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Abstract 
A very promising approach for integrating top-
down and bottom-up proof search is the use 
of bottom-up generated lemmas in top-down 
provers. When generating lemmas, however) 
the currently used lemma generation proce­
dures suffer from the well-known problems of 
forward reasoning methods, e.g., the proof goal 
is ignored. In order to overcome these prob­
lems we propose two relevancy-based lemma 
generation methods for top-down provers. The 
first approach employs a bottom-up level sat­
uration procedure controlled by top-down gen­
erated patterns which represent promising sub-
goals. The second approach uses evolutionary 
search and provides a self-adaptive control of 
lemma generation and goal decomposition. 

1 Introduct ion 
Top-down and bottom-up approaches for automated the­
orem proving in first-order logic each have specific ad­
vantages and disadvantages. Top-down approaches (like 
model elimination (ME) [9] or the connection tableau 
calculus (CTC) [8]) are goal oriented but suffer from 
long proof lengths and the lack of an effective redun­
dancy control. Bottom-up approaches (like superposi­
tion [2]) provide more simplification power but lack in 
their purest form any kind of goal orientation. Thus, an 
integration of these two paradigms is desirable. 

Two approaches have been in the focus of interest in 
the last years. The methods from [14; 10] are bottom-
up theorem proving approaches. There, the bottom-up 
inferences are restricted to the use of relevant clauses 
which are detected by additional top-down computa­
tions. Thus, goal orientation is combined with redun­
dancy control. In other approaches top-down provers 
are assisted by lemmas ([12; 1; 5]). Also these meth­
ods combine goal orientation with redundancy control 
provided by the lemmas. The use of additional clauses 
can also reduce the proof length which may lead to large 
search reductions. But this has to be paid for by an in­
crease of the branching rate of the search space. Thus, 
mechanisms for selecting relevant clauses are needed. 

Our integration approach is based on [12; 5] where 
lemmas have been used in the CTC. There, in order 
to refute a set of input clauses with the CTC, in a 
preprocessing phase the input clauses are augmented 
by bottom-up generated clauses (lemmas). Then, the 
prover tries to refute this augmented clause set. Lem­
mas are obtained by creating a pool of possible lemmas 
which are able to shorten the proof length (generation 
step). Then, in the selection step some possibly rele­
vant lemmas are selected which are then used for re­
futing the given proof task. In [5] it is concentrated 
on the selection of lemmas and rather simple lemmas 
have successfully been used. In order to speed-up the 
proof search in a more effective manner harder lemmas 
are needed. The generation approaches as used in [12; 
5], however, have severe difficulties in generating harder 
lemmas in a controlled way. They suffer from the earlier 
mentioned problems of saturation based proving. 

Thus, we focus now on the aspect of the generation 
of possible lemmas and propose two new approaches for 
a controlled generation of lemmas for top-down provers 
based on the combination of top-down and bottom-up 
search. The first technique generates lemmas in a sys­
tematic way based on some kind of level saturation (as 
in [12; 5]). The lemma generation, however, is combined 
with a decomposition of generalized proof goals which 
represent possibly solvable subgoals in a compact way. 
These generalized goals are used for detecting possibly 
irrelevant lemmas. The other approach uses genetic pro­
gramming [7]. In the evolution process simultaneously 
top-down and bottom-up inferences are performed which 
are controlled by a fitness function which measures the 
similarity between open subgoals and derived lemmas. 
Thus, lemma generation and goal decomposition are fo­
cused on promising clauses in a self-adaptive way. We 
evaluate the usefulness of the new methods at hand of 
experiments performed with the prover SETHEO [11]. 

2 Connection Tableau Calculus 
In order to refute a set C of clauses the CTC works 
on connected (clause) tableaux for C (see [8]). The in­
ference rules are start, extension, and reduction. The 
start rule allows a so-called tableau expansion that can 
only be applied to a trivial tableau, i.e., one consist* 
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ing of only one node. An expansion step means se­
lecting a variant of a clause from C and attaching for 
each of its literals a node (labeled with the respec­
tive literal) to a leaf node of an open branch, i.e., a 
branch that does not contain two complementary lit­
erals. The start rule can be restricted to some start 
clauses, e.g., the set of negative clauses may be used 
(see [11]). Tableau reduction closes a branch by unify­
ing h subgoal $ (the literal at the leaf of the open branch) 
with the complement of a literal (denoted by on 
the same branch, and applying the substitution to the 
whole tableau. For defining extension we need the no­
tion of a contrapositive. is a clause 
then each sequence 

is a contrapositive of C with head and tail 
Extension with a contra-

positive of a clause from C is performed by 
selecting a subgoal 0, unifying s and with instan­
tiating the tableau with attaching " 
below and closing the branch which ends with 

We say if and only if tableau V can be de­
rived from T by applying a start rule (if T is the trivial 
tableau) or an extension/reduction rule to a subgoal in 
T. In order to refute an inconsistent clause set C, a 
search tree has to be examined in a fair way (each tree 
node must finally be visited) until a closed tableau oc­
curs. A search tree defined by a set of clauses C is a 
tree, whose root is labeled with the trivial tableau. Each 
node in labeled with tableau T has as immediate suc­
cessors the maximal set of nodes where 
is labeled with Ti and 

In order to enumerate a search tree implicit enumera­
tion procedures are normally in use that apply iterative 
deepening search with backtracking. Iteratively increas­
ing finite initial parts of the search tree are explored in 
depth-first search (cp. [13]). For instance, for clause sets 

and denotes the finite initial part of 
where all tableaux are obtained by using only clauses 
from S for the start expansion, only the clauses from 
for extensions, and where the tree depth of each tableau 
does not exceed a value of n N. (The root node has 
depth 0, its successor nodes depth 1, and so on). 

3 Goal Decomposition and Saturation 
We provide some basic notions regarding the decompos­
ing and saturating capabilities of the CTC which will 
be used in the following. We start by demonstrating 
how to extract query and lemma clauses from a given 
connection tableau. At first we introduce a method for 
extracting valid clauses from a connection tableau. 

Definit ion 3.1 (subgoal clause) Let C be a set of 
clauses. Let T be a connection tableau for C. Let 

be the subgoals of T Then we call 
the subgool clause of T. 

The subgoal clause of a connection tableau T for a 
clause set C is a logical consequence of C (see e.g., [8]). 
Subgoal clauses may be considered to be top-down gener­
ated queries or bottom-up generated lemmas depending 

on the form of the tableaux they are derived from. First, 
we consider the analytic character of subgoal clauses and 
define query clauses as follows (see also (3)). 
Definit ion 3.2 (query tableau, query clause) Let 
C be a set of clauses. Let T be a connection tableau for 
C. Let S _ be a set of start clauses. Let 5 be the 
clause below the unlabeled root of T. If 5 is an instance 
of a clause from S we call T a query tableau (w.r.t. S) 
and the subgoal clause of T a query clause (w.r.t. 5). 

Essentially CTC based proof procedures implicitly 
enumerate query clauses w.r.t. the chosen start clauses 

until the empty query clause is derived. Lem­
mas introduce a bottom-up element into the top-down 
oriented CTC. We employ the following definition of a 
lemma which extends and generalizes the notions of lem­
mas used in [12; 1; 5]. 
Definition 3.3 (lemma tableau, lemma clause) 
Let C be a clause set. Let T be a connection tableau 
for C. Let be the subgoal clause of 
T. Let be the set of subgoals which are immediate 
successors of the root. If we call T a lemma 
tableau. Then, let si, 1 be the element of 

which is left-most in T. We call the contrapositive 
of C the lemma 

clause of T. 
Example 3.1 Let 

Let S ~ be the 
set of start clauses. The left tableau is a query 
tableau representing the query (w.r.t. 
5), the right tableau is no query tableau but a lemma 
tableau which represents the lemma 

A lemma application transforms a subgoal into a (pos­
sibly empty) set of new subgoals. An application of a 
lemma L to a subgoal * can be viewed as attaching the 
instantiated lemma tableau of L below s. Thus, it works 
as a macro operator in the search space. The use of a 
bottom-up created lemma can close a subgoal by an ex­
tension with the lemma and performing reduction steps 
into the introduced subgoals (tail literals) and thus re­
duces the proof length. In the following we will always 
employ such a purely bottom-up oriented view on lem­
mas, i.e., they replace deductions at the "tableau front". 
Extension steps to instantiated tail literals of lemmas are 
forbidden. This provides a controlled use of lemmas and 
prevents a nesting of lemma applications when dealing 
with non-unit lemmas. 

4 Pattern Controlled Level Saturation 
Our first method for generating lemmas is based on a 
combined systematic goal decomposition and lemma sat­
uration. The basic idea is to employ iterative top-down 
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and bottom-up generation procedures which produce in 
iteration step (level) all query and lemma tableaux 
of depth t by the decomposition or saturation of the 
queries and lemmas of the previous level, respectively. 
Initial queries and lemmas (created in step 1) are the 
start clauses and the contrapoeitives of the input clauses, 
respectively. Then, after each iteration step subsumed 
tableaux are deleted (a notion of tableau subsumption 
can be found, e.g., in [8]). Thus, a proof of depth d 
can be obtained in top-down and bottom-up iter­
ation steps. It is obtained by closing a query tableau 
generated in step using bottom-up lemmas (by ex­
tension of the query literals with lemmas and closing the 
introduced subgoals with reductions) which have been 
created in the steps 1 , . . . , 

This combined bottom-up and top-down proof search 
has several theoretical advantages compared to a pure 
bottom-up or top-down search. The top-down search is 
improved by bottom-up processing which avoids the re-
computation of solutions for multiple occurring subgoals 
in query clauses. Moreover, the method improves on 
a pure bottom-up computation because it is more goal 
oriented and thus the production of a large number of 
irrelevant clauses may be avoided. 

In practice, however, such an approach does not ap­
pear to be reasonable (for "harder problems"). An ex­
plicit storage of all generated tableaux is not sensible 
when dealing with ME based provers because of the 
huge increase of the number and size of the generated 
tableaux. Thus, we have to focus only on some few rele­
vant query tableaux (or query clauses when dealing with 
Horn problems) and lemmas which are maintained af­
ter each level for further decomposition or saturation in 
the next iteration, respectively. Heuristic selection cri­
teria for query tableaux and lemma clauses are needed. 
When using such normally fuzzy criteria, however, it is 
not guaranteed any longer that a query tableau which 
can be closed with lemmas can be produced after it­
erations. It is probable that useful queries or lemmas are 
discarded such that more than iterations are needed. 
Then, the process may be more costly than conventional 
top-down or bottom-up deduction. Because of the dele­
tion of query tableaux and lemmas it is even possible 
that no proof can be found by clc ing a maintained query 
tableau with derived lemma clauses. 

Thus, we employ a slightly different (lemma oriented) 
method which we wil l explain only for Horn clauses and 
unit lemmas for simplicity reasons. Instead of employ­
ing a complete top-down enumeration of all query clauses 
we work in an abstracted top-down search space. Liter­
als of specific query clauses are generalized to so-called 
patterns. Patterns are literals which cover the form of 
several subgoals. Specifically, we try to guarantee that 
subgoals occurring in a proof are subsumed by some pat­
terns. Patterns are created in d -1 steps. As initial pat­
terns, in step 1, the literals occurring in start clauses are 
created. Then, in each step 1 we successively decom­
pose patterns of the previous step t -1 into new subgoals 

and generalize then the subgoals to new patterns. Thus, 
patterns created in step i generalize subgoals of depth 
i which occur in query clauses. These top-down gener­
ated patterns cannot be used for finishing a proof task 
(with the help of lemmas). However, they provide rel­
evancy criteria for lemmas. If a lemma is not unifiable 
with the complement of a specific pattern it can be dis­
carded. Thus, we can work with a conventional iterated 
lemma generation procedure whose maintenance criteria 
for lemmas are assisted by top-down inferences. Finally, 
the lemmas are used in a top-down proof run for refuting 
the input clauses. 

We make our method more concrete. We start with 
the top-down goal decomposition. First, we show how to 
generalize literals occurring in a set of subgoal clauses 
to patterns. We use as patterns N N literals from 
the set for L . is the set of all literals 
where each literal has a length {no. of symbols) L and 
cannot be specialized to a literal with length and 

Patterns should generalize the subgoals of clauses 
from Q which are the most likely to occur in a proof. In 
order to determine the literals to be used as patterns 
we employ a function QUOIQ on literals. This function is 
based on a notion of quality qual9g on subgoals. qual9g 

is used to estimate whether a subgoal may occur in a 
proof. Then, qualQ expresses how many subgoals from 

of a high quality are generalized by a pattern. 
qual9g(s) of a subgoal $ is a value which represents 

the "generality" of s since we assume that more general 
subgoals can more easily be solved. For instance, small 
subgoals with many variables may get large values by 
quals9 (cp. [5]). qualQ is defined using qual9g as follows. 

Def in i t ion 4.1 (pat tern qual i ty) For a literal I let 
Inst(l) be the multi-set 
We define the pattern quality qualQ(l) of a literal / w.r.t. 
i 

The best N literals from Lit w.r.t. pualQ form the 
set pati,s(Q) of patterns for Q. Patterns which gen­
eralize subgoals which are part of a proof provide an 
exact criterion for discarding irrelevant lemmas. A pat­
tern must be unifiable with the complement of a lemma. 
L and N are responsible for providing a compromise 
between a large pruning effect of the patterns on the 
number of generated lemmas (L large, N small) or a 
high probability that no useful lemmas are discarded (L 
small, N large). We employ a query generation algo­
rithm which gets as input a clause set C, start clauses 5, 
and an iteration number As output the sets of 
patterns are delivered. 

Procedure 4.1 (query generation) 

(a) let Q be the set of the most general query 
clauses of query tableaux from which 
are not part of 
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The lemma generation algorithm enumerates lemma 
tableaux in a similar way as in [12; 5] but additionally 
uses the generated patterns. It can be applied after the 
generation of the query pattern sets A fur 
ther input of the algorithm is again an iteration number 

and the set of input clauses C. As output a lemma 
set is delivered. 

Procedure 4.2 ( lemma generation) 

(a) let be the set of the most general lemma 
clauses of lemma tableaux from which 
are not in 

The chance for easy lemmas to be maintained is higher 
than for hard lemmas since more patterns are used. 
This is because easy lemmas may be applicable in more 
depth levels of a proof. The pattern-based criterion dis­
cards lemmas immediately after their generation and 
thus saves space. The set forms the set of possible 
lemmas which may finally be used in the proof run in ad­
dition to the input clauses. We consider a closed tableau 
for a Horn clause set of a depth of d. If and 
the patterns from cover the form of the subgoals with 
depth i which are needed to find the closed tableau, the 
lemma generation method is complete. This means that 
it can be guaranteed that contains all lemmas needed 
to reduce the proof depth by an amount of J - 1 . Specif­
ically, it is also possible to reduce the proof length. In 
practice after the execution of the generation procedure 
lemmas are selected from with a selection function 
(see [5]). These lemmas are used in a final proof run. 

5 Evolutionary Lemma Generation 
The pattern-based method has the pleasant property 
that it provides a systematic generation of lemmas which 
can guarantee the generation of useful lemmas under cer­
tain conditions. A practical advantage is that highly 
efficient model-elimination provers can be employed for 
top-down as well as bottom-up inferences. 

But if the choice of the patterns is not optimal the 
method works as a local optimization method because 
lemmas are discarded. Lemma tableaux whose deriva­
tions require the use of (small quality) lemmas which 
are discarded at a certain moment cannot be generated 
later. Thus, it is rather probable that the generation of 
useful and also well judged lemmas is prevented because 
the generation of such lemmas may require the use of 
other discarded clauses. 

Our solution to this problem is the use of evolutionary 
techniques for lemma generation which are based on the 
genetic programming (GP) paradigm. For a detailed in­
troduction to genetic algorithms or genetic programming 

we refer to [6] or [7], respectively. Our application of GP 
combines the evolution of query and lemma tableaux. 
The abstract principles of our method are as follows. 
An individual corresponds to a connection tableau which 
represents a lemma or a query clause. Thus, we work 
with (possibly) partial solutions (lemmas) of our initial 
problem and with goal decompositions which represent 
problems which are still open. The fitness of one lemma 
is given by its ability to solve or "almost" solve an open 
subproblem. A tableau which represents a query is the 
fitter the more subgoals are solvable (almost solvable) 
by lemmas. The genetic operators are based on the ex­
change of sub tableaux. Thus, good subdeductions which 
may be part of a proof are used in order to create new 
(and possibly fitter) individuals. Building blocks (sub-
tableaux) of the fittest individuals persist with a high 
probability and can contribute to a generation of lem­
mas or query clauses which appear in a proof. 

Thus, the lemma and query tableaux used for GP are 
used in a deductive sense by producing new lemma and 
query clauses in order to solve the original problem or 
at least to generate useful lemmas. Further, they play 
a role as control elements. The lemma production influ­
ences the query decomposition and vice versa. This is 
similar to our first pattern-based approach. But now also 
the top-down decomposition is influenced by some kind 
of distance to given valid lemmas. Hence the search is 
concentrated on "interesting" regions of the search space 
in a self-adaptive way. Furthermore, the probabilistic 
character of GP offers the chance to avoid a naive hill 
climbing based search and can produce needed lemmas 
although ancestors are judged by low fitness values. 

The technical realization of these ideas is as follows. 
As already mentioned we use a fixed sized population 
of tableaux. Each tableau represents a query or a 
lemma. The population is initialized using the given 
input clauses to be refuted. Each query tableau obtain­
able by applying the start rule with a clause allowed as a 
start clause is added to the population. Analogously for 
each contrapositive of an input clause a lemma tableau 
is built. Additionally, it is possible to use some further 
selected lemma or query clauses in the initial population 
(see Section 6). 

We employ three genetic operators, namely reproduc­
tion , and variants of crossover and mutation. Reproduc­
tion copies one element from the old population to the 
next. Our crossover operator differs from standard GP 
where two randomly chosen subtrees of two ancestor in­
dividuals are exchanged. Since such an operation would 
normally not result in a connection tableau crossover has 
to be constrained. One approach is to allow crossover at 
nodes and (labeled with and l2) of two indi­
viduals and respectively, only if 
exists. Then, an exchange of the subtrees could take 
place and the resulting tableaux are instantiated with 
As appealing as this sounds it neglects the fact that a 
re-use of a subdeduction below vi in tableau may be 
possible below in although the above criterion is 
not applicable. This is because the subdeduction may 
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be more general when viewed in an isolated way and is 
"over-instantiated" in Consider following example. 
Example 5.1 Let 

The following figure shows two 
connection tableaux for C. The arrow (which is 
also called link) shows that the subdeduction below 

which represents a proof for can be 
used below the goal which would take the form 

when deleting the subproof below the subgoal. 

Thus, asymmetric link relations between tableaux can 
be built which show which subdeductions can replace 
others (see also [4]). Our crossover variant produces one 
new individual. Consistently with the link relation in a 
destination tableau a (possibly empty) subdeduction is 
replaced by a subdeduction in a source tableau. Then, 
the modified destination tableau is instantiated in an ap­
propriate manner (more details can be found in [4]). In 
the above example the left and the right tableau serve 
as source and destination tableau, respectively. The 
tableau resulting from crossover represents the query 

The crossover operator can be viewed as a 
generalized extension step which allows us to attach sub-
deductions and not only clauses to (inner) nodes. We use 
a mutation operator which serves as a generalized reduc­
tion step (see [4]). It is needed in the non-Horn case 
to preserve the completeness of the genetic operators in 
order to create each useful lemma. 

The genetic operators are applied to individuals cho­
sen probabilistically proportionate to their fitness. We 
use a similarity measure between query and lemma 
tableaux for computing fitness. In the Horn case only 
the query and lemma clauses are considered. In the non-
Horn case we may also consider open branches for judg­
ing the similarity. We use a similarity measure which 
considers certain syntactic properties of literals (cp. [4]). 

The evolutionary search stops if a query tableau can be 
extended to a closed tableau using the lemma tableaux or 
a given maximal number of generations is reached. In the 
latter case a selection function (see [5]) chooses lemma 
clauses of the current population which are used in the 
final proof run. In summation the GP approach cannot 
guarantee that useful lemmas are generated during the 
search. But at least one can show that when fulfilling 
weak conditions each needed lemma can be created with 
a probability greater than 0 [4]. The self-adaptation car 
pabilities and randomized effects can allow the solution 
of problems which are out of reach of conventional search 
techniques (see Section 6). 

6 Experimental Results 
We want to analyze the performance of the newly devel­
oped lemma generation procedures. We have chosen the 

Table 1: Experimental Results in the TPTP library 

domain 

BOO 

CAT 

COL 

GRP 

SET 

SETHEO 

6 
10 
11 
4 
3 
3 
10 
27 
28 
9 
9 
9 
36 
39 
41 

S E T H E O / P A T 

12 
14 
14 
& 

5 
5 

29 
32 
3d 
11 
11 
11 
48 
50 
50 

S E T H E O / O P 

12 
14 
14 

5 
5 
5 
27 
32 
33 
15 
15 
15 
50 
52 
54 

high performance model elimination prover SETHEO for 
the final top-down proof run as well as for the pattern 
based lemma generation procedure. 

As test set domains of the problem library TPTP 
v2.0.0 [15] are used. The domains BOO, CAT, COL, 
GRP, and SET have been chosen. BOO, COL, and GRP 
mostly contain Horn problems whereas in the other do­
mains often non-Horn problems occur. We tackled only 
"hard problems". These problems cannot be solved with 
the conventional SETHEO system within 10 seconds. We 
have used a SUN Ultra 2 and a run time limit of 15 min­
utes for each problem. This includes the time for the 
lemma generation and the final refutation run. 

In Table 1 one can find the performance of the newly 
developed systems in comparison with SETHEO. SETHEO 
is configured as described in [11]. Specifically, this 
includes the use of folding-up (see [8]) in the proof 
run. SETHEO/PAT generates lemmas based on our first 
method. The lemmas are then added to SETHEO. The 
final proof run is done with the same version of SETHEO 
which is used without lemmas. We restrict the lemma 
generation to unit lemmas which are sufficient to obtain 
good results in the considered domains. The lemma gen­
eration Procedure 4.2 is employed with iteration number 
J = 3. The iteration number for the pattern generation 
was set to J = 6. We used for the pattern length L and 
the pattern number TV the combinations (L, N) m (3,3) 
and (L,N) = (7,10). We depict for each example the 
best result which could be obtained with a configura­
tion. The selection function is defined using the lemma 
delaying method as introduced in {5]. SETHEO/GP is 
based on genetic programming. We have initialized the 
evolutionary lemma generation in such a manner that 
the lemmas which are produced by the pattern based 
method with two bottom-up iteration steps are used in 
the initial population. Furthermore, we use some se­
lected queries (see [4]). Thus, the procedure can start 
at an interesting point in the search space. Unit lemmas 
are selected from the final population using the lemma 
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delaying method. We show the best results obtained in 
5 runs for each problem. The exact configuration of our 
genetic algorithm can be found in [4). 

In the table we have depicted the number of problems 
which can be solved by the considered approaches after 
5,10, and 15 minutes. We can see that all lemma meth­
ods improve on the conventional SETHEO system in a 
stable way. Often lemma tableaux of a proof depth of 2, 
sometimes of a depth of 3 and 4, can be used in a proof. 
The use of these lemmas leads to a proof length reduc­
tion and significantly smaller search spaces which have 
to be traversed by the iterative deepening search proce­
dure. In comparison with the already successful conven­
tional lemma generation approaches (without top-down 
assistance) as described in [12; 5] all of our methods im­
prove on results obtained with these methods. The level 
saturation procedure can be improved by the top-down 
generated patterns. E.g., in the SET domain where a lot 
of predicate and function symbols occur the pattern use 
is indispensable. In domains like BOO, however, the pat­
terns cannot incorporate additional potential for deleting 
lemmas. The GP approach significantly improves on the 
level saturation method. A not fitness controlled ran­
domized method achieves worse results (see [4]). 

Considering the pattern based method and GP one 
can recognize that with GP generated lemmas the proof 
length can often be reduced in a more effective manner. 
The pattern based method has some difficulties in pro­
ducing sufficiently specific patterns well-suited for the 
first iteration steps since the probability that such pat­
terns match needed query literals decreases from itera­
tion to iteration. GP can overcome the problem that in 
its initial population some useful lemmas may be miss­
ing. It can re-compute these lemmas. Furthermore, we 
could observe that GP sometimes generates well-suited 
rather hard lemmas (with depth 4). 

7 Conclusion and Future Work 
We presented two methods for combining top-down and 
bottom-up proof search aiming at generating a set of 
well-suited lemmas. The lemmas are then used in a fi­
nal top-down proof run in addition to the given input 
clauses. We have seen that an evaluation of an ab­
stracted top-down search space (with patterns) and a 
partial evaluation of interesting regions of the complete 
top-down search space (by genetic programming) is in­
deed able to provide sufficient information in order to 
control bottom-up inferences. As the experiments show 
the criteria are strong enough to generate interesting 
hard lemmas which provide large search reductions. 

The study reveals that the use of our techniques in 
a parallel proof environment is desirable. The pattern 
based approach can work with different parameters for 
L, N, I, and J in parallel. Also the GP algorithm can 
profit when different incarnations run in parallel. Specif­
ically, the evolutionary approach offers the possibility to 
develop high performance parallel systems which may 
scale up to a large number of processors. 
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