
Lemma Generation for Model Elimination by Combining Top-Down
and Bottom-Up Inference

Marc Fuchs
Fakultat fur Informatik

TU Miinchen
80290 Miinchen, Germany

fuchsm@informatik.tu-muenchen.de

Abstract
A very promising approach for integrating top-
down and bottom-up proof search is the use
of bottom-up generated lemmas in top-down
provers. When generating lemmas, however)
the currently used lemma generation proce­
dures suffer from the well-known problems of
forward reasoning methods, e.g., the proof goal
is ignored. In order to overcome these prob­
lems we propose two relevancy-based lemma
generation methods for top-down provers. The
first approach employs a bottom-up level sat­
uration procedure controlled by top-down gen­
erated patterns which represent promising sub-
goals. The second approach uses evolutionary
search and provides a self-adaptive control of
lemma generation and goal decomposition.

1 Introduct ion
Top-down and bottom-up approaches for automated the­
orem proving in first-order logic each have specific ad­
vantages and disadvantages. Top-down approaches (like
model elimination (ME) [9] or the connection tableau
calculus (CTC) [8]) are goal oriented but suffer from
long proof lengths and the lack of an effective redun­
dancy control. Bottom-up approaches (like superposi­
tion [2]) provide more simplification power but lack in
their purest form any kind of goal orientation. Thus, an
integration of these two paradigms is desirable.

Two approaches have been in the focus of interest in
the last years. The methods from [14; 10] are bottom-
up theorem proving approaches. There, the bottom-up
inferences are restricted to the use of relevant clauses
which are detected by additional top-down computa­
tions. Thus, goal orientation is combined with redun­
dancy control. In other approaches top-down provers
are assisted by lemmas ([12; 1; 5]). Also these meth­
ods combine goal orientation with redundancy control
provided by the lemmas. The use of additional clauses
can also reduce the proof length which may lead to large
search reductions. But this has to be paid for by an in­
crease of the branching rate of the search space. Thus,
mechanisms for selecting relevant clauses are needed.

Our integration approach is based on [12; 5] where
lemmas have been used in the CTC. There, in order
to refute a set of input clauses with the CTC, in a
preprocessing phase the input clauses are augmented
by bottom-up generated clauses (lemmas). Then, the
prover tries to refute this augmented clause set. Lem­
mas are obtained by creating a pool of possible lemmas
which are able to shorten the proof length (generation
step). Then, in the selection step some possibly rele­
vant lemmas are selected which are then used for re­
futing the given proof task. In [5] it is concentrated
on the selection of lemmas and rather simple lemmas
have successfully been used. In order to speed-up the
proof search in a more effective manner harder lemmas
are needed. The generation approaches as used in [12;
5], however, have severe difficulties in generating harder
lemmas in a controlled way. They suffer from the earlier
mentioned problems of saturation based proving.

Thus, we focus now on the aspect of the generation
of possible lemmas and propose two new approaches for
a controlled generation of lemmas for top-down provers
based on the combination of top-down and bottom-up
search. The first technique generates lemmas in a sys­
tematic way based on some kind of level saturation (as
in [12; 5]). The lemma generation, however, is combined
with a decomposition of generalized proof goals which
represent possibly solvable subgoals in a compact way.
These generalized goals are used for detecting possibly
irrelevant lemmas. The other approach uses genetic pro­
gramming [7]. In the evolution process simultaneously
top-down and bottom-up inferences are performed which
are controlled by a fitness function which measures the
similarity between open subgoals and derived lemmas.
Thus, lemma generation and goal decomposition are fo­
cused on promising clauses in a self-adaptive way. We
evaluate the usefulness of the new methods at hand of
experiments performed with the prover SETHEO [11].

2 Connection Tableau Calculus
In order to refute a set C of clauses the CTC works
on connected (clause) tableaux for C (see [8]). The in­
ference rules are start, extension, and reduction. The
start rule allows a so-called tableau expansion that can
only be applied to a trivial tableau, i.e., one consist*

4 AUTOMATED REASONING

ing of only one node. An expansion step means se­
lecting a variant of a clause from C and attaching for
each of its literals a node (labeled with the respec­
tive literal) to a leaf node of an open branch, i.e., a
branch that does not contain two complementary lit­
erals. The start rule can be restricted to some start
clauses, e.g., the set of negative clauses may be used
(see [11]). Tableau reduction closes a branch by unify­
ing h subgoal $ (the literal at the leaf of the open branch)
with the complement of a literal (denoted by on
the same branch, and applying the substitution to the
whole tableau. For defining extension we need the no­
tion of a contrapositive. is a clause
then each sequence

is a contrapositive of C with head and tail
Extension with a contra-

positive of a clause from C is performed by
selecting a subgoal 0, unifying s and with instan­
tiating the tableau with attaching "
below and closing the branch which ends with

We say if and only if tableau V can be de­
rived from T by applying a start rule (if T is the trivial
tableau) or an extension/reduction rule to a subgoal in
T. In order to refute an inconsistent clause set C, a
search tree has to be examined in a fair way (each tree
node must finally be visited) until a closed tableau oc­
curs. A search tree defined by a set of clauses C is a
tree, whose root is labeled with the trivial tableau. Each
node in labeled with tableau T has as immediate suc­
cessors the maximal set of nodes where
is labeled with Ti and

In order to enumerate a search tree implicit enumera­
tion procedures are normally in use that apply iterative
deepening search with backtracking. Iteratively increas­
ing finite initial parts of the search tree are explored in
depth-first search (cp. [13]). For instance, for clause sets

and denotes the finite initial part of
where all tableaux are obtained by using only clauses
from S for the start expansion, only the clauses from
for extensions, and where the tree depth of each tableau
does not exceed a value of n N. (The root node has
depth 0, its successor nodes depth 1, and so on).

3 Goal Decomposition and Saturation
We provide some basic notions regarding the decompos­
ing and saturating capabilities of the CTC which will
be used in the following. We start by demonstrating
how to extract query and lemma clauses from a given
connection tableau. At first we introduce a method for
extracting valid clauses from a connection tableau.

Definit ion 3.1 (subgoal clause) Let C be a set of
clauses. Let T be a connection tableau for C. Let

be the subgoals of T Then we call
the subgool clause of T.

The subgoal clause of a connection tableau T for a
clause set C is a logical consequence of C (see e.g., [8]).
Subgoal clauses may be considered to be top-down gener­
ated queries or bottom-up generated lemmas depending

on the form of the tableaux they are derived from. First,
we consider the analytic character of subgoal clauses and
define query clauses as follows (see also (3)).
Definit ion 3.2 (query tableau, query clause) Let
C be a set of clauses. Let T be a connection tableau for
C. Let S _ be a set of start clauses. Let 5 be the
clause below the unlabeled root of T. If 5 is an instance
of a clause from S we call T a query tableau (w.r.t. S)
and the subgoal clause of T a query clause (w.r.t. 5).

Essentially CTC based proof procedures implicitly
enumerate query clauses w.r.t. the chosen start clauses

until the empty query clause is derived. Lem­
mas introduce a bottom-up element into the top-down
oriented CTC. We employ the following definition of a
lemma which extends and generalizes the notions of lem­
mas used in [12; 1; 5].
Definition 3.3 (lemma tableau, lemma clause)
Let C be a clause set. Let T be a connection tableau
for C. Let be the subgoal clause of
T. Let be the set of subgoals which are immediate
successors of the root. If we call T a lemma
tableau. Then, let si, 1 be the element of

which is left-most in T. We call the contrapositive
of C the lemma

clause of T.
Example 3.1 Let

Let S ~ be the
set of start clauses. The left tableau is a query
tableau representing the query (w.r.t.
5), the right tableau is no query tableau but a lemma
tableau which represents the lemma

A lemma application transforms a subgoal into a (pos­
sibly empty) set of new subgoals. An application of a
lemma L to a subgoal * can be viewed as attaching the
instantiated lemma tableau of L below s. Thus, it works
as a macro operator in the search space. The use of a
bottom-up created lemma can close a subgoal by an ex­
tension with the lemma and performing reduction steps
into the introduced subgoals (tail literals) and thus re­
duces the proof length. In the following we will always
employ such a purely bottom-up oriented view on lem­
mas, i.e., they replace deductions at the "tableau front".
Extension steps to instantiated tail literals of lemmas are
forbidden. This provides a controlled use of lemmas and
prevents a nesting of lemma applications when dealing
with non-unit lemmas.

4 Pattern Controlled Level Saturation
Our first method for generating lemmas is based on a
combined systematic goal decomposition and lemma sat­
uration. The basic idea is to employ iterative top-down

FUCHS 5

and bottom-up generation procedures which produce in
iteration step (level) all query and lemma tableaux
of depth t by the decomposition or saturation of the
queries and lemmas of the previous level, respectively.
Initial queries and lemmas (created in step 1) are the
start clauses and the contrapoeitives of the input clauses,
respectively. Then, after each iteration step subsumed
tableaux are deleted (a notion of tableau subsumption
can be found, e.g., in [8]). Thus, a proof of depth d
can be obtained in top-down and bottom-up iter­
ation steps. It is obtained by closing a query tableau
generated in step using bottom-up lemmas (by ex­
tension of the query literals with lemmas and closing the
introduced subgoals with reductions) which have been
created in the steps 1 , . . . ,

This combined bottom-up and top-down proof search
has several theoretical advantages compared to a pure
bottom-up or top-down search. The top-down search is
improved by bottom-up processing which avoids the re-
computation of solutions for multiple occurring subgoals
in query clauses. Moreover, the method improves on
a pure bottom-up computation because it is more goal
oriented and thus the production of a large number of
irrelevant clauses may be avoided.

In practice, however, such an approach does not ap­
pear to be reasonable (for "harder problems"). An ex­
plicit storage of all generated tableaux is not sensible
when dealing with ME based provers because of the
huge increase of the number and size of the generated
tableaux. Thus, we have to focus only on some few rele­
vant query tableaux (or query clauses when dealing with
Horn problems) and lemmas which are maintained af­
ter each level for further decomposition or saturation in
the next iteration, respectively. Heuristic selection cri­
teria for query tableaux and lemma clauses are needed.
When using such normally fuzzy criteria, however, it is
not guaranteed any longer that a query tableau which
can be closed with lemmas can be produced after it­
erations. It is probable that useful queries or lemmas are
discarded such that more than iterations are needed.
Then, the process may be more costly than conventional
top-down or bottom-up deduction. Because of the dele­
tion of query tableaux and lemmas it is even possible
that no proof can be found by clc ing a maintained query
tableau with derived lemma clauses.

Thus, we employ a slightly different (lemma oriented)
method which we wil l explain only for Horn clauses and
unit lemmas for simplicity reasons. Instead of employ­
ing a complete top-down enumeration of all query clauses
we work in an abstracted top-down search space. Liter­
als of specific query clauses are generalized to so-called
patterns. Patterns are literals which cover the form of
several subgoals. Specifically, we try to guarantee that
subgoals occurring in a proof are subsumed by some pat­
terns. Patterns are created in d -1 steps. As initial pat­
terns, in step 1, the literals occurring in start clauses are
created. Then, in each step 1 we successively decom­
pose patterns of the previous step t -1 into new subgoals

and generalize then the subgoals to new patterns. Thus,
patterns created in step i generalize subgoals of depth
i which occur in query clauses. These top-down gener­
ated patterns cannot be used for finishing a proof task
(with the help of lemmas). However, they provide rel­
evancy criteria for lemmas. If a lemma is not unifiable
with the complement of a specific pattern it can be dis­
carded. Thus, we can work with a conventional iterated
lemma generation procedure whose maintenance criteria
for lemmas are assisted by top-down inferences. Finally,
the lemmas are used in a top-down proof run for refuting
the input clauses.

We make our method more concrete. We start with
the top-down goal decomposition. First, we show how to
generalize literals occurring in a set of subgoal clauses
to patterns. We use as patterns N N literals from
the set for L . is the set of all literals
where each literal has a length {no. of symbols) L and
cannot be specialized to a literal with length and

Patterns should generalize the subgoals of clauses
from Q which are the most likely to occur in a proof. In
order to determine the literals to be used as patterns
we employ a function QUOIQ on literals. This function is
based on a notion of quality qual9g on subgoals. qual9g

is used to estimate whether a subgoal may occur in a
proof. Then, qualQ expresses how many subgoals from

of a high quality are generalized by a pattern.
qual9g(s) of a subgoal $ is a value which represents

the "generality" of s since we assume that more general
subgoals can more easily be solved. For instance, small
subgoals with many variables may get large values by
quals9 (cp. [5]). qualQ is defined using qual9g as follows.

Def in i t ion 4.1 (pat tern qual i ty) For a literal I let
Inst(l) be the multi-set
We define the pattern quality qualQ(l) of a literal / w.r.t.
i

The best N literals from Lit w.r.t. pualQ form the
set pati,s(Q) of patterns for Q. Patterns which gen­
eralize subgoals which are part of a proof provide an
exact criterion for discarding irrelevant lemmas. A pat­
tern must be unifiable with the complement of a lemma.
L and N are responsible for providing a compromise
between a large pruning effect of the patterns on the
number of generated lemmas (L large, N small) or a
high probability that no useful lemmas are discarded (L
small, N large). We employ a query generation algo­
rithm which gets as input a clause set C, start clauses 5,
and an iteration number As output the sets of
patterns are delivered.

Procedure 4.1 (query generation)

(a) let Q be the set of the most general query
clauses of query tableaux from which
are not part of

6 AUTOMATED REASONING

The lemma generation algorithm enumerates lemma
tableaux in a similar way as in [12; 5] but additionally
uses the generated patterns. It can be applied after the
generation of the query pattern sets A fur
ther input of the algorithm is again an iteration number

and the set of input clauses C. As output a lemma
set is delivered.

Procedure 4.2 (lemma generation)

(a) let be the set of the most general lemma
clauses of lemma tableaux from which
are not in

The chance for easy lemmas to be maintained is higher
than for hard lemmas since more patterns are used.
This is because easy lemmas may be applicable in more
depth levels of a proof. The pattern-based criterion dis­
cards lemmas immediately after their generation and
thus saves space. The set forms the set of possible
lemmas which may finally be used in the proof run in ad­
dition to the input clauses. We consider a closed tableau
for a Horn clause set of a depth of d. If and
the patterns from cover the form of the subgoals with
depth i which are needed to find the closed tableau, the
lemma generation method is complete. This means that
it can be guaranteed that contains all lemmas needed
to reduce the proof depth by an amount of J - 1 . Specif­
ically, it is also possible to reduce the proof length. In
practice after the execution of the generation procedure
lemmas are selected from with a selection function
(see [5]). These lemmas are used in a final proof run.

5 Evolutionary Lemma Generation
The pattern-based method has the pleasant property
that it provides a systematic generation of lemmas which
can guarantee the generation of useful lemmas under cer­
tain conditions. A practical advantage is that highly
efficient model-elimination provers can be employed for
top-down as well as bottom-up inferences.

But if the choice of the patterns is not optimal the
method works as a local optimization method because
lemmas are discarded. Lemma tableaux whose deriva­
tions require the use of (small quality) lemmas which
are discarded at a certain moment cannot be generated
later. Thus, it is rather probable that the generation of
useful and also well judged lemmas is prevented because
the generation of such lemmas may require the use of
other discarded clauses.

Our solution to this problem is the use of evolutionary
techniques for lemma generation which are based on the
genetic programming (GP) paradigm. For a detailed in­
troduction to genetic algorithms or genetic programming

we refer to [6] or [7], respectively. Our application of GP
combines the evolution of query and lemma tableaux.
The abstract principles of our method are as follows.
An individual corresponds to a connection tableau which
represents a lemma or a query clause. Thus, we work
with (possibly) partial solutions (lemmas) of our initial
problem and with goal decompositions which represent
problems which are still open. The fitness of one lemma
is given by its ability to solve or "almost" solve an open
subproblem. A tableau which represents a query is the
fitter the more subgoals are solvable (almost solvable)
by lemmas. The genetic operators are based on the ex­
change of sub tableaux. Thus, good subdeductions which
may be part of a proof are used in order to create new
(and possibly fitter) individuals. Building blocks (sub-
tableaux) of the fittest individuals persist with a high
probability and can contribute to a generation of lem­
mas or query clauses which appear in a proof.

Thus, the lemma and query tableaux used for GP are
used in a deductive sense by producing new lemma and
query clauses in order to solve the original problem or
at least to generate useful lemmas. Further, they play
a role as control elements. The lemma production influ­
ences the query decomposition and vice versa. This is
similar to our first pattern-based approach. But now also
the top-down decomposition is influenced by some kind
of distance to given valid lemmas. Hence the search is
concentrated on "interesting" regions of the search space
in a self-adaptive way. Furthermore, the probabilistic
character of GP offers the chance to avoid a naive hill
climbing based search and can produce needed lemmas
although ancestors are judged by low fitness values.

The technical realization of these ideas is as follows.
As already mentioned we use a fixed sized population
of tableaux. Each tableau represents a query or a
lemma. The population is initialized using the given
input clauses to be refuted. Each query tableau obtain­
able by applying the start rule with a clause allowed as a
start clause is added to the population. Analogously for
each contrapositive of an input clause a lemma tableau
is built. Additionally, it is possible to use some further
selected lemma or query clauses in the initial population
(see Section 6).

We employ three genetic operators, namely reproduc­
tion , and variants of crossover and mutation. Reproduc­
tion copies one element from the old population to the
next. Our crossover operator differs from standard GP
where two randomly chosen subtrees of two ancestor in­
dividuals are exchanged. Since such an operation would
normally not result in a connection tableau crossover has
to be constrained. One approach is to allow crossover at
nodes and (labeled with and l2) of two indi­
viduals and respectively, only if
exists. Then, an exchange of the subtrees could take
place and the resulting tableaux are instantiated with
As appealing as this sounds it neglects the fact that a
re-use of a subdeduction below vi in tableau may be
possible below in although the above criterion is
not applicable. This is because the subdeduction may

FUCHS 7

be more general when viewed in an isolated way and is
"over-instantiated" in Consider following example.
Example 5.1 Let

The following figure shows two
connection tableaux for C. The arrow (which is
also called link) shows that the subdeduction below

which represents a proof for can be
used below the goal which would take the form

when deleting the subproof below the subgoal.

Thus, asymmetric link relations between tableaux can
be built which show which subdeductions can replace
others (see also [4]). Our crossover variant produces one
new individual. Consistently with the link relation in a
destination tableau a (possibly empty) subdeduction is
replaced by a subdeduction in a source tableau. Then,
the modified destination tableau is instantiated in an ap­
propriate manner (more details can be found in [4]). In
the above example the left and the right tableau serve
as source and destination tableau, respectively. The
tableau resulting from crossover represents the query

The crossover operator can be viewed as a
generalized extension step which allows us to attach sub-
deductions and not only clauses to (inner) nodes. We use
a mutation operator which serves as a generalized reduc­
tion step (see [4]). It is needed in the non-Horn case
to preserve the completeness of the genetic operators in
order to create each useful lemma.

The genetic operators are applied to individuals cho­
sen probabilistically proportionate to their fitness. We
use a similarity measure between query and lemma
tableaux for computing fitness. In the Horn case only
the query and lemma clauses are considered. In the non-
Horn case we may also consider open branches for judg­
ing the similarity. We use a similarity measure which
considers certain syntactic properties of literals (cp. [4]).

The evolutionary search stops if a query tableau can be
extended to a closed tableau using the lemma tableaux or
a given maximal number of generations is reached. In the
latter case a selection function (see [5]) chooses lemma
clauses of the current population which are used in the
final proof run. In summation the GP approach cannot
guarantee that useful lemmas are generated during the
search. But at least one can show that when fulfilling
weak conditions each needed lemma can be created with
a probability greater than 0 [4]. The self-adaptation car
pabilities and randomized effects can allow the solution
of problems which are out of reach of conventional search
techniques (see Section 6).

6 Experimental Results
We want to analyze the performance of the newly devel­
oped lemma generation procedures. We have chosen the

Table 1: Experimental Results in the TPTP library

domain

BOO

CAT

COL

GRP

SET

SETHEO

6
10
11
4
3
3
10
27
28
9
9
9
36
39
41

S E T H E O / P A T

12
14
14
&

5
5

29
32
3d
11
11
11
48
50
50

S E T H E O / O P

12
14
14

5
5
5
27
32
33
15
15
15
50
52
54

high performance model elimination prover SETHEO for
the final top-down proof run as well as for the pattern
based lemma generation procedure.

As test set domains of the problem library TPTP
v2.0.0 [15] are used. The domains BOO, CAT, COL,
GRP, and SET have been chosen. BOO, COL, and GRP
mostly contain Horn problems whereas in the other do­
mains often non-Horn problems occur. We tackled only
"hard problems". These problems cannot be solved with
the conventional SETHEO system within 10 seconds. We
have used a SUN Ultra 2 and a run time limit of 15 min­
utes for each problem. This includes the time for the
lemma generation and the final refutation run.

In Table 1 one can find the performance of the newly
developed systems in comparison with SETHEO. SETHEO
is configured as described in [11]. Specifically, this
includes the use of folding-up (see [8]) in the proof
run. SETHEO/PAT generates lemmas based on our first
method. The lemmas are then added to SETHEO. The
final proof run is done with the same version of SETHEO
which is used without lemmas. We restrict the lemma
generation to unit lemmas which are sufficient to obtain
good results in the considered domains. The lemma gen­
eration Procedure 4.2 is employed with iteration number
J = 3. The iteration number for the pattern generation
was set to J = 6. We used for the pattern length L and
the pattern number TV the combinations (L, N) m (3,3)
and (L,N) = (7,10). We depict for each example the
best result which could be obtained with a configura­
tion. The selection function is defined using the lemma
delaying method as introduced in {5]. SETHEO/GP is
based on genetic programming. We have initialized the
evolutionary lemma generation in such a manner that
the lemmas which are produced by the pattern based
method with two bottom-up iteration steps are used in
the initial population. Furthermore, we use some se­
lected queries (see [4]). Thus, the procedure can start
at an interesting point in the search space. Unit lemmas
are selected from the final population using the lemma

1 AUTOMATED REASONING

delaying method. We show the best results obtained in
5 runs for each problem. The exact configuration of our
genetic algorithm can be found in [4).

In the table we have depicted the number of problems
which can be solved by the considered approaches after
5,10, and 15 minutes. We can see that all lemma meth­
ods improve on the conventional SETHEO system in a
stable way. Often lemma tableaux of a proof depth of 2,
sometimes of a depth of 3 and 4, can be used in a proof.
The use of these lemmas leads to a proof length reduc­
tion and significantly smaller search spaces which have
to be traversed by the iterative deepening search proce­
dure. In comparison with the already successful conven­
tional lemma generation approaches (without top-down
assistance) as described in [12; 5] all of our methods im­
prove on results obtained with these methods. The level
saturation procedure can be improved by the top-down
generated patterns. E.g., in the SET domain where a lot
of predicate and function symbols occur the pattern use
is indispensable. In domains like BOO, however, the pat­
terns cannot incorporate additional potential for deleting
lemmas. The GP approach significantly improves on the
level saturation method. A not fitness controlled ran­
domized method achieves worse results (see [4]).

Considering the pattern based method and GP one
can recognize that with GP generated lemmas the proof
length can often be reduced in a more effective manner.
The pattern based method has some difficulties in pro­
ducing sufficiently specific patterns well-suited for the
first iteration steps since the probability that such pat­
terns match needed query literals decreases from itera­
tion to iteration. GP can overcome the problem that in
its initial population some useful lemmas may be miss­
ing. It can re-compute these lemmas. Furthermore, we
could observe that GP sometimes generates well-suited
rather hard lemmas (with depth 4).

7 Conclusion and Future Work
We presented two methods for combining top-down and
bottom-up proof search aiming at generating a set of
well-suited lemmas. The lemmas are then used in a fi­
nal top-down proof run in addition to the given input
clauses. We have seen that an evaluation of an ab­
stracted top-down search space (with patterns) and a
partial evaluation of interesting regions of the complete
top-down search space (by genetic programming) is in­
deed able to provide sufficient information in order to
control bottom-up inferences. As the experiments show
the criteria are strong enough to generate interesting
hard lemmas which provide large search reductions.

The study reveals that the use of our techniques in
a parallel proof environment is desirable. The pattern
based approach can work with different parameters for
L, N, I, and J in parallel. Also the GP algorithm can
profit when different incarnations run in parallel. Specif­
ically, the evolutionary approach offers the possibility to
develop high performance parallel systems which may
scale up to a large number of processors.

References
[1] 0. Astrachan and D. Loveland. The Use of Lemmas

in the Model Elimination Procedure. Journal of
Automated Reasoning, 19(1):117-141,1997.

[2] L. Bachmair and H. Ganzinger. Rewrite-based
equational theorem proving with selection and sim­
plification. Journal of Logic and Computation,
4(3):217-247,1994.

[3] D. Fuchs. Cooperation of Top-Down and Bottom-
Up Theorem Provers by Subgoal Clause Transfer. In
Proceedings of AISC-98, pages 157-169. Springer,
LNAI1476,1998.

[4] M. Fuchs. An Evolutionary Approach for Com­
bining Top-down and Bottom-up Proof Search.
AR-Report AR-98-04,1998, Technische Universitat
Munchen, Institut fur Informatik, 1998.

[5] M. Fuchs. Relevancy-Based Lemma Selection for
Model Elimination using Lazy Tableaux Enumer­
ation. In Proceedings of ECAI-98, pages 346-350.
John Wiley k Sons, Ltd., 1998.

[6] J. Holland. Adaptation in natural and artificial sys­
tems. Ann Arbor: Univ. of Michigan Press, second
edition, 1992.

[7] J. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
MIT Press, Cambridge, MA, 1992.

[8] R. Letz, K. Mayr, and C. Goller. Controlled Inte­
gration of the Cut Rule into Connection Tableau
Calculi. Journal of Automated Reasoning, 13:297-
337,1994.

[9] D. Loveland. Automated Theorem Proving: a Logi­
cal Basis. North-Holland, 1978.

[10] D. Loveland, D. Reed, and D. Wilson. SATCH-
MORE: SATCHMO with RElevancy. Journal of
Automated Reasoning, 14:325-351,1995.

[11] M. Moser, 0. Ibens, R. Letz, J. Steinbach, C. Goller,
J. Schumann, and K. Mayr. The Model Elimination
Provers SETHEO and E-SETHEO. Journal of Au­
tomated Reasoning, 18(2), 1997.

[12] J. Schumann. Delta - a bottom-up preprocessor
for top-down theorem provers. system abstract. In
Proceedings of CADE-12, pages 774-777. Springer,
LNAI 814,1994.

[13] M. Stickel. A prolog technology theorem proven
Implementation by an extended prolog compiler.
Journal of Automated Reasoning, 4:353-380,1988.

[14] M. Stickel. Upside-Down Meta-Interpretation of the
Model Elimination Theorem-Proving Procedure for
Deduction and Abduction. Journal of Automated
Reasoning, 13:189-210,1994.

[15] G. Sutcliffe, C. Suttner, and T. Yemenis. The
TPTP Problem Library. In Proceedings of CADE-
12, pages 252-266. LNAI 814,1994.

FUCHS 9

