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Abstract 
A new algorithm for computing the maximum 
entropy ranking over models is presented. The 
algorithm handles arbitrary sets of proposi-
tional defaults with associated strength assign­
ments and succeeds whenever the set satisfies 
a robustness condition. Failure of this condi­
tion implies the problem may not be sufficiently 
specified for a unique solution to exist. This 
work extends the applicability of the maximum 
entropy approach detailed in [Goldszmidt et a/., 
1993]) and clarifies the assumptions on which 
the method is based. 

1 Introduction 
There have been several suggestions of what might con­
stitute the best consequence relation to be associated 
with a set of propositional defaults. The weakest, and 
most widely accepted, is System P [Adams, 1975], [Kraus 
et cd., 1990]. Of those which handle the more complex 
default interactions, such as exceptional inheritance, cor­
rectly, the maximum entropy approach (me) has, ar­
guably, the clearest objective justification being derived 
from a well understood principle of indifference. In this 
paper, the me-approach of [Goldszmidt et a/„ 1993] is 
extended so that the me-ranking for an arbitrary set 
of variable strength defaults can be found. A new al­
gorithm is presented along with a sufficient condition 
for its successful computation. As well as handling the 
usual examples from the literature in a satisfactory way, 
this extended framework provides a flexible method for 
handling default knowledge through its use of variable 
strength defaults which sheds some light on previously 
ambiguous examples. Indeed, the results suggest that 
some examples are inherently ambiguous. However, the 
clear underlying principle of the me-approach clarifies 
why this ambiguity arises, and suggests how it might be 
resolved. 

2 Deriving the me-ranking 
Consider a set of defaults, where 

are formulae of a finite propositional language, 

with the usual connectives The symbol, 
denotes a default connective. The models of are 

contained in the set A model, is said to 
verify a default, Conversely, a model, 
m, is said to falsify a default, 

The semantics of defaults is given in terms of condi­
tional probabilities. Each default is supposed to 
constrain a set of probability distributions. For exam­
ple, if it were assumed that 0.05, then the set 

would define all those probability distributions 
which satisfied the constraint imposed by the default. 
However, in this context no actual conditional probabil­
ities are specified only the (fixed) relationships between 
the defaults in a given set. 

The entropy of a probability distribution over a set of 
models is given by 

(1) 
The problem is to select that probability distribution 
which maximises (1) subject to constraints imposed by 
the defaults. The main supposition underlying this for­
malism is that specifying relative orders of magnitude 
for the conditional probabilities corresponding to each 
default implies a similar order of magnitude description 
of the probabilities of each model. This is achieved by 
parameterising the conditional probabilities and examin­
ing the behaviour as the parameter tends to zero. Intu­
itively, this can be thought of as taking a set of assump­
tions to the extreme in order to ascertain what other 
information is implied. The intuitive interpretation of 
the relative orders of magnitude between defaults is that 
one is required to specify their relative strengths; that 
is, numerically higher strength defaults can be thought 
of as holding more strongly than, or as having priority 
over, those of lower strength. Note that the symbol ~ 
will be used to denote asymptotic equality since, for the 
purposes of this analysis, it is only the asymptotic be­
haviour of the probabilities that is important not their 
actual values, nor indeed the actual value of entropy. 

Goldszmidt et al. [1993] originally chose to use in­
equalities for the default constraints but were unable to 
obtain results except for a small class of default sets, 
termed minimal core sets, which were guaranteed to sat-
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isfy the constraints as equalities. As they pointed out, 
for minimal core sets, their algorithm is easily adapted to 
cater for variable strength defaults. For arbitrary sets, 
however, the algorithm is unsound and an analysis of 
the behaviour of the me-approach applied to variable 
strength defaults was not provided. 

In this revised analysis, the maximum entropy ap­
proach is extended by insisting on working with strict 
equality constraints, at least up to asymptotic equiva­
lence. Specifying relative strengths for all defaults lim­
its the region of possible probability distributions from 
which the maximum entropy distribution is taken. Al­
though this requires a firmer commitment, that is, more 
information, from the knowledge engineer, it leads to 
rae-eolutions in a much larger number of cases. 

Each default is assigned an associated strength, or or­
der of magnitude, relative to the other defaults. Asymp­
totically, the coefficients of conditional probabilities can 
be ignored and so only the relative orders of magnitude 
between models will be relevant. The strength of each 
default is therefore expressed as some power of a param­
eter e which has no significance other than linking all 
defaults together. Thus a default will be said to 
have relative strength a iff for some in­
teger Letting the t e r m a n d so 
P and the default becomes arbitrarily certain. 
In specifying a default, it is assumed that the knowl­
edge engineer is encoding information which he takes 
to be almost certain. Similarly, the probability of each 
model m will be assumed to be asymptotically equivalent 
to some non-negative integer power so that 

The constraints imposed 
on P by the defaults can be written as: 

Using these constraints and the Lagrange multiplier 
technique to find the point of maximum entropy, Gold-
szmidt et al. [1993] derived the following elegant and 
simple approximation for the probability of each model 

(3) 

where the α1 are related to the Lagrange multipliers for 
each rule. Making a further assumption that the αi can 
also be approximated by a relative order of magnitude, 
thus writing the probability expressions (3) 
are substituted back into the constraints (2) yielding 
simultaneous equations with unknowns, the 

In the limit as 0 those models with the lowest 
powers of e will dominate, and the constraints reduce 
to: 

Given this ranking, over defaults, the me-ranking 
over models, can be found using equation (3). The 
me-rank of each model is given by the sum of the me-
ranks of those defaults it falsifies: 

(5) 

This completes the derivation of the maximum entropy 
ranking with defining the me-consequence relation. 
The following section looks at conditions under which the 
assumptions used to find equations (4) and (5) are valid. 

3 Robustness of rankings 
In the above analysis, it was assumed that it was only 
necessary to consider the asymptotic behaviour of the 
defaults, and that fixing the relative strength of defaults 
in this way uniquely determined the me-ranking. It turns 
out that while this is not true in general, it is true for a 
useful class of problems which this section characterises. 
As an example of a case in which the assumptions are not 
true, consider the following where the probabilities (3) 
are used to consider what may happen when all defaults 
have the same strength but their coefficients are allowed 
to vary. 

Example 3.1 

The table shows whether a model falsifies or verifies each 
default and gives its (unnormalised) probability using 
equation (3): 

Using the substitution with all defaults having 
equal strength of 1, and letting their coefficients be c1, 
C2, C3, respectively, the constraint equations (2) give rise 
to three simultaneous equations: 

Solving these for the αi in terms of u gives: 
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Now consider what happens asymptotically for various 
values of the coefficients. 

Case 1: Let This gives 
a solution of . and leads to an 
me-ranking over defaults of (1,0,1). The corresponding 
me-ranking over models is given in the table below. 

Case 2: Let . This gives a solution of 
1, and an me-ranking over defaults of 

( l ; l ,0). The corresponding me-ranking is given in the 
table below. 

Case 3 : Let t T h i s gives a solution o f 
and an me-ranking over 

defaults of (2,-1,2). The corresponding me-ranking is 
given in the table below. 

m 
m1 
m2 
m3 
m4 
m5 
m6 
m7 
m8 

a 
0 
0 
0 
0 
1 
1 
1 
1 

b 
0 
0 
1 
1 
0 
0 
1 
1 

c 
0 
1 
0 
1 
0 
1 
0 
1 

(1,0,1) 
0 
0 
0 
0 
1 
1 
1 
0 

(1,1,0) 
0 
0 
0 
0 
2 
1 
1 
0 

(2,-1,2) 
0 
0 
0 
0 
1 
2 
1 
0 

Different choices for the coefficients clearly lead to com­
pletely different me-rankings over the defaults and, more 
importantly, over the models. This is because there are 
multiple solutions to the non-linear simultaneous equa­
tions given by (4). In addition to having many solu­
tions, these equations may have no solution at all if the 
strength assignments represent inconsistent probabilistic 
constraints. However, for maximum entropy entailment 
to be well-defined, it is desirable to be able to determine 
when a unique solution to these equations can be found. 
This is guaranteed whenever the me-ranking is robust. 
Definition S.2 An integer ranking, over models is 
said to be robust l with respect to a set of defaults, 
with associated strengths, if no two defaults share 

common minimal falsifying model in 
In the sequel, (respectively, represent minimal ver­
ifying (respectively, falsifying) models of in Simi­
larly, (respectively, represent minimal verifying 
(respectively, falsifying) models of and so on. 
Definition 3.3 An integer ranf ing, over α set of de­
faults, with associated strengths,, is said to be 
me-valid with respect to that set if it satisfies (5) and for 
all 

(6) 
Definition 3.4 Two me-valid rankings, and are 
said to be distinct iff for some default 
Such a default is said to be distinctly ranked. 
The following lemma shows that any distinctly ranked 
default, which has minimal among distinctly 
ranked defaults, also has minimal among dis­
tinctly ranked defaults. 

1 Adopting the use of "robustness" to indicate existence of 
a unique solution from [Bacchus et al., 1996]. 
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Lemma 3.5 Given two distinct me-vatid rankings, 
and , if r is such that and for all with 

then 
Proof. Suppose otherwise, that is, there exists rf # r, 
such that with but 

Without loss of generality, suppose that has 
minimal among distinctly ranked defaults. Now, 
because is me-valid, and can 
only falsify defaults, s, for which '(s), so that 

It follows that 

(7) 
Similarly, since was chosen to have minimal 
among distinctly ranked defaults, 
and can only falsify defaults, s, for which 

It follows that 

Putting (7) and (8) together, > 
which contradiction implies 

that as required. 
Theorem 3.6 Given a finite set of defaults, with 
associated strengths, , if a robust me-valid ranking, 
K, exists then it is unique. 
Proof. Let and be distinct me-valid rankings and 
be a distinctly ranked default with minimal among 
distinctly ranked defaults and, by Lemma 3.5, mini­
mal Suppose that is robust. Then fal­
sifies only and other defaults, s, with 
also since they only falsify non-distinctly 
ranked defaults, and, since both and are me-valid, 
it follows that with 

Consider for which But 
and falsifies only non-distinctly ranked 

defaults and itself, for which Therefore 
and hence 

Now, if falsified no other distinctly ranked default, 
which contradicts being 

minimal in This implies that must falsify some 
other distinctly ranked defaults and hence is not ro­
bust. Let these be since all t h e s e a r e 
also minimal distinctly ranked defaults in by Lemma 
3.5, they are also minimal in and there must exist 

, minimally ranked falsifying models in 
such that k for all Further, because 
is robust, none of the can falsify any other distinctly 
ranked defaults. 

But, by the same argument as above, this implies that 
for all However, this in turn implies 
that which falsifies all the and non-distinctly 
ranked defaults, must have a lower rank than in 
i.e., which contradicts being 
the minimal falsifying model of in K. Hence, cannot 
be robust either. It follows that, if two distinct me-
rankings exist, neither can be robust, and any robust 
me-valid ranking is unique. 



Note that given two distinct rankings, and it may 
still be the case that for all i.e., the 
ranking over models may be unique despite there being 
multiple solutions for the to the constraint equa­
tions (5) and (6). For example, the set 

produces the two equations 

which have no solution unless in which case 
there are an infinite number of solutions. However, all 
solutions lead to the same unique ranking over models. 
Refining the robustness condition and understanding its 
significance in such cases is the subject of ongoing re­
search. 

4 Computing the me-ranking 
Using the robustness condition and equation (4), it is 
possible to determine the me-ranking over defaults one 
by one. Robustness guarantees that for at least one de­
fault the currently computed minimal ranks of models 
are indeed their genuine ranks in the me-ranking. 

Let the function MINV (respectively, MINF be 
defined so that it returns the rank of the current min­
imal verifying model of (respectively, the rank of the 
current minimal falsifying model of excluding its own 
contribution) using equation (5). Then equation (6) can 
be re-written as 

(9) 
which in the algorithm is used to assign the rank of a 
default using 

(10) 
Algorithm to compute me-ranking 

Input: a set of defaults. , and associated 
strength assignments, 
Output: the me-ranking, K, or an exception if the 
set is p-inconsistent, or if the robustness 
condition is violated. 

[8] Assign ranks to models using equation (5 ) . 
[9] Validate the ranking by ensuring both that the 

constraints (4) and that the robustness 
condition are sat isf ied. Output either the 
me-ranking or an exception. 

This algorithm clearly terminates at step 3, if the in­
put set is probabilistically inconsistent, or at step 5, or 
at step 9. Termination does not guarantee that a valid 
ranking has been found but this is checked for and re­
ported at step 9. The following theorem proves that, pro­
vided the robustness condition is satisfied, the algorithm 
will compute the unique me-ranking. That the algorithm 
works given certain pre-conditions can be verified if the 
two ranks in the assignment (10) can be shown to be 
valid. This requires that the ranks selected for MINV 
and MINF(r) when the assignment is made are indeed 
the minimal ranks for 

Theorem 4.1 Given a finite set of defaults, with 
associated strengths, the algorithm computes the 
unique me-ranking, 'is robust. 
Proof. The theorem is proved by induction. On the 
first pass of the loop no rules have been ranked and so 
the ranks of each rule ranked (i.e. none) are correct. 
The inductive hypothesis assumes that at the nth pass 
of the loop all rules ranked in the previous passes 
have been assigned their correct me-ranks. Consider that 
on the nth pass of the loop, rule with minimal 
MINV is selected to be ranked. 

Let be a verifying model of such that 
MINV . Suppose that is not a minimal verifying 
model of so there exists such that 
Now, the computed minimal verifying 
rank for so it must be the case that falsifies some 
rule, ' which has not yet been ranked, and since 
was not selected to be ranted in this pass of the loop it 
follows that 

Then, since falsifies in particular, 
using (6) 

so that It follows that too, must 
falsify some rule, which has not yet been 
ranked. Then, since falsifies 
Continuing in this way, an infinite descending chain of 
distinct unranked rules is constructed. This contradicts 
the finite size of the original default set, and therefore 
must be a minimal verifying model of 

Let be a falsifying model of such that 
MINF . Suppose that is not a minimal fal­

sifying model of so there exists / r , such that 
. Now, since the com­

puted minimal falsifying rank for it must be the case 
that falsifies some rule, which has not yet been 
ranked, and since was not selected to be ranked in this 
pass of the loop it follows that 

Now, falsifies and under the assumption that the 
robustness condition holds, no two defaults share a com-
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mom minimal falsifying model in the me-ranking. There­
fore, and the following inequality holds 

SO that the computed minimal ver­
ifying rank for r'. It follows that too, must falsify 
some rule, which has not yet been ranked. 
Then, since falsifies Ccmtmuing 
in this way, an infinite descending chain of distinct un-
ranked rules is constructed. This contradicts the finite 
size of the original default set and therefore must be 
a minimal falsifying model of 

Given that for the selected rule, the values MINV 
and MINP calculated at this pass of the loop repre­
sent the me-ranks of its minimal verifying and falsifying 
models (excluding its own contribution), respectively, it 
follows that the assignment 

(11) 

is valid and is assigned its correct me-rank. The theo­
rem follows by induction. 

5 Examples 
In the first example, the solution is tabulated explictly 
to illustrate the method of finding the me-ranking but 
later this is omitted to save space. 
Example 5.1 (Exceptional inheritance) 

The intended interpretation of this knowledge base is 
that birds fly, penguins are birds, penguins do not fly 
and birds have wings; each has strength . The ta­
ble shows whether a model falsifies or verifies each de­
fault. The column headed gives the me-rank of 
each model in terms of the using equation (5). 

m 
m1 
m2 
m3 
m4 

m5 
m6 
m7 

m8 

m9 

m10 

m11 
m12 
m1 3 
m14 
m15 

m16 

b f 
0 0 
0 0 
0 0 
0 0 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 1 
1 1 
1 1 
1 1 

P 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

w 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

r1 
-

-

-

-

-

-

-

-

f 
f 
f 
f 
V 
V 
V 
V 

r 
-

-

f 
f 
-

-

f 
f 
-

-

V 
V 
-

-

V 
V 

r. 
-

-

V 
V 
-

-

f 
f 
-

-

V 

V 
-

-

f 
f 

r4 
-

-

-

-

-

-

-

-

f 
V 
f 
V 
f 
V 
f 
V 

K,(m) 
0 
0 
k(ra) 

k(r2) 
0 
0 

K{R2) + k(r3) 
K(r2) + k(r3) 
k ( r1 )+k ( r 4 ) 

K(r1) 
k(r1) + k(r4) 

K(r1) 
K(R4) 

0 
k(r3)+k(r4) 

K(TS) 

Substituting the k(m) into the reduced constraint equa­
tions (4) gives rise to: 

K(r1) s s1 

Clearly, the only solution to these equations is 

To determine default consequences it is necessary to 
compare the ranks of a default's minimum verifying 
and falsifying models. Since the solution holds for any 
strength assignment it follows that some 
default conclusions may hold in general. In particular, 
it can be seen that the default is me-entailed 
since 

This result is unsurprising since is a pref­
erential consequence of A more interesting general 
conclusion is which follows since 

(12) 
Again this result holds regardless of the strength assign­
ments and illustrates that, for this example, the inheri­
tance of to p via b is uncontroversial. 
Example 5.2 (Nixon diamond) 

The intended interpretation is that quakers are paci­
ficists whereas republicans are not pacifists. Given 
a strength assignment of (s1,s2) is easily shown that 

. The classical problem associ­
ated with this knowledge base is to ask whether Nixon, 
being a quaker and a republican, is pacifist or not. This 
is represented by the default The two relevant 
models to compare are and whose 
me-ranks in the general me-solution are 

(13) 
Clearly either or neither, may be 
me-entailed depending on the comparative strengths s1 
and s2. This result is in accordance with the "intuitive" 
solution that no conclusion should be drawn regarding 
Nixon's pacifist status unless there is reason to suppose 
that one default holds more strongly than the other. In 
the case of one default being stronger, the conclusion 
favoured by the stronger would prevail. 
Example 5.3 (Royal elephants/marine chaplains) 

There are two interpretations of this knowledge base. In 
the first, the propositions a, 6, c, and d, stand for royal, 
elephant, african and grey, respectively; in the second, 
the propositions stand for chaplain, man, marine and 
beer drinker, respectively. The constraint equations (4) 
give rise to: 
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which have the unique solution 

The key question relating to this knowledge base is 
"Are elephants which are both royal and african, not 
grey?*, or alternatively, "Don't marine chaplains drink 
beer?" This translates into the default which 
is me-entailed in general as can be seen from: 

The result in this example is unambiguous, that is, it 
holds for all strength assignments2. However, [Touretzky 
et al., 1987] were not entirely happy about the conclusion 
that marine-chaplains do not drink beer. They argued 
that if the rate of beer drinking amongst marines was 
significantly higher than normal, then this might alter 
the behaviour associated with marine-chaplains. 

Now, the default (marines drink beer) is 
in fact me-entailed by but adding it to the database 
with all defaults having equal strength violates the ro­
bustness condition. If, however, were added with a 
higher strength, so that it represented a new constraint 
for the purposes of maximising entropy, a robust solution 
would result and the status of the default 
would depend on the relative strengths 34 ana S5. 

So, Touretzky et al. were correct to suppose that if 
marines were heavier drinkers than men in general then 
it may not be clear whether marine chaplains are beer 
drinkers or not. However, it seems they were expect-
ing too much of a default reasoning mechanism (a path-
based inheritance reasoner in their case) in assuming it 
could draw such conclusions since this would involve us­
ing information which it had never been told. 
It is interesting to note that many of the more complex 
examples from the literature (for example, see [Makin-
son and Schlechta, 1991]), which have been devised de­
liberately to overcome any intuitive biases, fail to satisfy 
the robustness condition when all defaults are assigned 
equal strengths. If a set is probabilistically consistent it 
is usually possible to restore robustness by altering the 
strengths. This suggests that some sets may be too com­
plex for the human intuition to disentangle because they 
are ambiguous or under specified. By requiring more in­
formation from the knowledge engineer, in terms of a 
strength assignment over defaults, some of these ambi­
guities can be cleared up and the hitherto implicit biases 
made explicit. 

6 Conclusions 
This paper has refined and extended the work of Gold-
szmidt et oi. [1993] on applying the principle of maxi­
mum entropy to probabilistic semantics for default rules 
to enable it to be applied to a much wider class of default 
sets. A new algorithm was presented which finds the 

2In fact all these examples have general solutions since 
they are minimal core sets as defined by Goidszmidt et ai 
{1993]. 

maximum entropy ranking for a set of variable strength 
defaults that satisfy a sufficient condition for a unique 
solution to exist. The output is a consequence relation 
based on a total ordering of models—a rational conse­
quence relation in the sense of Lehmann and Magidor 
[Lehmann and Magidor, 1992]. Some extreme technical 
cases remain to be investigated. 

Using the me-approach for default reasoning provides 
the same benefits as its use in statistical problems. As 
Jaynes [1979] suggests, by encoding all known relevant 
information and finding the maximum entropy distribu­
tion, any observation.s which differ significantly from the 
result imply that other constraints, in this case defaults, 
exist. A closer approximation is obtained by adding 
more defaults or by adjusting the strengths. Instead of 
questioning the conclusions of a default reasoning sys­
tem, one should ensure that all relevant information has 
been encoded — the maximum entropy formalism en­
ables the precise and explicit representation of this as 
default knowledge. The main disadvantage of the me-
approach is its intractability, however, this extension to 
arbitrary sets has shed some light onto the causes of 
controversy among classical examples from the literature 
and pointed to ways of resolving them. 
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