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Abs t rac t 

Nonmonotonic reasoning is vir tual ly absent 
f rom industry and has been so since its incep
t ion; the result is that the field is becoming 
marginalized wi th in A I . I argue that this is be
cause researchers in the area focus exclusively 
on commonsense problems which are irrelevant 
to industry and because few efficient algorithms 
and/or tools have been developed. A sensible 
strategy is thus to focus on industry problems 
and to develop solutions wi th in tractable sub-
theories of nonmonotonic logic. I examine one 
of the few examples of nonmonotonic reason
ing in industry — inheritance of business rules 
in the medical insurance domain — and show 
how the paradigm of inheritance w i th excep
tions can be extended to a broader and more 
powerful k ind of nonmonotonic reasoning. F i 
nally I discuss the underlying lessons that can 
be generalized to other industry problems. 

1 I n t r oduc t i on 
Nonmonotonic logic, the formalization of plausible rea
soning, is invisible and vir tual ly non-existent in indus
try. It is in a worse position, in this respect, than most 
other areas of Art i f ic ia l Intelligence. It is true that AI 
researchers have long accustomed themselves to the huge 
gap between AI hype, which promises great things (e.g., 
housekeeping robots) and AI reality, which delivers much 
less (robots that have a hard t ime collecting tennis balls). 

Yet AI as a whole is quite visible in industry and the 
marketplace. Al though AI has delivered less than was 
anticipated one or two decades ago, there is enough going 
on: Expert systems are used in medical diagnosis, cir
cuit configuration, and financial applications; dictation 
systems for restricted domains are on the market. Un
fortunately, such examples don't include anything that 
is based on nonmonotonic reasoning.1 

1It might be argued that fussy logic (Zadeh, 1992), which 
also claims to capture plausible reasoning, has been used in 
industrial applications. Without commenting on the mer
its of this argument, we merely note that the fields of fussy 

The absence of nonmonotonic reasoning from industry 
may have been small cause for concern in the early eight
ies, when AI showed endless promise, research money 
was plentiful, and the field was very young. As we ap-
proach the end of the nineties, however, we have rea-
son to worry. Funding has shrunk, and there is l i t t le 
tolerance for research programs that don't promise — 
and deliver — practical results in the foreseeable future. 
There is the real danger — if nonmonotonic reasoning 
and industry continue to inhabit separate worlds — that 
nonmonotonic reasoning wi l l become marginalized and 
isolated; that funding for nonmonotonic research wi l l 
dry up to the point where we are no better off than re
searchers in mathematics (or worse, philosophy); that as 
a result the field wi l l shrink, leaving only a few die-hards 
talking to one another instead of a vibrant research com
munity which is tackling one of the hardest problems in 
reasoning. 

I don't feel happy about wri t ing that last paragraph. 
These are the sort of gloomy prognostications one is used 
to hear from people outside the field of nonmonotonic 
logic. When I've heard these sentiments in the past, I've 
usually put them down to some combination of schaden
freude and the resentment of practitioners toward theo
rists. This isn't the case here. On the contrary: I 'm a 
member of the nonmonotonic reasoning community, and 
I 'm concerned about the current state of nonmonotonic 
research. But this is concern rather than pessimism: I 
believe that we can stop the field from being marginal
ized, and strengthen nonmonotonic reasoning as a cen
tral part of mainstream A I . In order to do so, we must 
f ind some way to make nonmonotonic reasoning useful 
to industry. We need to understand why nonmonoto
nic reasoning and industry are so far apart and to figure 

logic and nonmonotonic logic are quite separate in both phi
losophy and community; thus, the presence of fussy logic in 
industry says little about the field of nonmonotonic reason
ing. It is also true that the logic programming language Pro-
log (Clocksin and Mellish, 1987) is used in industry: while 
its negation-as-failure mechanism makes it in theory suitable 
for expressing certain types of nonmonotonic reasoning, Pro-
log in the commercial world is generally not used to capture 
nonmonotonicity and thus contributes little toward joining 
nonmonotonic research and industry. 
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out how to bridge the gap. We also need to see if there 
are any examples of nonmonotonic reasoning in industry, 
and to study these examples for lessons to generalise and 
mistakes to avoid in the future. 

The paper is accordingly structured as follows. Section 
2 discusses the reasons underlying the gap between non
monotonic reasoning and industry and suggests possible 
strategies to bring these two areas closer together. Sec
t ion 3 examines in detail an example of a nonmonotonic 
system developed for industry — specifically, a benefits 
inquiry system for the insurance industry. The system 
uses a form of inheritance w i th exceptions in which log
ical rules — well-formed formulae — are attached to 
nodes in the inheritance network. The system is able 
to perform broad nonmonotonic reasoning. We examine 
the ways in which nonmonotonic techniques provide the 
system wi th the necessary expressiveness and reasoning 
abil i ty. We subsequently consider generalizations of the 
system, and finally examine the lessons which can be ap
plied in general to jo in ing nonmonotonic reasoning and 
industry. 

2 Ana lyz ing the gap between 
nonmonotonic reasoning and indus t ry 

Nonmonotonic reasoning was first introduced in the late 
1970s (McDermott and Doyle, 1980; Reiter, 1980; Mc
Carthy, 1980) in order to formal ly capture plausible or 
default reasoning.2 Plausible reasoning includes reason
ing w i th exceptions, reasoning w i th default rules (rules 
that talk about a typical member of a class, rather than 
al l members of a class), reasoning w i th incomplete infor
mat ion, and jumping to conclusions and retracting such 
conclusions if they are proved to be wrong. The a im in 
those early days was to construct a logic that is more 
powerful than classical first-order logic and to aid in de
veloping programs that could reason more flexibly and 
fluently than the programs then available. Nonmonot
onic logic was supposed to make AI easier. As such, it 
could have been reasonably expected that nonmonoto
nic logic would become a tool of software engineers (as 
is the case, for example, w i th object-oriented program
ming). In fact, this has not happened: two decades later, 
open act ivi ty in nonmonotonic research is found only in 
academia and tolerant research labs. 

What went wrong? The answer, in a nutshell, is that 
nonmonotonic reasoning is nowhere near ready to handle 
industrial-strength problems. Researchers freely admit 
this, and have been freely admi t t ing it for the last twenty 
years. After this length of t ime, the admission is in itself 
cause for concern. Much of AI and al l of industry is 
about getting things done. Confession w i l l not save us 
here: we need to determine why nonmonotonic reasoning 
hasn't helped get things done. Three reasons come to 
mind . 
(1) Nonmonotonic research has focussed almost exclu
sively on toy problems of commonsense reasoning. The 

2These papers as well as some of the classic papers in the 
field are collected in (Ginsberg, 1987). 

canonical Tweety problem — inferring that Tweety can 
fly f rom the facts that Tweety is a b i rd and that birds 
typically fly; and retracting that conclusion upon dis-
covering that Tweety is a penguin — is st i l l one of the 
benchmark problems that researchers seriously tackle 
when they develop new nonmonotonic logics or modify 
old ones.3 

Indeed, nonmonotonic theories have trouble solving a 
host of other toy problems such as the well-known Yale 
Shooting problem (Hanks and McDermott , 1986), which 
involves predicting that if one loads a gun, waits, and 
then fires the gun at a turkey, the turkey wi l l die.4 

It can be argued w i th a good deal of justi f ication that 
commonsense reasoning is one of the more difficult areas 
of intelligent behavior for AI to model (Davis, 1990) and 
that sneering at research on the Tweety and Yale Shoot-
ing problems merely reflects a lack of understanding of 
the difficulties of the underlying issues. It may very well 
be that toy problems of commonsense reasoning are more 
difficult than industry problems. Nonetheless, one can 
hardly be surprised that industry has not jumped to in
vest in technology based on research that is stymied by 
the likes of the Yale Shooting problem. 
(2) In fact, industry is pr imar i ly concerned w i th prob-
lems which have very l i t t le to do wi th commonsense 
reasoning. Examples include diagnosing bacterial infec
tions, determining where oi l is l ikely to be found, and 
predicting variations in the stock market. Nonmonotonic 
researchers typically ignore these problems, preferring 
instead to work on problems of commonsense reasoning, 
as discussed above. The result is that these researchers 
have very l i t t le to offer industry. The irony is that one 
can plausibly argue that non-tr iv ial nonmonotonic rea
soning is present in a wide variety of industry problems. 
For example, v i r tual ly any prediction task must be done 
in the absence of complete information about one's situ
at ion, and must use causal rules which have exceptions; 
this suggests that some form of nonmonotonic reasoning 
(such as nonmonotonic temporal reasoning) is needed. 

Industry seems to offer fertile ground for nonmonoto
nic researchers. The problem is that industry remains 
uncharted terr i tory for the nonmonotonic community. 

3 While all existing nonmonotonic logics, as far as I know, 
can solve the Tweety problem, simple variations on this prob
lem are beyond some well-known nonmonotonic systems. For 
example, a nonmonotonic reasoning system based on conse
quence relations (as in Kraus, Lehmann, and Magidor, 1990) 
cannot infer that Tweety can fly from the facts that Tweety 
is a robin, robins are birds, and birds typically fly. (The prob
lem is that chaining is in general not permitted.) A relatively 
simple fix (Geffner, 1990) results in a system that can solve 
this variant Tweety problem; the point, however, is that it is 
far from obvious that nonmonotonic systems can solve very 
simple reasoning problems. 

4 It is assumed that firing a loaded gun at a turkey always 
results in the death- of the turkey. The difficulty arises in 
predicting that a gun that was loaded at one moment will 
remain loaded at the next. Early papers on the Yale Shoot
ing problem can be found in (Ginsberg, 1987); for a recent 
analysis, see (Morgenstern, 1996c). 
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The result is that this community has not yet demon
strated that it is capable of solving any industry prob-
lems. It is al l very well to argue that the seemingly hard 
problems facing industry are easier to solve than the 
deceptively simple commonsense problems upon which 
nonmonotonic research focusses, but this argument must 
be buttressed w i th solid solutions to problems in indus-
try. 
(3) Nonmonotonic reasoning techniques have not scaled 
up to industry. Even if the nonmonotonic commu
ni ty were to start working on a problem directly rele
vant to industry, and to come up wi th a good solution, 
nonmonotonic reasoning is crippled by decidability and 
tractabi l i ty problems, and a lack of good tools. Specifi
cally, nonmonotonic predicate logic is in general undecid-
able; even simple classes of propositional nonmonotonic 
logics are intractable. For example, determining whether 
a formula is in the extension of a propositional default 
theory is in general -complete (Gott lob, 1996). 

There are some bright spots in this otherwise dark pic
ture. There are relatively efficient polynomial algorithms 
for a particular type of nonmonotonic reasoning known 
as inheritance with exceptions (Horty et al . , 1990; Stein, 
1992).5 Inheritance wi th exceptions is the nonmonoto
nic extension of inheritance, a simple form of reasoning 
wi th subclasses and superclasses that dates back to Aris
tot le and the syllogism (Kneale and Kneale, 1962). This 
extended form of inheritance allows one to posit excep
tions to the general behavior of classes and to reason 
w i th those exceptions. It easily handles Tweety-style 
problems (but cannot handle the Yale Shooting prob
lem unless that problem is reformulated in a somewhat 
unnatural manner). In addit ion to work in this area, 
there are many promising results in the subfield of non
monotonic reasoning known as logic programming: for 
example, computation of solutions for theories that are 
propositional, non-recursive, and in Horn form is 
(Dowling and Gallier, 1984); computation of a unique so
lut ion set for courteous logic programs, a restricted form 
of priorit ised defaults, is (Grosof, 1997b). 

But even these positive results are weakened by the 
lack of corresponding industrial-strength tools which im
plement these algorithms. For example, there are no 
commercially available tools for inheritance wi th excep
tions, despite the fact that efficient algorithms have been 
known and published for almost a decade. Anybody who 
wishes to use the technology in industry must bui ld the 
code f rom scratch. In an age and an industry where 
tools have become a sine qua non, the lack of a good 
tool can freeze any possibility of using a nonmonotonic 
technique.6 

5The tractability of Horty et al's algorithms is discussed 
in (Selman and Levesque, 1993); the complexity depends on 
the kind of chaining involved in path construction. The ver
sion presented in (Horty, 1994, Section 2.1) leads to tractable 
algorithms. Stein's algorithm is 

6This was, indeed, my experience in developing the system 
described in section 3. Despite the fact that it was clear that 
standard inheritance would not do the job, and that at least 

If the field of nonmonotonic logic has remained entirely 
separate from industry because first, nonmonotonic re
search and industry focus on very different problems, 
and second, researchers have not yet developed efficient 
algorithms and/or tools, the strategy for integrating non
monotonic reasoning wi th industry becomes clear: 

First, researchers in nonmonotonic logic should famil
iarise themselves wi th problems in industry, select a set 
in which nonmonotonic reasoning appears to be impor
tant, and focus on those problems in their research. Sec
ond, researchers ought to actively design efficient algo-
rithms for the tractable portions of nonmonotonic theo-
ries, and develop industrial-strength tools. 

Ideally, these endeavors should be carried out simulta
neously. That is, as solutions to nonmonotonic problems 
in industry are found, tools to implement these solutions 
should be developed. That is not essential, however; 
what is important is that both tasks get done. 

At this point, there are at best a handful of indus
try problems that have been solved using nonmonotonic 
techniques. The remainder of this paper wi l l discuss one 
such problem and its solution. We wi l l outline the prob
lem, explain why nonmonotonic reasoning is necessary, 
present the nonmonotonic techniques used, and suggest 
how this method could be generalized to other problems 
in industry. 

3 The Case in Point : Inher i tance and 
inher i t ing rules in the medical 
insurance domain 

7 

3 .1 T h e P r o b l e m : B e n e f i t s I n q u i r y 
P r o b l e m D e s c r i p t i o n 
Benefits inquiry is the process of querying an insurance 
company to determine one's benefits. In the medical 
insurance industry, customers may wish to know if a 
particular procedure is covered, as well as the specific 
rules that l im i t coverage. Examples are: 

Will my son's tonsillectomy be covered? Can it be per
formed in an inpatient facility? 

How many days can I stay in the hospital after a standard 
delivery? 

inheritance with exceptions was needed, the fact that tools 
that performed standard inheritance existed, while tools that 
performed inheritance with exceptions did not exist, caused 
many involved with the project to strongly suggest that the 
existing tool be used. It is a mark of the Dilbertian nature 
of the software and consulting industry today that using an 
existing tool to get the job done badly but quickly is consid
ered preferable to building a tool and doing the job slowly 
but well. 

7 A more detailed description of the knowledge structure 
and algorithms summarised in this paper can be found in 
(Morgenstern, 1996a) and (Morgenstern and Singh, 1997). 

8In this paper, as well as in (Morgenstern and Singh, 
1997), the term benefits inquiry also refers to the process per
formed by insurance company employees in answering such 
queries. 
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Benefits inquiry occurs frequently in the medical in
surance industry and has become increasingly complex: 
medical insurance companies today may have thousands 
of insurance products, each of which contains a myr iad 
of services and regulations which change frequently. The 
vast amount of changing information is difficult to keep 
up w i th . In addit ion, there are many rules that have 
exceptions, and exceptions can be nested. For exam
ple, physical therapy is generally l imi ted to twenty visits 
per year, unless more visits are ordered in wr i t ing by a 
physician, but spinal manipulat ion, a type of physical 
therapy, has a more generous l im i t (around th i r ty vis
its). The importance of exceptions suggests that some 
form of nonmonotonic research would be useful. 

Several years ago, I was asked to develop an expert sys
tem for benefits inquiry. (This was part of a comprehen
sive consulting engagement between I B M Research and 
a large medical insurance corporation to update major 
portions of their information management system.) The 
pr imary goal of the expert system was to aid customer 
service representatives (CSRs), the insurance company 
employees who answer customers' questions about their 
benefits. 

W h a t h a d b e e n done 
Customer service representatives were at that t ime using 
a "desktop" text-based system. Information was divided 
into subject areas such as preventive care, immunizat ion, 
and drugs; each subject area was associated wi th a piece 
of text, roughly the amount that would f i t on a screen, 
highlighting salient pieces of information. For example, 
the screen on preventive care listed the types of preven
tive care available, such as routine physicals and immu
nizations, as well as coverage rates and allowed frequency 
of services. A topic mentioned in one screen could itself 
have a fu l l screen devoted to i t ; thus, for example, immu
nization, mentioned in preventive care, was the subject 
of one of the screens. 

Al though the desktop system allowed rudimentary 
search and indexing, it was deficient in several respects: 

First, only a small amount of domain knowledge was 
encoded in the system. The amount of information that 
could be contained was str ict ly l imi ted: a too-long menu 
would prove unwieldy to the CSRs; on the other hand, 
if the chunk of information associated wi th a menu topic 
was too large, it would not f i t on one or even several 
screens. 

Second, the system did not make explicit the intercon
nection between subject areas. For example, nothing in 
the system indicated a connection between the screens 
on immunization and preventive care. The CSR had to 
reason that the schedule rate for preventive care proba
bly applied to immunizations. 

Th i rd , the system was difficult to update, and updates 
had to be performed manually. This could be especially 
troublesome when screens were interconnected. For ex
ample, if both the preventive care and immunization 
screens have schedule rate information and this sched
ule rate changes, the individual modifying the system 

must make changes on both screens. 
Fourth, due perhaps to the constraints just mentioned, 

the system was intended to handle only the most fre
quently asked questions. 

P r o j e c t Goa ls 
We aimed to develop an expert system that supports 
benefits inquiry but avoids the drawbacks of the text-
based system. In particular, this meant a system that 
allows questions at varying levels of granularity, gives 
unambiguous answers, allows representation of large 
amounts of material and navigation around a large infor
mat ion space, supports connections among related top
ics, and supports easy updates and modifications. 

The abi l i ty to modify is important because products 
change so frequently. Thus, the system had to be usable 
not only by CSRs, but also by policy modifiers (PMs), 
the insurance company employees responsible for making 
changes wi th in a particular insurance product. 

3 .2 W h y I n h e r i t a n c e w i t h E x c e p t i o n s i s 
U s e f u l 

Much of the information about medical services is tax-
onomic in nature. For example, Spinal Manipulat ion is 
a type of Physical Therapy; Physical Therapy, Speech 
Therapy, and Occupational Therapy are al l types of 
Therapy. Coverage and accompanying restrictions are to 
a large extent inherited along taxonomic lines: Physical 
Therapy is covered, for example, because it is a subtype 
of Therapy, and Therapy is covered. On the other hand, 
there are exceptions: even though Drugs are covered by 
the Drugs Benefit, and OTC (over-the-counter) Drugs 
are a subclass of Drugs, O T C Drugs are not covered by 
the Drugs Benefit. Thus, we could not use a standard in
heritance network such as KL-ONE (Schmolze and Lip-
kis, 1983) or K-REP (Mays et a l . , 1991). We needed 
at least the expressive power of an inheritance network 
w i th exceptions (Horty et a l . , 1990; Stein, 1992). 

Indeed, the structure needed to represent the organi
zation of medical services and benefits is not purely tax
onomic, since certain services have mult ip le supertypes. 
For example, Genetic Testing is both a subtype of Diag
nostic Services and of Family Planning Services. Thus 
the structure is a dag (directed acyclic graph) rather 
than a tree. 9 

9 In fact, a dag is needed to represent all cases of inheri
tance with exceptions. Formally, multiple inheritance arises 
when there is an undefeated path from x to y, an undefeated 
path from x to z, and y ≠ z (see below for definitions of these 
terms). Inheritance networks in the literature have tradition
ally considered multiple inheritance only when these multiple 
paths have been initial segments of conflicting paths, as is 
the case in Figure 1, where the positive path from OTC to 
Drugs and the negative path from OTC to Services Covered 
by Drugs Benefit are initial segments of conflicting paths. 
Here, we will also be interested in non-conflicting path mul
tiple inheritance; cases of multiple paths that are not ini
tial segments of conflicting paths. For example, in Figure 1 
there are non-conflicting paths between Insulin Syringes and 
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Inheritance wi th exceptions is al l that is needed to 
determine which medical services are covered by which 
benefit. Indeed, the first cut at the benefits inquiry sys
tem used inheritance wi th exceptions to do just this. The 
system was incomplete, since it did not indicate which 
regulations applied to a service; we emphasize this point 
in the next section. However, even this simple system 
demonstrated that a form of nonmonotonic reasoning 
could effectively be used in an industrial application. 

A B r i e f R e v i e w o f I n h e r i t a n c e 
We briefly summarize some notation for inheritance net
work w i th exceptions (taken from (Horty, 1994)): a l ink 
between two nodes can be positive or negative. A pos
it ive (or isa) l ink between nodes X and Y is writ ten X 

A negative (or cancels) l ink between nodes X and 
Y is wr i t ten A l l links are defeasible. A path is 
a sequence of positive links (called a positive path) or a 
sequence of positive links followed by one negative l ink 
(called a negative path). The notation (resp. 

represents a positive (resp. negative) path 
f rom x to y through the path If there are positive 
and negative paths between two nodes, we follow the 
analysis of Touretzky (1986) and Horty(1994) in choos
ing a path. Given a context — an inheritance network T 
and a set of paths $, a path is inheritable or undefeated 
if it is constructive and neither preempted nor conflicted. 
A path is construct ive in a context if it can recursively 
be bui l t out of the paths in a network; a path is con
flicted in a context if there are paths of opposite sign in 
the context w i th the same starting and ending points; 
a path is preempted if there is a conflicting path wi th 
more direct information about the path's endpoint (i.e., 
a direct l ink f rom an earlier point in the path). 

3 .3 W h y I n h e r i t a n c e w i t h E x c e p t i o n s i s n ' t 
Enough 

While much of the information in the medical insurance 
domain — in particular, the relations among benefits 
and services — is taxonomic, a large chunk of informa
t ion, specifically business rules, does not seem to be taxo
nomic in nature. This information is central to the task 
of benefits inquiry, since CSRs must determine which 
regulations apply to a service. 

The problem w i th representing business rules in an 
inheritance hierarchy can best be appreciated by exam
ining several rules. Some rules lend themselves to repre-
sentation wi th in a semantic network. Consider the rule: 

There is a co-pay of 20% for diagnostic services 
To represent this rule using the standard inheritance net
work model, one could have a node representing the ser
vices which have a 20% co-pay, and a subtype l ink be
tween the Diagnostic Services node and this node. 

On the other hand, a more complex rule such as 
Patients in Drug Rehabilitation programs lose all rehab 

benefits for a year if they are non-compliant 

Drugs, and Insulin Syringes and Supplies. In this case we 
allow prioritisation of a particular path. 

cannot be so easily represented. One could posit a node 
that represents the services which have the property that 
if patients are non-compliant wi th respect to that service, 
then they lose all benefits for a year, and then have a 
subtype l ink between the Drug Rehab Services node and 
this node. But such a node appears quite artificial and 
outside the spirit of a semantic network, where nodes are 
supposed to represent easily understood concepts. 

The fact that much of the domain knowledge is not 
taxonomic in nature means that we must go outside of 
the standard structure of an inheritance network wi th 
exceptions. On the other hand, it is desirable to build 
on the inheritance network structure: first, because in
heritance wi th exceptions already solves part of the ben
efits inquiry problem; second, because inheritance with 
exceptions is one of the few efficient nonmonotonic tech
niques. Furthermore, there is an obvious connection be
tween non-taxonomic and taxonomic knowledge in this 
domain. In particular, business rules often apply to par
ticular services — i.e., to nodes in the network. Building 
on the existing network makes this connection explicit. 

The next section suggests an extension to the network 
structure and explores the process of benefits inquiry in 
this context. 

3 .4 T h e S o l u t i o n : i n t e g r a t i n g t a x o n o m i c 
and non- taxonomic i n fo rma t ion 

D e f i n i t i o n o f a F A N 
We wish to introduce a knowledge structure that is capa
ble of representing both taxonomic and non-taxonomic 
information. The aim is to represent the taxonomic in
formation in a standard inheritance network wi th excep
tions and to attach the non-taxonomic information to 
the network in some way. For the (instance of the) med
ical insurance domain, we would like to represent the 
fact that business rules generally apply to specific med
ical services and benefits by attaching business rules to 
nodes in the network. To do this, we introduce the con
cept of a formula-augmented semantic (or inheritance) 
network (FAN), an inheritance network in which sets 
of logical formulae may be attached to nodes. In the 
medical insurance domain, the logical formulae usually 
represent business rules, but they could also represent 
other sorts of information, including lists or tables. 

Formally, a FAN is a tuple where 
• N is a set of nodes. A node represents some set of med
ical services; e.g., Physical Therapy represents the set of 
physical therapy services. A node may represent a set 
of services that are covered by a particular benefit, as in 
the root nodes of Figure 1. 
• The set of wffs W consists of well-formed formulae of 
a sorted first-order logic. 
• The background B is a (possibly empty) set of wffs of 
first-order logic, intuit ively representing the background 
information that is true. In the medical insurance do-
main, it includes all rules that are true of al l medical 
services and benefits. It may also include patients' med
ical records and pay scales. In general, it consists of 
non-taxonomic information that is too general to attach 
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Figure 1: A portion of the medical insurance network. 
Lines represent isa links; slashed lines represent cancels 
links. Note the presence of non-conflicting multiple path 
inheritance, and the ordering placed on links in the net
work. 

Figure 2: Taking the union of wffs at nodes yields incon
sistency. 

to a specific node in the network. 
• £1 is the set of links on nodes, as described in sec. 3.2. 
• O, the ordering on links, gives a preference on links. 
This is useful for non-conflicting mult iple path inheri
tance, since it allows us to prefer one path over another. 
• £2 is the set of links connecting nodes and sets of wffs. 
If N is a node and W is a set of wffs, N —► W means that 
the set of wffs W is attached to node N. Intuit ively, this 
means that each wff of W is typically true at N. 

I n h e r i t i n g W e l l - f o r m e d F o r m u l a e 
CSRs must determine which set of business rules applies 
to a medical service or benefit. This translates into de
termining which wffs apply to a node. Note that deter
min ing which wffs apply to a node is not the same as de
termining which wffs are attached to a node; the latter is 
a t r iv ia l operation. For example (Figure 4), assume that 
there is a cost-share rule attached to the Therapy node, 
specifying that the co-pay is 20%, and a rule attached 
to the Physical Therapy node, specifying a maximum of 
twenty visits a year wi thout a doctor's wr i t ten prescrip
t ion. It seems clear that the cost-share rule attached to 
Therapy also applies to Physical Therapy, since Physi
cal Therapy is a subtype of Therapy. That is, Physical 
Therapy in some sense inherits wffs f rom Therapy. 

The process of inherit ing wffs is considerably more 
complex than standard attr ibute inheritance. One might 
th ink that wff-inheritance is performed in the following 
manner: To determine which wffs apply to a node N, 
compute al l nodes Ni such that there is an undefeated 
positive path f rom N to N i . Then take the union U of 
al l wffs attached to al l such nodes N i . This suggestion, 
however, leads to inconsistency, as Figure 2 shows. Since 
there is an undefeated path f rom N3 to N1, we would get 

Figure 3: The wffs at HGH are more specific than the 
wffs at Rx, drugs and are thus preferable. 

which 
is obviously inconsistent. Note also that the procedure 
w i l l not work correctly for node N2; although wffs(N2) 
U wffs(Nl) is consistent, it is inconsistent w i th respect 
to the background B. 

Rather, the wffs that apply to a node are a maximally 
consistent subset of There may be many maxi
mal ly consistent subsets of U; some of these are obvi
ously preferable to others. For example, in Figure 3, the 
union of rules at HGH Drugs is inconsistent. We have 
the choice to construct a maximal ly consistent subset by 
throwing out the cost-share rule at Prescription Drugs 
or by throwing out the cost-share rules at HGH Drugs. 
Intuit ively, we would rather keep the cost-share rule at 
H G H Drugs since it is more specific than the rule at 
Drugs. Thus, we prefer the maximal ly consistent subset 

It is known as a preferred maximally consistent subset 
In general, we prefer wffs f rom nodes that are more 

specific and/or on preferred paths. Thus, for example 
(Figure 4), when one is computing the set of wffs which 
apply to Cardiac Rehab, the wffs attached to Cardiac 
Rehab are preferable to the wffs attached to Physical 

10 A maximally consistent subset of U is a consistent subset 
S that is maximal; that is, if S' is a consistent subset of U, it 
is not the case that 
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Figure 4: Preferences based on specificity and path order-
ing: Spinal Manipulation is preferred to Physical Ther-
apy and Physical Therapy to Therapy due to specificity; 
from Cardiac Rehab's point of view, PM&R is preferable 
to Physical Therapy due to path ordering. 

Therapy, which are preferable to the wffs attached to 
Therapy. In addit ion, the wffs attached to P M & R (Phys
ical Medicine and Rehabil i tation) are preferable to the 
wffs attached to Physical Therapy. Thus, the preferred 
maximal ly consistent set of wffs in this case is {Max-
visits 

Other preference criteria may also be desired; for ex
ample, one may wish to assign some wffs a higher prior
i ty than others (as in (McCarthy, 1986)), regardless of 
the rule's position in the network; for example, medical 
rules might have higher priorities than administrative 
rules. Likewise, one may prefer a subset of rules based on 
what the rules entail; this is equivalent to preferring one 
extension or model to another (as in (Shoham, 1988)). 
These criteria have not, however, been implemented in 
the current system. 

Preferred maximal ly consistent sets are not necessarily 
unique. 

T h e A l g o r i t h m 
How do we compute a preferred maximally consistent 
subset at a focus node N? First consider the simple case 
where there are no upward forking points (no mult iple 
inheritance from the point of view of the focus node.) 
It is clear what we do not want to do. We do not want 
to first take the union of al l sets of wffs at the nodes 
on the path f rom N to the root, then take maximally 
consistent subsets of this large set, and finally choose 
preferred maximal ly consistent subsets relative to the 
specificity criterion. Such a method would be extremely 
inefficient. Instead, we want to iteratively traverse the 
path, and perform the computation as we go along. 

Upward traversal turns out to be a better choice than 
downward traversal. This method for traversing the net
work is consistent w i th the specificity criterion. One 

begins at the focus node N, taking wffs(N) (the wffs at
tached to N) as the starting set. One then proceeds 
up the path, at each node taking a preferred maximally 
consistent subset of the set computed so far and the wffs 
attached to the current node. 

This process wi l l ensure that the specificity constraint 
is obeyed. To ensure that path-ordering is respected in 
case of forking paths, we examine all links at each forking 
point in the path, order them, and recursively proceed up 
the more preferred links before the less preferred links. 

We must also ensure that we do not collect rules from 
nodes that are only on conflicted or preempted paths; 
to avoid this problem, we preprocess the FAN to remove 
preempted and conflicted links (we do this using an ex
tension of the procedure in (Stein, 1992) which computes 
the specificity extension at a focus node). 

The complete wff-inheritance algorithm is described in 
(Morgenstern, 1996a). 

C o m p u t a t i o n a l Issues 
It is clear that inheriting well-formed formulae is much 
more computationally intensive than inheriting at t r ib-
utes. Inherit ing attributes is polynomial; inheriting wffs 
(in the propositional case) is NP-hard, since computing 
preferred maximally consistent subsets is NP-hard. (In
heriting general first-order wffs is clearly undecidable.) 

In practice this has not proven to be a real difficulty; 
by computing the set of inherited wffs iteratively, we deal 
wi th relatively small sets. We have also noted a possible 
divide-and-conquer strategy: it may be possible to divide 
rules into disjoint subsets, based on rule type, so that sets 
can contradict one another only wi th in their own type. 
(This division is to a large extent natural; for example, 
cost-share rules never contradict medical rules.) Finally, 
polynomialtechniques discovered by Grosof (1997b) may 
be applicable to sets of rules in the system. 

3.5 T h e B e n e f i t s I n q u i r y S y s t e m 
The Benefits Inquiry System incorporates two tools, an 
inquiry tool which is used by CSRs to answer customers' 
questions, and an authoring tool which is used by PMs 
to modify products. Both tools use a graphical interface 
which allows the user to navigate through the network 
and a reasoning engine which performs both attribute 
and wffinheritance. An early version of the system re
ceived excellent reviews from both the CSRs and PMs 
who used i t . 

4 General izing Wff - inher i tance 
Can the techniques of wff-inheritance, which were de
veloped for the particular problem of benefits inquiry in 
the medical insurance domain, be generalised to other 
problems in industry? 

Some generalisations are obvious. Wff-inheritance 
would clearly be useful for benefits inquiry in other parts 
of the insurance industry, such as life insurance and prop
erty and casualty insurance. In these industries, it is 
also the case that services are best organized taxonom-
ically, and that business rules apply to services. Wff-
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inheritance is also useful for other tasks in insurance, 
such as adjudication, which would use a taxonomy of 
services very close to the structure used in benefits in
quiry, and administrat ion, which would use a taxonomic 
structure of products as well as services. 

The nonmonotonic techniques discussed here are ap
plicable to a wide range of other problems as well. In 
deed, it can be argued that the construct of a FAN and 
its associated algorithms may prove useful in other do
mains which satisfy the following criteria: 
1. there exists a large amount of taxonomic information 
2. there exists a significant amount of non- taxonomic 
information, conceptually linked to the taxonomic infor
mat ion 
3. the non-taxonomic information can be mapped into 
wffs 

There are a number of potential domains: 
• Lega l Reason ing , especially case law: Legal cases are 
often organized taxonomically, and different legal rulings 
are associated wi th cases; it seems that these legal ru l 
ings can be mapped into wffs. Most automated legal 
reasoning has been case-based (Ashley, 1991), or ana
logical; adding wff-inheritance may significantly enhance 
the power of legal reasoning systems. 
• M e d i c a l Reason ing a n d T r e a t m e n t : Medical con
ditions are often organised taxonomically, and protocols 
are associated w i th these conditions. The protocols are 
often rigorous sequences of steps which can be mapped 
into wffs. 
• Reason ing in Bus iness O rgan i za t i ons : The orga
nisation chart in many businesses is a perfect taxonomy, 
and there are many rules associated w i th different posi
tions in the org chart. 

These extensions are not straightforward; in partic
ular, mapping business or legal rules into wffs is non-
t r iv ia l . However, these examples indicate that the use
fulness of FANs extends far beyond the domain for which 
they were invented. 

5 Into the Future 
The detailed examination of an application of nonmonot
onic reasoning to industry has taught us some valuable 
lessons and has suggested several directions for future 
research. 
(1) We need to constantly keep our eyes open for prob
lems in industry that could benefit f rom nonmonotonic 
reasoning. There are many such problems; the trick is 
to identify them. Certainly, we should look out for prob
lems that could benefit f rom FANs, as suggested above. 
In general, we should look for domains where exceptions 
are relatively common. 
(2) Basic research is st i l l crucial. We need serious re
search on theoretical aspects of nonmonotonic reasoning. 
It would be best if such research were guided by specific 
issues highlighted by the study of particular problems in 
industry. In fact, one of the unexpected dividends of in
tensively studying a problem in industry is that it often 
results in the discovery of theoretical problems that were 
not previously considered. For example, while I was de

veloping the benefits inquiry system described in Section 
3,1 discovered a number of issues that theories of inher
itance had not previously examined. Such problems in
clude the interaction of composition and subtyping and 
non-unary inheritance (Morgenstern, 1996b). 

The importance of basic research cannot be over
stated. Some of the most heartening news about the cur
rent state of nonmonotonic research is the recent spate 
of exciting results regarding the complexity of some re
stricted nonmonotonic theories. Examples include the 
result that computation of the answer set for courteous 
logic programs, a restricted form of priorit ised defaults, 
is 0 ( n 2 ) (Grosof, 1997b). These results are being trans-
lated into commercial products. In particular, courteous 
logic programs are used in RAISE, a system for bui lding 
intelligent agents, now commercially released (Grosof, 
1997a). 
(3) The proper balance between basic research and seri
ous involvement in industry is important , but difficult to 
maintain. One meaty industry problem can easily give 
a theoretical researcher enough material for a decade; 
on the other hand, we need to work on many industrial 
problems to get a fair idea of the problems that need to 
be solved, and to convince industry of the relevance of 
nonmonotonic reasoning. 
(4) We must develop tools to perform nonmonotonic rea
soning. We need to develop general tools for inheritance 
wi th exceptions; we also need to develop a tool for gen
eral inheritance w i th wffs. Thus far, inheritance wi th 
wffs has been developed for only one application and 
modified for another. Such a tool w i l l facil itate the ex
tension of FANs to other problems in industry, as sug
gested above. 

Finally, we must keep in mind that researchers in non
monotonic reasoning do not always face a friendly land
scape. Some things we ought to watch out for: 
1. Shortsightedness. It always takes longer to solve a 
problem well, especially the first t ime. Using nonmonot
onic reasoning takes a lot more t ime, and the advantages 
may not always be obvious to anyone but AI researchers. 
AI researchers should be prepared for the possibility of 
an uphi l l batt le, both w i th one's management chain and 
w i th the customer. This isn't a problem unique to the 
field of nonmonotonic reasoning, of course. 
2. Refusing to accept the importance of plausible rea
soning. This comes in many guises: 
(i) The 80-20 rule. This line of argument runs as follows: 
Even if we ignore exceptions, we'l l st i l l get things right 
most (around 80%) of the t ime, and w i th very l i t t le ef
fort . Isn't i t worth taking that route? 

The 80-20 rule is part icularly pernicious if one is wi l l 
ing to accept wrong answers 20% of the t ime (one can 
only hope that this rule is not invoked by the FAA) , but 
is quite troublesome even if one is merely wi l l ing to ac
cept admissions of ignorance (answers of "I don't know") 
20% of the t ime. Even in the relatively benign domain 
of benefits inquiry, a system that can't answer questions 
20% of the t ime is not very useful: its performance would 
scarcely be better than the desktop systems that are de-

1620 INVITED SPEAKERS 



signed to answer the most frequently asked questions, or 
CSRs without any aid of technology who can generally 
answer frequently asked questions right off the bat. 
( i i) The back-to-if-then-else movement. This argument 
recognises the importance of exceptions, but insists that 
any branching statement is al l that is needed. Peo-
ple who use this argument are convinced that al l that 
nonmonotonic reasoning is t ry ing to achieve has been 
present since the days of Algol 60 or earlier, 
( i i i ) The protection-of-basic-researchers strategy. De
spite constantly urging nonmonotonic researchers to do 
something practical, management often tries to keep a 
buffer between researchers and industry. The trouble 
w i th this is that if researchers can't get close enough 
to industry, they can't f ind the problems that are most 
suitable; if they only hear about a problem second-hand, 
they don't have an accurate picture of the situation, and 
they can't determine whether and how nonmonotonic 
reasoning is useful. 

The best way to counteract these obstacles is to 
demonstrate that nonmonotonic reasoning is capable of 
yielding practical results. We wi l l achieve recognition 
when we affect the outside world. 
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