
Stable Model Checking Made Easy

Christoph Koch and Nicola Leone
Information Systems Dept.

Technical University of Vienna
A-1040 Vienna, Austria

{koch, leone}@dbai.tuwien.ac.at

Abstract

Disjunctive logic programming (DLP) with sta­
ble model semantics is a powerful nonmono­
tonic formalism for knowledge representation
and reasoning. Reasoning with DLP is harder
than with normal (V-free) logic programs; lie-
cause stable model checking - deciding whether
a given model is a stable model of a proposi-
tional DLP program is co-NP-complete, while
it is polynomial for normal logic programs.
This paper proposes a new transformation

which reduces stable model checking to
UNSAT - i.e., to deciding whether a given CNF
formula is unsatisfiable. Thus, the stabil i ty of
a model A/ for a program caw be verified
by calling a Satisfiability Checker on the CNF
formula The transformation is parsi­
monious and efficiently computable, as it runs
in logarithmic space. Moreover, the size of the
generated CNF formula never exceeds the size
of the input.
The proposed approach to stable model check­
ing lias been implemented in a DLP system,
and a number of experiments and benchmarks
have been run.

1 In t roduct ion
Disjunctive logic programming (DLP) with stable model
semantics is a powerful nonmonotonic formalism for
knowledge representation and eommonsense reasoning
[Baral and Gelfond, 1994; Lobo et. a/., 1992]. DLP
has a very high expressive power [Eiter et. a/., 1997a],
and it allows to represent complex problems in a simple
and easy-to-understand fashion [Eiter et. a/., 1998]. As
for the other main nonmonotonic formalisms, reasoning
wi th DLP (under stable model semantics) is very hard.
The high complexity of DLP reasoning depends also on
the hardness of stable model cheeking - deciding whether
a. given model is a stable model of a propositional DLP
program which is co-NP-complete. The hardness of

"Research supported by FWF (Austrian Science Fund)
under the projects P11580-MAT and Z29-INF.

this problem ha»s discouraged the implementation of DLP
engines. Indeed, at the t ime being only one system,
namely the d l v system (Eiter et. a/., 1998], is avail­
able which fully supports (function-free) DLP wi th sta­
ble model semantics.

This paper proposes a new transformation, which re­
duces stable model checking to UNSAT i.e., to decid­
ing whether a given CNF formula is unsatisfiable - the
complement of Satisfiability, a problem for which very
efficient systems have been developed in Al

Besides providing an elegant characterization of stable
models, which sheds new light on their intrinsic nature,
the proposed transformation has also a strong practical
impact. Indeed, by using this transformation, the huge
amount of work done in Al on the design and implemen­
tation of efficient algorithms for checking Satisfiability
can be profitably used for the implementation of DLP
engines supporting stable model semantics. Thus, this
transformation opens "new frontiers" in the implementa­
tion of Disjunctive Logic Programming which can benefit
now from efficient AI techniques and implementations.

We have implemented the proposed technique in the
DLP system d l v , and we have run a number of experi­
ments and benchmarks.

In sum, the main contributions of this paper are the
following:
• We define a new transformation from stable model
checking for general DLP wi th negation to UNSAT of
propositional CNF formulas. The transformation is par­
simonious (i.e., it does not add any new symbol) and
efficiently computable, since it runs in logspace (and,
therefore, in polynomial t ime). Moreover, the size of the
generated CNF formula never exceeds the size of the in­
put (it is usually much smaller).
• We realize our approach in the DLP system d l v , by
using an implementation of the Davis-Putnam procedure
a.s the Satisfiability checker.

Our implementation exploits also novel modular eval­
uation techniques, which follow from our main results.
• We carry out an experimental act iv i ty which witnesses
the efficiency of our approach to stable model checking.

It is worth noting that , since stable model checking of
DLP programs generalizes minimal model checking for
Horn CNF formulas, our results can be employed also for

70 AUTOMATED REASONING

reasoning w i th minimal models and wi th circumscrip­
t ion.

The d l v system, which implements the results
described in this paper, can be downloaded from
www.dbai.tuwien.ac.at/proj/dlv. From the same
Web page, one can also retrieve the benchmark prob­
lems that we used in our experiments.

The remainder of the paper is organized as follows:
Setions 2 and 3 contain preliminary notions on DLP,
stable model semantics, and its characterization in terms
of unfounded sets. Section A describes our new reduction
from stable model checking to UNSAT. Section 5 reports
on our experiments.

2 Dis junct ive Logic Programming w i t h
Stable Mode l Semantics

In this section, we provide an overview of disjunctive
logic programming wi th stable model semantics. (For
further details, see [Lobo et. al, 1992].)

The terms of the language are inductively defined. A
variable or constant is a term: a function symbol with
terms as arguments is a term. An atom is
where is a predicate of arity // and are
terms. A literal is either a positive literal p or a
negative literal -p, where p is an atom.

A (disjunctive) rule r is a clause of the form

occurring positively (resp.. negatively) in B . A (dis­
junctive) program (also called DLP program) is a set of
rules. A free (resp., free) program is called positive
(resp., normal). A term, an atom, a l i teral, a rule, or a
program is ground if no variables appear in it. A finite
ground program is also called a prepositional program.
A function-free, program is a finite program where no
function symbol occurs.

Let be a program. The Herbrand universe and the
Herbrand base of are defined in the standard way and
denoted by Up and , respectively. Given a rule
occurring in a , a ground instance of r is a rule obtained
from r by replacing every variable in r by where

is a mapping from the variables occurring in r to the
terms in Up. We denote by ground the set of all the
ground instances of the rules occurring in

An interpretation for is a set of ground atoms, that
is, an interpretation is a subset / of . A ground posi­
tive l iteral A is true (resp., false) w.r.t. if A I (resp..

A ground negative literal -4 is true w.r.t. / if
A is false w.r.t. l otherwise A is false w.r.t. 7.

Let r be a ground rule in ground{V). The head ol
is true w.r.t . if The body of is true
w.r.t. / if all body literals of r are true w.r.t. / (i.e.,

and and is false w.r. t . /
otherwise. The rule r is satisfied (or true) w.r.t . / if its
head is true w.r.t. / or its body is false w.r.t. /.

A model for is an interpretation M for such that
every rule ground is true w.r.t. A/. A model M
for is minimal if no model /V for exists such that N
is a proper subset of M. The set of all minimal models
for is denoted by M M (P) .

A generally acknowledged semantics for DLP pro­
grams is the extension of the stable model semantics
to take into account; disjunction [Gelfond and Lifschitz,
1991: Przymusinski, 1991]. Given a program and an
interpretation /, the Gelfond-Lifschitz (GL) transforma­
tion of w.r.t. l, denoted is the set of positive rules
defined as follows:

D e f i n i t i o n 2 1 [Przymusinski, 1991: Gelfond and Lif­
schitz. 1991] Let / be an interpretation for a program

stable model for (i.e., 1 is a
minimal model of the positive program

Clearly, if is positive, then coincides wi th
ground,(V). It turns out that for n positive program,
minimal and stable models coincide.

3 Stable Models and Unfounded Sets
Next, we present a characterization of the stable mod­
els of disjunctive logic programs in terms of unfounded
sets. This characterization wil l be used to prove the cor­
rectness of our reduction from stable model checking to
UNSAT in the next section.

The characterization presented here is obtained by
slight modifications of the results presented in [Leone
et. al. 1997]. In particular, providing the notion of un­
founded sets directly for total (2-valued) interpretations,
we obtain a simpler characterization than in [Leone et.
a/., 1997], where unfounded sets were defined w.r.t. par­
tial (3-valued) interpretations.

D e f i n i t i o n 3.1 (Definition 3.1 in [Leone et. a/., 1997])
Let / be an interpretation for a program

of ground atoms is an unfounded set for V w.r.t. 1
if. for each rule ground such that A"
at least one of the following conditions holds:
1. that is the body of
is false w.r.t. /.

distinct from the elements in X, is true w.r.t. I.

KOCH AND LEONE 71

I n p u t : A ground D L P program and a model M for
O u t p u t : A propositional CNF formula (V) over M.
var : DLP Program; S: Set of Clauses;
b e g i n
1. Delete from each rule whose body is false

w.r. t . M ;
2. Remove all negative literals from the (bodies of the)

remaining rules;
3. Remove all false atoms (w.r.t. M) from the heads

of the resulting rules;
4.
5.
6.
7.
8.
9.
10.
end.

Figure 1: The transformation (V)
D e f i n i t i o n 3.2 An interpretation / for a program V is
unfounded-free iff no nonempty subset of / is an un­
founded set for w.r.t. /.

The unfounded-free condit ion singles out precisely the
stable models.

T h e o r e m 3.3 (Theorem 4.6 in [Leone et. al. , 1997])
Let M be a model for a program M is stable model
for V iff M is unfounded-free.

E x a m p l e 3.4 Let is a
stable model of since there is no nonempty subset of

which is an unfounded set. On the other hand, for
due to Condit ion 3, both and are

unfounded sets. M2 is not unfounded-free, and therefore,
it is not a stable model.

4 From Stable Model Checking to
UNSAT

In this section we present a reduction from stable model
checking to UNSAT, the complement of Satisfiability, a
problem which is better explored in AI and for which
efficient algorithms and systems are available.

Recall that a CNF formula, over a set A of atomic
propositions is a conjunction of the form
cn, where are clauses over A. Wi thou t loss of
generality, in this paper a clause

wi l l be wr i t ten as
thus, a CNF wi l l be a conjunction of these implications.

A formula is satisfiable if there exists a t r u th as­
signment to the propositions of A which makes true;
otherwise, is unsatisfiable (or inconsistent).

UNSAT is the following decision problem.

Given a CNF formula is it true that is
unsatisfiable?

Our reduction from stable model checking to UNSAT
is implemented by the algori thm shown in Figure 1.

In the first step of the algor i thm shown in Figure 1, the
rule is deleted. In the second s t e p , i s removed
from the body of the last rule of while the th i rd step
removes c from the head of the first rule. Thus, after Step
3, the program becomes
Steps 4 to 8 switch the bodies and the heads of the rules,
yielding the set of clauses S =

Finally, Step 9 constructs the conjunction of the
clauses in 5 plus the clause Therefore, the
output of the algori thm is
b)

Now consider model Here, the first three
steps simplify ' to . Steps 4 to 8
swap the heads and bodies of the rules to get

and Step 9 adds So the outcome
for M2 is

T h e o r e m 4.2 Given α model M for a ground DLP pro­
gram let TM (V) be the CNF formula computed by the
algorithm of Figure 1 on input and M.
Then, M is stable model for if and only if (V) is
unsatisfiable.

In the remainder of this section we demonstrate The­
orem 4.2 (i.e., we show the correctness of our
reduction). For space l imi tat ion, we do not include the
proofs of the two lemmas here; but we il lustrate their
validity on a running example.

To better i l lustrate the transformation, we pro­
ceed in an incremental way, div iding the transformation
into three steps, and showing the correctness of each of
them.

D e f i n i t i o n 4.3 Let be a ground D L P program and
M be n model for Define the simplified version
of w.r.t as:

Thus, coincides wi th the program obtained
by steps 1-3 of Figure 1. Observe that every rule in
ΑM has a non-empty head. Indeed, i f w o u l d
contain a rule wi th an empty head, then M would not
be a model for as the rule of corresponding to r
would have a true body and a false head. Moreover, the
simplified program is positive (- f r ee) and it only
contains atoms that are true w.r.t . M.

Next, we observe that αM('P) is equivalent to as far
as the stabil i ty of M is concerned.

L e m m a 4.4 Let be DLP program and M be model
for Then, M is stable model for if and only if it
is stable model for

E x a m p l e 4.5 Take V and the two models M\ and M2
from Example 4 .1 . M\ is a stable model for , while
M2 is not. Indeed, M\ is a stable model for

and A/2 is not a stable
model for

Next, we show that by simply swapping the heads and
bodies of the rules of the simplified program we

72 AUTOMATED REASONING

get a set of clauses whose models correspond to the un­
founded sets of

Def in i t ion 4.6 Let be a D L P program and M be a
model for , Define as the following set of clauses
over M:

Observe that coincides wi th the set of clauses
S constructed after steps 1-8 of Figure 1.

L e m m a 4.7 Let V be a ground DLP program, M be
model for and Then X is a model for (V)
iff it is an unfounded set for V w.r.t. M.

Example 4.8
The only subset of which is a model f o r [V) is

Indeed, is the only unfounded set for V w.r.t. Mi
(contained in M i) .

(V) is equal to and are
the subsets of M-2 which are models of I. Indeed,
they are precisely the unfounded sets for V w.r.t.
(contained in M2).

We are now in a position to demonstrate our main
theorem.

Proof of T h e o r e m 4.2 (Sketch) In the following, we
show that is unsatisfiable iff is unfounded-free;
the statement wi l l then follow from Theorem 3.3.

It is easy to see that the output of the algo­
r i thm of Figure 1 coincides w i th the conjunction of all
clauses in and the clause From Lemma
4.7, the models of are precisely the unfounded
sets of w.r.t. M. Therefore, the models of are
exactly the non-empty unfounded sets of w.r.t. M,
since every model of (V) must satisfy also the clause

Thus, M contains no nonempty unfounded set
for (i.e., it is unfounded-free) iff has no model
(i.e., it is unsatisfiable).

Example 4.9 is a stable model for
Indeed,

is unsatisfiable.
Differently, is not stable for Indeed,

The next theorem shows that is also an efficient
transformation.

T h e o r e m 4.10 Given a model M for a ground DLP
program let be the CNF formula computed by
the algorithm of Figure 1 on input and M. Then, the
following fiolds.

1. is logspace computable from and M.

2. is a parsimonious transformation.

Proof (Sketch) is the conjunction of the
clauses in (V) plus the disjunction of the proposi­
tions in M. The size of is equal to the size
of , which is smaller than the size of Thus,

is clearly parsimonious, as it is a formula over
the propositions of M only.

Finally, it is easy to see that can be computed
by a logspace Tur ing Machine. Indeed, can be
generated by dealing w i th one rule of at a t ime, w i th ­
out storing any intermediate data apart from a (fixed)
number of indices.

5 Implementation and Benchmarks
In order to check the concrete usability of our results, we
have implemented our approach to stable model checking
in the disjunctive logic programming system d l v [Eiter
et. a/., 1997b; 1998].

d l v is a knowledge representation system which has
been developed at Technische Universitat Wien. Re­
cent comparisons [Eiter et. a/., 1998] have shown that
d l v is nowadays a state-of-the-art implementation of dis-
junctive logic programming. To our knowledge, d l v is
the only publicly available system which supports ful l
(function-free) disjunctive logic programming under sta­
ble model semantics.

The computational engine of d l v implements the theo­
retical results achieved in [Leone et. a/., 1997]. Roughly,
the system consists of two main modules: the Model
Generator (MG) and the Model Checker (MC). MG pro­
duces stable model candidates, whose stabil i ty is then
checked by the MC.

We have replaced the Model Checker of d l v by new
modules implementing the results of the previous sec­
t ion, running some benchmark problems and comparing
the execution times.

O v e r v i e w o f t h e C o m p a r e d M e t h o d s

We have compared the following methods for stable
model checking (the labels below are used in Figures 2,
3, and 4).
• (Old Checker.) The old model checker of the d l v
system [Leone et. a/., 1997; Eiter et. a/., 1997b]. Its
strong points are the efficient evaluation of head cycle
free (HCF) programs [Ben-Eliyahu and Dechter, 1994]
and the use of modular evaluation techniques. Indeed,
HCF programs are evaluated in polynomial t ime and, if
the program is not HCF, the inefficient part of the com­
putation is l imited only to the subprograms1 which are
not HCF (while the polynomial t ime algori thm is applied
to the HCF subprograms). Polynomial space and single
exponential t ime bounds are always guaranteed.
• Given a p r o g r a m a n d a model M to be
checked for stability, an implementation of the algorithm
of Figure 1 generates the CNF formula , which is
then submitted to a Satisfiability checker. If the Satisfi­
abil i ty checker returns true is satisfiable), then
M is not a stable model of otherwise is un­
satisfiable), M is a stable model of For checking

1A subprogram of is the set of rules defining the atoms
of the same strongly connected component of the dependency
graph of [Leone et. a/., 1997].

KOCH AND LEONE 73

Satisfiability of we have used an efficient imple­
mentation of the Davis-Putnam procedure called SATO
[Zhang, 1997].
• This is an improved version of the
method above, enhanced by modular evaluation tech­
niques derived from the combination of Lemma 4.4 wi th
the modulari ty results of [Leone ct. a/., 1997]. Roughly,
given and M, is first simplified (steps 1 3 of Figure
1) computing the program The subprograms of
αM are then evaluated one-at-a-time. A polynomial
t ime method is applied to HCF subprograms (as in Old
Checker): while the method is applied to non-
HCF subprograms.

Benchmark Problem
In order to generate some co-NP-hard model cheeking in­
stances, which could better highlight the differences be­
tween the model checking techniques, we needed to run

hard problems on the DLP system at hand. Thus, we
have compared the performance of the different model
checking methods by running various instances of the

-complete problem Strategic Companies on the d l v
system.

The strategic companies problem is from [Cadoli et.
a/., 1997]; it is, to the best of our knowledge, the only

-complete KR problem from the business domain. No
experimental results for any -complete KR problems
are known.

Briefly, a holding owns companies, each of which pro­
duces some goods. Moreover, several companies may
have joint control over another company. Now, some
companies should be sold, under the constraint that all
goods can be sti l l produced, and that no company is sold
which would sti l l be controlled by the holding after the
transaction. A company is strategic, if it belongs to a
strategic set, which is a minimal set of companies satis­
fying these constraints. Those sets are expressed by the
following natural program:

s t r a t e g i c (C l) s t r a t e g i c (C 2)
produced by (P ,C I ,C2) .

s t r a t e g i c (C) con t ro l l ed_by (C ,C I ,C2 ,C3)
s t r a t e g i c (C I) s t r a t e g i c (C 2)
s t r a t e g i c (C 3) .

Here s t r a t e g i c (C) means that C is strategic,
produced..by(7), C I , C2) that product P is produced
by companies CI and C2, and con t ro l l edJby (C , C I ,
C2,C3) that C is jo int ly controlled by C1,C2 and C3;
we have adopted here from [Cadoli ct. a/., 1997] that
each product is produced by at most two companies and
each company is under joint control of at most, three
other companies.

The problem is to find out the set of all strategic com­
panies (i.e., under brave reasoning, for which C the fact
s t r a t e g i c (C) is true).

Note that this problem cannot, be expressed by
a fixed normal free) logic program uniformly
on all collections of facts produced by and
con t ro l l ed -by (c , el, e2,c3) (unless NP = , an un­
likely event). Thus, Strategic Companies is an example

of a relevant problem where the expressive power of dis­
junct ive logic programming is really needed.

Benchmark Data
We have generated tests w i th instances for companies
and 3n products.

We have uniform randomly chosen the producedJby
and the c o n t r o l l e d _ b y relations, where each company
is controlled by one to five companies (Obeying the obvi­
ous constraints that no company can control itself, and
that two consortia have to have at least one member
in common). On average there are 1.5 con t ro l l ed_by
relationships per company.

Discussion of Results
Our experiments were run on a 133 MHz i486-compatible
PC under Linux, using egcs-2.91.14 C + + compiler.

The results are displayed in the graphs of Figures 2- 4.
Execution times are reported on the vertical axis, while
the horizontal axis displays the size of the problem in­
stance (number of companies of the instance of Strategic
Companies to be solved). We have run instances of a size
increasing a step of 5 companies, up to 100 companies.

The graph of Figure 2 shows the total t ime employed
by the (stable) Model Checkers for the computat ion of
all stable models of the program (i.e., for the generation
of all sets of strategic companies). Note that a program
having stable models requires calls to the Model
Checker is the number of calls on models which
an; not stable); the sum of the times employed for check­
ing the; stabil i ty of all m models is displayed in the graph.
For each problem size (number of companies) we have
run 25 instances of size and reported the average time.
Thus, this graph shows the practical impact of the vari­
ous model checking strategies on the computation.

clearly outperforms Old Checker: the time
employed by to solve an instance of 100 com­
panies is not sufficient for Old Checker even to solve
instances of 25 companies. Interestingly, modular eval­
uation techniques appear very useful: takes
less than 5% of +DP to solve problems of size 100.

The graph in Figure 3 refers to the same runs of the
previous graph; but it shows the longest times required

74 AUTOMATED REASONING

Figure 2: Total model checking t ime required for the
computation of all stable models

Figure 3: l i m e required for a single call to the MC
(worst case)
by each method for checking the stabil i ty of a single
model. This t ime, the curves are not very regular, be­
cause they visualize times of single calls (rather than
average times as in Figure 2) of randomly generated
instances. Also in this graph the new strategies show
better performances than the old d l v checker. Surpris­
ingly, the difference between the times of and

is much smaller than in the previous graph.
We have the following explanation for this phenomenon.
Modular evaluation techniques speed up the computa­
t ion of most instances. (Thus, modularity significantly
affects tota l model checking time.) However, very hard
instances cannot be "decomposed" by modular evalua­
tion techniques. (Thus, the worst case times for single
calls to the model checker are similar.)

Finally, the graph in Figure 4 refers to the computa­
t ion of one stable model (i.e., to the computation of one
set of strategic companies sufficient to solve the corre­
sponding decision problem). It compares the over­
all execution t ime (model generation -f model checking
time) taken by the d l v system when the (old) model
checker is replaced by our new model checkers. The ad­
vantage of using is very evident: by using

an instance of size 100 is solved more quickly
than an instance of size 20 wi th the old system. This
graph also shows the time taken by d l v for model gen­
eration alone. Most of the execution time needed for

computing one stable model is consumed for the genera­
t ion of the models; only a very low percentage of the t ime
is consumed by the Model Checker TM+DP+Mod itself.

In conclusion, observe that we have also compared the
model checking strategies on a number of problems "eas­
ier" than Stategic Companies (at most NP-complete); as
expected, the methods behaved very similarly.

References
[Apt and Bol, 1994] K.R. Ap t , R.N. Bol (1994), Logic

Programming and Negation: A Survey, Journal of
Logic Programming, 1 9 / 2 0 , 9 -71 .

[Baral and Gelfond, 1994] C. Baral, M. Gelfond (1994),
Logic Programming and Knowledge Representation
Journal of Logic Programming, 1 9 / 2 0 , 73 148.

[Ben-Eliyahu and Dechter, 1994] R. Ben-Eliyahu,
R. Dechter (1994), Propositional Semantics for
Disjunctive Logic Programs, Annals of Mathematics
and Artificial Intelligence, Baltzer, 12, pp. 53-87.

[Cadoli el a/., 1997] M. Cadoli, T. Eiter, G. Gott lob.
(1997), Default Logic as a Querv Language. IEEE-
TKDE, 9(3):448-463.

[Eiter et. a/., 1997a] T. Eiter, G. Gott lob, H. Manni la.
(1997) Disjunctive Datalog. ACM-TODS, 22(3):315-
363.

[Eiter et. a/., 1997b] T. Eiter, N. Leone, C. Mateis,
G. Pfeifer, F. Scarccllo. (1997) A Deductive System
for Nonmonotonic Reasoning. Proc. LPNMR '97, pp.
363-374.

[Eiter et. a/., 1998] T. Eiter, N. Leone, C. Mateis,
G. Pfeifer, F. Scarcello. The KR System d l v :
Progress Report, Comparisons and Benchmarks.
Proc. KR'98, pp. 406-417.

(Gelfond and Lifschitz, 1991] M. Gelfond, V. Lifschitz
(1991), Classical Negation in Logic Programs and
Disjunctive Databases, New Generation Computing,
9, 365-385.

[Gottlob, 1992] G. Gott lob. (1992) Complexity Results
for Nonmonotonic Logics. Journal of Logic and Corn-
putatwn, 2(3):397 425.

[Leone et. a/., 1997] N. Leone, P. Rullo, F. Scarcello.
(1997) Disjunctive stable models: Unfounded sets,
fixpoint semantics and computation. Information
and Computation, 135(2):69-112.

[Lobo et. al, 1992] J. Lobo, .1. Minker, A. Rajasekar
(1992), "Foundations of disjunctive logic program­
ming," The M I T Press.

[Przymusinski, 1991] T. Przymusinski. (1991), Stable
Semantics for Disjunctive Programs, New Genera­
tion Computing, 9, 401-424.

[Zhang, 1997] H. Zhang. (1997), SATO: An Efficient
Propositional Prover. Proc. CADE-97.

KOCH AND LEONE 75

Figure 4: Overall t ime to compute one stable model

