduction from stable model checking to UNSAT 
is implemented by the algori thm shown in Figure 1. 

In the first step of the algor i thm shown in Figure 1, the 
rule is deleted. In the second s t e p , i s removed 
from the body of the last rule of while the th i rd step 
removes c from the head of the first rule. Thus, after Step 
3, the program becomes 
Steps 4 to 8 switch the bodies and the heads of the rules, 
yielding the set of clauses S = 

Finally, Step 9 constructs the conjunction of the 
clauses in 5 plus the clause Therefore, the 
output of the algori thm is 
b) 

Now consider model Here, the first three 
steps simplify ' to . Steps 4 to 8 
swap the heads and bodies of the rules to get 

and Step 9 adds So the outcome 
for M2 is 

T h e o r e m 4.2 Given α model M for a ground DLP pro­
gram let TM (V) be the CNF formula computed by the 
algorithm of Figure 1 on input and M. 
Then, M is stable model for if and only if (V) is 
unsatisfiable. 

In the remainder of this section we demonstrate The­
orem 4.2 (i.e., we show the correctness of our 
reduction). For space l imi tat ion, we do not include the 
proofs of the two lemmas here; but we il lustrate their 
validity on a running example. 

To better i l lustrate the transformation, we pro­
ceed in an incremental way, div iding the transformation 
into three steps, and showing the correctness of each of 
them. 

D e f i n i t i o n 4.3 Let be a ground D L P program and 
M be n model for Define the simplified version 
of w.r.t as: 

Thus, coincides wi th the program obtained 
by steps 1-3 of Figure 1. Observe that every rule in 
ΑM has a non-empty head. Indeed, i f w o u l d 
contain a rule wi th an empty head, then M would not 
be a model for as the rule of corresponding to r 
would have a true body and a false head. Moreover, the 
simplified program is positive ( - f r ee ) and it only 
contains atoms that are true w.r.t . M. 

Next, we observe that αM('P) is equivalent to as far 
as the stabil i ty of M is concerned. 

L e m m a 4.4 Let be DLP program and M be model 
for Then, M is stable model for if and only if it 
is stable model for 

E x a m p l e 4.5 Take V and the two models M\ and M2 
from Example 4 .1 . M\ is a stable model for , while 
M2 is not. Indeed, M\ is a stable model for 

and A/2 is not a stable 
model for 

Next, we show that by simply swapping the heads and 
bodies of the rules of the simplified program we 
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get a set of clauses whose models correspond to the un­
founded sets of 

Def in i t ion 4.6 Let be a D L P program and M be a 
model for , Define as the following set of clauses 
over M: 

Observe that coincides wi th the set of clauses 
S constructed after steps 1-8 of Figure 1. 

L e m m a 4.7 Let V be a ground DLP program, M be 
model for and Then X is a model for (V) 
iff it is an unfounded set for V w.r.t. M. 

Example 4.8 
The only subset of which is a model f o r [ V ) is 

Indeed, is the only unfounded set for V w.r.t. Mi 
(contained in M i ) . 

(V) is equal to and are 
the subsets of M-2 which are models of I. Indeed, 
they are precisely the unfounded sets for V w.r.t. 
(contained in M2). 

We are now in a position to demonstrate our main 
theorem. 

Proof of T h e o r e m 4.2 (Sketch) In the following, we 
show that is unsatisfiable iff is unfounded-free; 
the statement wi l l then follow from Theorem 3.3. 

It is easy to see that the output of the algo­
r i thm of Figure 1 coincides w i th the conjunction of all 
clauses in and the clause From Lemma 
4.7, the models of are precisely the unfounded 
sets of w.r.t. M. Therefore, the models of are 
exactly the non-empty unfounded sets of w.r.t. M, 
since every model of (V) must satisfy also the clause 

Thus, M contains no nonempty unfounded set 
for (i.e., it is unfounded-free) iff has no model 
(i.e., it is unsatisfiable). 

Example 4.9 is a stable model for 
Indeed, 

is unsatisfiable. 
Differently, is not stable for Indeed, 

The next theorem shows that is also an efficient 
transformation. 

T h e o r e m 4.10 Given a model M for a ground DLP 
program let be the CNF formula computed by 
the algorithm of Figure 1 on input and M. Then, the 
following fiolds. 

1. is logspace computable from and M. 

2. is a parsimonious transformation. 

Proof (Sketch) is the conjunction of the 
clauses in (V) plus the disjunction of the proposi­
tions in M. The size of is equal to the size 
of , which is smaller than the size of Thus, 

is clearly parsimonious, as it is a formula over 
the propositions of M only. 

Finally, it is easy to see that can be computed 
by a logspace Tur ing Machine. Indeed, can be 
generated by dealing w i th one rule of at a t ime, w i th ­
out storing any intermediate data apart from a (fixed) 
number of indices. 

5 Implementation and Benchmarks 
In order to check the concrete usability of our results, we 
have implemented our approach to stable model checking 
in the disjunctive logic programming system d l v [Eiter 
et. a/., 1997b; 1998]. 

d l v is a knowledge representation system which has 
been developed at Technische Universitat Wien. Re­
cent comparisons [Eiter et. a/., 1998] have shown that 
d l v is nowadays a state-of-the-art implementation of dis-
junctive logic programming. To our knowledge, d l v is 
the only publicly available system which supports ful l 
(function-free) disjunctive logic programming under sta­
ble model semantics. 

The computational engine of d l v implements the theo­
retical results achieved in [Leone et. a/., 1997]. Roughly, 
the system consists of two main modules: the Model 
Generator (MG) and the Model Checker (MC). MG pro­
duces stable model candidates, whose stabil i ty is then 
checked by the MC. 

We have replaced the Model Checker of d l v by new 
modules implementing the results of the previous sec­
t ion, running some benchmark problems and comparing 
the execution times. 

O v e r v i e w o f t h e C o m p a r e d M e t h o d s 

We have compared the following methods for stable 
model checking (the labels below are used in Figures 2, 
3, and 4). 
• (Old Checker.) The old model checker of the d l v 
system [Leone et. a/., 1997; Eiter et. a/., 1997b]. Its 
strong points are the efficient evaluation of head cycle 
free (HCF) programs [Ben-Eliyahu and Dechter, 1994] 
and the use of modular evaluation techniques. Indeed, 
HCF programs are evaluated in polynomial t ime and, if 
the program is not HCF, the inefficient part of the com­
putation is l imited only to the subprograms1 which are 
not HCF (while the polynomial t ime algori thm is applied 
to the HCF subprograms). Polynomial space and single 
exponential t ime bounds are always guaranteed. 
• Given a p r o g r a m a n d a model M to be 
checked for stability, an implementation of the algorithm 
of Figure 1 generates the CNF formula , which is 
then submitted to a Satisfiability checker. If the Satisfi­
abil i ty checker returns true is satisfiable), then 
M is not a stable model of otherwise is un­
satisfiable), M is a stable model of For checking 

1A subprogram of is the set of rules defining the atoms 
of the same strongly connected component of the dependency 
graph of [Leone et. a/., 1997]. 
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Satisfiability of we have used an efficient imple­
mentation of the Davis-Putnam procedure called SATO 
[Zhang, 1997]. 
• This is an improved version of the 
method above, enhanced by modular evaluation tech­
niques derived from the combination of Lemma 4.4 wi th 
the modulari ty results of [Leone ct. a/., 1997]. Roughly, 
given and M, is first simplified (steps 1 3 of Figure 
1) computing the program The subprograms of 
αM are then evaluated one-at-a-time. A polynomial 
t ime method is applied to HCF subprograms (as in Old 
Checker): while the method is applied to non-
HCF subprograms. 

Benchmark Problem 
In order to generate some co-NP-hard model cheeking in­
stances, which could better highlight the differences be­
tween the model checking techniques, we needed to run 

hard problems on the DLP system at hand. Thus, we 
have compared the performance of the different model 
checking methods by running various instances of the 

-complete problem Strategic Companies on the d l v 
system. 

The strategic companies problem is from [Cadoli et. 
a/., 1997]; it is, to the best of our knowledge, the only 

-complete KR problem from the business domain. No 
experimental results for any -complete KR problems 
are known. 

Briefly, a holding owns companies, each of which pro­
duces some goods. Moreover, several companies may 
have joint control over another company. Now, some 
companies should be sold, under the constraint that all 
goods can be sti l l produced, and that no company is sold 
which would sti l l be controlled by the holding after the 
transaction. A company is strategic, if it belongs to a 
strategic set, which is a minimal set of companies satis­
fying these constraints. Those sets are expressed by the 
following natural program: 

s t r a t e g i c ( C l ) s t r a t e g i c ( C 2 ) 
produced by (P ,C I ,C2 ) . 

s t r a t e g i c ( C ) con t ro l l ed_by (C ,C I ,C2 ,C3) 
s t r a t e g i c ( C I ) s t r a t e g i c ( C 2 ) 
s t r a t e g i c ( C 3 ) . 

Here s t r a t e g i c (C) means that C is strategic, 
produced..by(7), C I , C2) that product P is produced 
by companies CI and C2, and con t ro l l edJby (C , C I , 
C2,C3) that C is jo int ly controlled by C1,C2 and C3; 
we have adopted here from [Cadoli ct. a/., 1997] that 
each product is produced by at most two companies and 
each company is under joint control of at most, three 
other companies. 

The problem is to find out the set of all strategic com­
panies (i.e., under brave reasoning, for which C the fact 
s t r a t e g i c ( C ) is true). 

Note that this problem cannot, be expressed by 
a fixed normal free) logic program uniformly 
on all collections of facts produced by and 
con t ro l l ed -by (c , el, e2,c3) (unless NP = , an un­
likely event). Thus, Strategic Companies is an example 

of a relevant problem where the expressive power of dis­
junct ive logic programming is really needed. 

Benchmark Data 
We have generated tests w i th instances for companies 
and 3n products. 

We have uniform randomly chosen the producedJby 
and the c o n t r o l l e d _ b y relations, where each company 
is controlled by one to five companies (Obeying the obvi­
ous constraints that no company can control itself, and 
that two consortia have to have at least one member 
in common). On average there are 1.5 con t ro l l ed_by 
relationships per company. 

Discussion of Results 
Our experiments were run on a 133 MHz i486-compatible 
PC under Linux, using egcs-2.91.14 C + + compiler. 

The results are displayed in the graphs of Figures 2- 4. 
Execution times are reported on the vertical axis, while 
the horizontal axis displays the size of the problem in­
stance (number of companies of the instance of Strategic 
Companies to be solved). We have run instances of a size 
increasing a step of 5 companies, up to 100 companies. 

The graph of Figure 2 shows the total t ime employed 
by the (stable) Model Checkers for the computat ion of 
all stable models of the program (i.e., for the generation 
of all sets of strategic companies). Note that a program 
having stable models requires calls to the Model 
Checker is the number of calls on models which 
an; not stable); the sum of the times employed for check­
ing the; stabil i ty of all m models is displayed in the graph. 
For each problem size (number of companies) we have 
run 25 instances of size and reported the average time. 
Thus, this graph shows the practical impact of the vari­
ous model checking strategies on the computation. 

clearly outperforms Old Checker: the time 
employed by to solve an instance of 100 com­
panies is not sufficient for Old Checker even to solve 
instances of 25 companies. Interestingly, modular eval­
uation techniques appear very useful: takes 
less than 5% of +DP to solve problems of size 100. 

The graph in Figure 3 refers to the same runs of the 
previous graph; but it shows the longest times required 
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Figure 3: l i m e required for a single call to the MC 
(worst case) 
by each method for checking the stabil i ty of a single 
model. This t ime, the curves are not very regular, be­
cause they visualize times of single calls (rather than 
average times as in Figure 2) of randomly generated 
instances. Also in this graph the new strategies show 
better performances than the old d l v checker. Surpris­
ingly, the difference between the times of and 

is much smaller than in the previous graph. 
We have the following explanation for this phenomenon. 
Modular evaluation techniques speed up the computa­
t ion of most instances. (Thus, modularity significantly 
affects tota l model checking time.) However, very hard 
instances cannot be "decomposed" by modular evalua­
tion techniques. (Thus, the worst case times for single 
calls to the model checker are similar.) 

Finally, the graph in Figure 4 refers to the computa­
t ion of one stable model (i.e., to the computation of one 
set of strategic companies sufficient to solve the corre­
sponding decision problem). It compares the over­
all execution t ime (model generation -f model checking 
time) taken by the d l v system when the (old) model 
checker is replaced by our new model checkers. The ad­
vantage of using is very evident: by using 

an instance of size 100 is solved more quickly 
than an instance of size 20 wi th the old system. This 
graph also shows the time taken by d l v for model gen­
eration alone. Most of the execution time needed for 

computing one stable model is consumed for the genera­
t ion of the models; only a very low percentage of the t ime 
is consumed by the Model Checker TM+DP+Mod itself. 

In conclusion, observe that we have also compared the 
model checking strategies on a number of problems "eas­
ier" than Stategic Companies (at most NP-complete); as 
expected, the methods behaved very similarly. 
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Figure 4: Overall t ime to compute one stable model 


