
Inher i tance Comes of Age:
App l y i ng Nonmonoton ic Techniques to Problems in Indust ry

Leora Morgenstern
IBM T.J. Watson Research Center

30 Saw Mi l l River Road, Hawthorne, NY 10532
leora@watson.ibm.com

Abs t rac t

Nonmonotonic reasoning is vir tual ly absent
f rom industry and has been so since its incep
t ion; the result is that the field is becoming
marginalized wi th in A I . I argue that this is be
cause researchers in the area focus exclusively
on commonsense problems which are irrelevant
to industry and because few efficient algorithms
and/or tools have been developed. A sensible
strategy is thus to focus on industry problems
and to develop solutions wi th in tractable sub-
theories of nonmonotonic logic. I examine one
of the few examples of nonmonotonic reason
ing in industry — inheritance of business rules
in the medical insurance domain — and show
how the paradigm of inheritance w i th excep
tions can be extended to a broader and more
powerful k ind of nonmonotonic reasoning. F i
nally I discuss the underlying lessons that can
be generalized to other industry problems.

1 I n t r oduc t i on
Nonmonotonic logic, the formalization of plausible rea
soning, is invisible and vir tual ly non-existent in indus
try. It is in a worse position, in this respect, than most
other areas of Art i f ic ia l Intelligence. It is true that AI
researchers have long accustomed themselves to the huge
gap between AI hype, which promises great things (e.g.,
housekeeping robots) and AI reality, which delivers much
less (robots that have a hard t ime collecting tennis balls).

Yet AI as a whole is quite visible in industry and the
marketplace. Al though AI has delivered less than was
anticipated one or two decades ago, there is enough going
on: Expert systems are used in medical diagnosis, cir
cuit configuration, and financial applications; dictation
systems for restricted domains are on the market. Un
fortunately, such examples don't include anything that
is based on nonmonotonic reasoning.1

1It might be argued that fussy logic (Zadeh, 1992), which
also claims to capture plausible reasoning, has been used in
industrial applications. Without commenting on the mer
its of this argument, we merely note that the fields of fussy

The absence of nonmonotonic reasoning from industry
may have been small cause for concern in the early eight
ies, when AI showed endless promise, research money
was plentiful, and the field was very young. As we ap-
proach the end of the nineties, however, we have rea-
son to worry. Funding has shrunk, and there is l i t t le
tolerance for research programs that don't promise —
and deliver — practical results in the foreseeable future.
There is the real danger — if nonmonotonic reasoning
and industry continue to inhabit separate worlds — that
nonmonotonic reasoning wi l l become marginalized and
isolated; that funding for nonmonotonic research wi l l
dry up to the point where we are no better off than re
searchers in mathematics (or worse, philosophy); that as
a result the field wi l l shrink, leaving only a few die-hards
talking to one another instead of a vibrant research com
munity which is tackling one of the hardest problems in
reasoning.

I don't feel happy about wri t ing that last paragraph.
These are the sort of gloomy prognostications one is used
to hear from people outside the field of nonmonotonic
logic. When I've heard these sentiments in the past, I've
usually put them down to some combination of schaden
freude and the resentment of practitioners toward theo
rists. This isn't the case here. On the contrary: I 'm a
member of the nonmonotonic reasoning community, and
I 'm concerned about the current state of nonmonotonic
research. But this is concern rather than pessimism: I
believe that we can stop the field from being marginal
ized, and strengthen nonmonotonic reasoning as a cen
tral part of mainstream A I . In order to do so, we must
f ind some way to make nonmonotonic reasoning useful
to industry. We need to understand why nonmonoto
nic reasoning and industry are so far apart and to figure

logic and nonmonotonic logic are quite separate in both phi
losophy and community; thus, the presence of fussy logic in
industry says little about the field of nonmonotonic reason
ing. It is also true that the logic programming language Pro-
log (Clocksin and Mellish, 1987) is used in industry: while
its negation-as-failure mechanism makes it in theory suitable
for expressing certain types of nonmonotonic reasoning, Pro-
log in the commercial world is generally not used to capture
nonmonotonicity and thus contributes little toward joining
nonmonotonic research and industry.

MORGENSTERN 1613

out how to bridge the gap. We also need to see if there
are any examples of nonmonotonic reasoning in industry,
and to study these examples for lessons to generalise and
mistakes to avoid in the future.

The paper is accordingly structured as follows. Section
2 discusses the reasons underlying the gap between non
monotonic reasoning and industry and suggests possible
strategies to bring these two areas closer together. Sec
t ion 3 examines in detail an example of a nonmonotonic
system developed for industry — specifically, a benefits
inquiry system for the insurance industry. The system
uses a form of inheritance w i th exceptions in which log
ical rules — well-formed formulae — are attached to
nodes in the inheritance network. The system is able
to perform broad nonmonotonic reasoning. We examine
the ways in which nonmonotonic techniques provide the
system wi th the necessary expressiveness and reasoning
abil i ty. We subsequently consider generalizations of the
system, and finally examine the lessons which can be ap
plied in general to jo in ing nonmonotonic reasoning and
industry.

2 Ana lyz ing the gap between
nonmonotonic reasoning and indus t ry

Nonmonotonic reasoning was first introduced in the late
1970s (McDermott and Doyle, 1980; Reiter, 1980; Mc
Carthy, 1980) in order to formal ly capture plausible or
default reasoning.2 Plausible reasoning includes reason
ing w i th exceptions, reasoning w i th default rules (rules
that talk about a typical member of a class, rather than
al l members of a class), reasoning w i th incomplete infor
mat ion, and jumping to conclusions and retracting such
conclusions if they are proved to be wrong. The a im in
those early days was to construct a logic that is more
powerful than classical first-order logic and to aid in de
veloping programs that could reason more flexibly and
fluently than the programs then available. Nonmonot
onic logic was supposed to make AI easier. As such, it
could have been reasonably expected that nonmonoto
nic logic would become a tool of software engineers (as
is the case, for example, w i th object-oriented program
ming). In fact, this has not happened: two decades later,
open act ivi ty in nonmonotonic research is found only in
academia and tolerant research labs.

What went wrong? The answer, in a nutshell, is that
nonmonotonic reasoning is nowhere near ready to handle
industrial-strength problems. Researchers freely admit
this, and have been freely admi t t ing it for the last twenty
years. After this length of t ime, the admission is in itself
cause for concern. Much of AI and al l of industry is
about getting things done. Confession w i l l not save us
here: we need to determine why nonmonotonic reasoning
hasn't helped get things done. Three reasons come to
mind .
(1) Nonmonotonic research has focussed almost exclu
sively on toy problems of commonsense reasoning. The

2These papers as well as some of the classic papers in the
field are collected in (Ginsberg, 1987).

canonical Tweety problem — inferring that Tweety can
fly f rom the facts that Tweety is a b i rd and that birds
typically fly; and retracting that conclusion upon dis-
covering that Tweety is a penguin — is st i l l one of the
benchmark problems that researchers seriously tackle
when they develop new nonmonotonic logics or modify
old ones.3

Indeed, nonmonotonic theories have trouble solving a
host of other toy problems such as the well-known Yale
Shooting problem (Hanks and McDermott , 1986), which
involves predicting that if one loads a gun, waits, and
then fires the gun at a turkey, the turkey wi l l die.4

It can be argued w i th a good deal of justi f ication that
commonsense reasoning is one of the more difficult areas
of intelligent behavior for AI to model (Davis, 1990) and
that sneering at research on the Tweety and Yale Shoot-
ing problems merely reflects a lack of understanding of
the difficulties of the underlying issues. It may very well
be that toy problems of commonsense reasoning are more
difficult than industry problems. Nonetheless, one can
hardly be surprised that industry has not jumped to in
vest in technology based on research that is stymied by
the likes of the Yale Shooting problem.
(2) In fact, industry is pr imar i ly concerned w i th prob-
lems which have very l i t t le to do wi th commonsense
reasoning. Examples include diagnosing bacterial infec
tions, determining where oi l is l ikely to be found, and
predicting variations in the stock market. Nonmonotonic
researchers typically ignore these problems, preferring
instead to work on problems of commonsense reasoning,
as discussed above. The result is that these researchers
have very l i t t le to offer industry. The irony is that one
can plausibly argue that non-tr iv ial nonmonotonic rea
soning is present in a wide variety of industry problems.
For example, v i r tual ly any prediction task must be done
in the absence of complete information about one's situ
at ion, and must use causal rules which have exceptions;
this suggests that some form of nonmonotonic reasoning
(such as nonmonotonic temporal reasoning) is needed.

Industry seems to offer fertile ground for nonmonoto
nic researchers. The problem is that industry remains
uncharted terr i tory for the nonmonotonic community.

3 While all existing nonmonotonic logics, as far as I know,
can solve the Tweety problem, simple variations on this prob
lem are beyond some well-known nonmonotonic systems. For
example, a nonmonotonic reasoning system based on conse
quence relations (as in Kraus, Lehmann, and Magidor, 1990)
cannot infer that Tweety can fly from the facts that Tweety
is a robin, robins are birds, and birds typically fly. (The prob
lem is that chaining is in general not permitted.) A relatively
simple fix (Geffner, 1990) results in a system that can solve
this variant Tweety problem; the point, however, is that it is
far from obvious that nonmonotonic systems can solve very
simple reasoning problems.

4 It is assumed that firing a loaded gun at a turkey always
results in the death- of the turkey. The difficulty arises in
predicting that a gun that was loaded at one moment will
remain loaded at the next. Early papers on the Yale Shoot
ing problem can be found in (Ginsberg, 1987); for a recent
analysis, see (Morgenstern, 1996c).

1614 INVITED SPEAKERS

The result is that this community has not yet demon
strated that it is capable of solving any industry prob-
lems. It is al l very well to argue that the seemingly hard
problems facing industry are easier to solve than the
deceptively simple commonsense problems upon which
nonmonotonic research focusses, but this argument must
be buttressed w i th solid solutions to problems in indus-
try.
(3) Nonmonotonic reasoning techniques have not scaled
up to industry. Even if the nonmonotonic commu
ni ty were to start working on a problem directly rele
vant to industry, and to come up wi th a good solution,
nonmonotonic reasoning is crippled by decidability and
tractabi l i ty problems, and a lack of good tools. Specifi
cally, nonmonotonic predicate logic is in general undecid-
able; even simple classes of propositional nonmonotonic
logics are intractable. For example, determining whether
a formula is in the extension of a propositional default
theory is in general -complete (Gott lob, 1996).

There are some bright spots in this otherwise dark pic
ture. There are relatively efficient polynomial algorithms
for a particular type of nonmonotonic reasoning known
as inheritance with exceptions (Horty et al . , 1990; Stein,
1992).5 Inheritance wi th exceptions is the nonmonoto
nic extension of inheritance, a simple form of reasoning
wi th subclasses and superclasses that dates back to Aris
tot le and the syllogism (Kneale and Kneale, 1962). This
extended form of inheritance allows one to posit excep
tions to the general behavior of classes and to reason
w i th those exceptions. It easily handles Tweety-style
problems (but cannot handle the Yale Shooting prob
lem unless that problem is reformulated in a somewhat
unnatural manner). In addit ion to work in this area,
there are many promising results in the subfield of non
monotonic reasoning known as logic programming: for
example, computation of solutions for theories that are
propositional, non-recursive, and in Horn form is
(Dowling and Gallier, 1984); computation of a unique so
lut ion set for courteous logic programs, a restricted form
of priorit ised defaults, is (Grosof, 1997b).

But even these positive results are weakened by the
lack of corresponding industrial-strength tools which im
plement these algorithms. For example, there are no
commercially available tools for inheritance wi th excep
tions, despite the fact that efficient algorithms have been
known and published for almost a decade. Anybody who
wishes to use the technology in industry must bui ld the
code f rom scratch. In an age and an industry where
tools have become a sine qua non, the lack of a good
tool can freeze any possibility of using a nonmonotonic
technique.6

5The tractability of Horty et al's algorithms is discussed
in (Selman and Levesque, 1993); the complexity depends on
the kind of chaining involved in path construction. The ver
sion presented in (Horty, 1994, Section 2.1) leads to tractable
algorithms. Stein's algorithm is

6This was, indeed, my experience in developing the system
described in section 3. Despite the fact that it was clear that
standard inheritance would not do the job, and that at least

If the field of nonmonotonic logic has remained entirely
separate from industry because first, nonmonotonic re
search and industry focus on very different problems,
and second, researchers have not yet developed efficient
algorithms and/or tools, the strategy for integrating non
monotonic reasoning wi th industry becomes clear:

First, researchers in nonmonotonic logic should famil
iarise themselves wi th problems in industry, select a set
in which nonmonotonic reasoning appears to be impor
tant, and focus on those problems in their research. Sec
ond, researchers ought to actively design efficient algo-
rithms for the tractable portions of nonmonotonic theo-
ries, and develop industrial-strength tools.

Ideally, these endeavors should be carried out simulta
neously. That is, as solutions to nonmonotonic problems
in industry are found, tools to implement these solutions
should be developed. That is not essential, however;
what is important is that both tasks get done.

At this point, there are at best a handful of indus
try problems that have been solved using nonmonotonic
techniques. The remainder of this paper wi l l discuss one
such problem and its solution. We wi l l outline the prob
lem, explain why nonmonotonic reasoning is necessary,
present the nonmonotonic techniques used, and suggest
how this method could be generalized to other problems
in industry.

3 The Case in Point : Inher i tance and
inher i t ing rules in the medical
insurance domain

7

3 .1 T h e P r o b l e m : B e n e f i t s I n q u i r y
P r o b l e m D e s c r i p t i o n
Benefits inquiry is the process of querying an insurance
company to determine one's benefits. In the medical
insurance industry, customers may wish to know if a
particular procedure is covered, as well as the specific
rules that l im i t coverage. Examples are:

Will my son's tonsillectomy be covered? Can it be per
formed in an inpatient facility?

How many days can I stay in the hospital after a standard
delivery?

inheritance with exceptions was needed, the fact that tools
that performed standard inheritance existed, while tools that
performed inheritance with exceptions did not exist, caused
many involved with the project to strongly suggest that the
existing tool be used. It is a mark of the Dilbertian nature
of the software and consulting industry today that using an
existing tool to get the job done badly but quickly is consid
ered preferable to building a tool and doing the job slowly
but well.

7 A more detailed description of the knowledge structure
and algorithms summarised in this paper can be found in
(Morgenstern, 1996a) and (Morgenstern and Singh, 1997).

8In this paper, as well as in (Morgenstern and Singh,
1997), the term benefits inquiry also refers to the process per
formed by insurance company employees in answering such
queries.

MORGENSTERN 1615

Benefits inquiry occurs frequently in the medical in
surance industry and has become increasingly complex:
medical insurance companies today may have thousands
of insurance products, each of which contains a myr iad
of services and regulations which change frequently. The
vast amount of changing information is difficult to keep
up w i th . In addit ion, there are many rules that have
exceptions, and exceptions can be nested. For exam
ple, physical therapy is generally l imi ted to twenty visits
per year, unless more visits are ordered in wr i t ing by a
physician, but spinal manipulat ion, a type of physical
therapy, has a more generous l im i t (around th i r ty vis
its). The importance of exceptions suggests that some
form of nonmonotonic research would be useful.

Several years ago, I was asked to develop an expert sys
tem for benefits inquiry. (This was part of a comprehen
sive consulting engagement between I B M Research and
a large medical insurance corporation to update major
portions of their information management system.) The
pr imary goal of the expert system was to aid customer
service representatives (CSRs), the insurance company
employees who answer customers' questions about their
benefits.

W h a t h a d b e e n done
Customer service representatives were at that t ime using
a "desktop" text-based system. Information was divided
into subject areas such as preventive care, immunizat ion,
and drugs; each subject area was associated wi th a piece
of text, roughly the amount that would f i t on a screen,
highlighting salient pieces of information. For example,
the screen on preventive care listed the types of preven
tive care available, such as routine physicals and immu
nizations, as well as coverage rates and allowed frequency
of services. A topic mentioned in one screen could itself
have a fu l l screen devoted to i t ; thus, for example, immu
nization, mentioned in preventive care, was the subject
of one of the screens.

Al though the desktop system allowed rudimentary
search and indexing, it was deficient in several respects:

First, only a small amount of domain knowledge was
encoded in the system. The amount of information that
could be contained was str ict ly l imi ted: a too-long menu
would prove unwieldy to the CSRs; on the other hand,
if the chunk of information associated wi th a menu topic
was too large, it would not f i t on one or even several
screens.

Second, the system did not make explicit the intercon
nection between subject areas. For example, nothing in
the system indicated a connection between the screens
on immunization and preventive care. The CSR had to
reason that the schedule rate for preventive care proba
bly applied to immunizations.

Th i rd , the system was difficult to update, and updates
had to be performed manually. This could be especially
troublesome when screens were interconnected. For ex
ample, if both the preventive care and immunization
screens have schedule rate information and this sched
ule rate changes, the individual modifying the system

must make changes on both screens.
Fourth, due perhaps to the constraints just mentioned,

the system was intended to handle only the most fre
quently asked questions.

P r o j e c t Goa ls
We aimed to develop an expert system that supports
benefits inquiry but avoids the drawbacks of the text-
based system. In particular, this meant a system that
allows questions at varying levels of granularity, gives
unambiguous answers, allows representation of large
amounts of material and navigation around a large infor
mat ion space, supports connections among related top
ics, and supports easy updates and modifications.

The abi l i ty to modify is important because products
change so frequently. Thus, the system had to be usable
not only by CSRs, but also by policy modifiers (PMs),
the insurance company employees responsible for making
changes wi th in a particular insurance product.

3 .2 W h y I n h e r i t a n c e w i t h E x c e p t i o n s i s
U s e f u l

Much of the information about medical services is tax-
onomic in nature. For example, Spinal Manipulat ion is
a type of Physical Therapy; Physical Therapy, Speech
Therapy, and Occupational Therapy are al l types of
Therapy. Coverage and accompanying restrictions are to
a large extent inherited along taxonomic lines: Physical
Therapy is covered, for example, because it is a subtype
of Therapy, and Therapy is covered. On the other hand,
there are exceptions: even though Drugs are covered by
the Drugs Benefit, and OTC (over-the-counter) Drugs
are a subclass of Drugs, O T C Drugs are not covered by
the Drugs Benefit. Thus, we could not use a standard in
heritance network such as KL-ONE (Schmolze and Lip-
kis, 1983) or K-REP (Mays et a l . , 1991). We needed
at least the expressive power of an inheritance network
w i th exceptions (Horty et a l . , 1990; Stein, 1992).

Indeed, the structure needed to represent the organi
zation of medical services and benefits is not purely tax
onomic, since certain services have mult ip le supertypes.
For example, Genetic Testing is both a subtype of Diag
nostic Services and of Family Planning Services. Thus
the structure is a dag (directed acyclic graph) rather
than a tree. 9

9 In fact, a dag is needed to represent all cases of inheri
tance with exceptions. Formally, multiple inheritance arises
when there is an undefeated path from x to y, an undefeated
path from x to z, and y ≠ z (see below for definitions of these
terms). Inheritance networks in the literature have tradition
ally considered multiple inheritance only when these multiple
paths have been initial segments of conflicting paths, as is
the case in Figure 1, where the positive path from OTC to
Drugs and the negative path from OTC to Services Covered
by Drugs Benefit are initial segments of conflicting paths.
Here, we will also be interested in non-conflicting path mul
tiple inheritance; cases of multiple paths that are not ini
tial segments of conflicting paths. For example, in Figure 1
there are non-conflicting paths between Insulin Syringes and

1616 INVITED SPEAKERS

Inheritance wi th exceptions is al l that is needed to
determine which medical services are covered by which
benefit. Indeed, the first cut at the benefits inquiry sys
tem used inheritance wi th exceptions to do just this. The
system was incomplete, since it did not indicate which
regulations applied to a service; we emphasize this point
in the next section. However, even this simple system
demonstrated that a form of nonmonotonic reasoning
could effectively be used in an industrial application.

A B r i e f R e v i e w o f I n h e r i t a n c e
We briefly summarize some notation for inheritance net
work w i th exceptions (taken from (Horty, 1994)): a l ink
between two nodes can be positive or negative. A pos
it ive (or isa) l ink between nodes X and Y is writ ten X

A negative (or cancels) l ink between nodes X and
Y is wr i t ten A l l links are defeasible. A path is
a sequence of positive links (called a positive path) or a
sequence of positive links followed by one negative l ink
(called a negative path). The notation (resp.

represents a positive (resp. negative) path
f rom x to y through the path If there are positive
and negative paths between two nodes, we follow the
analysis of Touretzky (1986) and Horty(1994) in choos
ing a path. Given a context — an inheritance network T
and a set of paths $, a path is inheritable or undefeated
if it is constructive and neither preempted nor conflicted.
A path is construct ive in a context if it can recursively
be bui l t out of the paths in a network; a path is con
flicted in a context if there are paths of opposite sign in
the context w i th the same starting and ending points;
a path is preempted if there is a conflicting path wi th
more direct information about the path's endpoint (i.e.,
a direct l ink f rom an earlier point in the path).

3 .3 W h y I n h e r i t a n c e w i t h E x c e p t i o n s i s n ' t
Enough

While much of the information in the medical insurance
domain — in particular, the relations among benefits
and services — is taxonomic, a large chunk of informa
t ion, specifically business rules, does not seem to be taxo
nomic in nature. This information is central to the task
of benefits inquiry, since CSRs must determine which
regulations apply to a service.

The problem w i th representing business rules in an
inheritance hierarchy can best be appreciated by exam
ining several rules. Some rules lend themselves to repre-
sentation wi th in a semantic network. Consider the rule:

There is a co-pay of 20% for diagnostic services
To represent this rule using the standard inheritance net
work model, one could have a node representing the ser
vices which have a 20% co-pay, and a subtype l ink be
tween the Diagnostic Services node and this node.

On the other hand, a more complex rule such as
Patients in Drug Rehabilitation programs lose all rehab

benefits for a year if they are non-compliant

Drugs, and Insulin Syringes and Supplies. In this case we
allow prioritisation of a particular path.

cannot be so easily represented. One could posit a node
that represents the services which have the property that
if patients are non-compliant wi th respect to that service,
then they lose all benefits for a year, and then have a
subtype l ink between the Drug Rehab Services node and
this node. But such a node appears quite artificial and
outside the spirit of a semantic network, where nodes are
supposed to represent easily understood concepts.

The fact that much of the domain knowledge is not
taxonomic in nature means that we must go outside of
the standard structure of an inheritance network wi th
exceptions. On the other hand, it is desirable to build
on the inheritance network structure: first, because in
heritance wi th exceptions already solves part of the ben
efits inquiry problem; second, because inheritance with
exceptions is one of the few efficient nonmonotonic tech
niques. Furthermore, there is an obvious connection be
tween non-taxonomic and taxonomic knowledge in this
domain. In particular, business rules often apply to par
ticular services — i.e., to nodes in the network. Building
on the existing network makes this connection explicit.

The next section suggests an extension to the network
structure and explores the process of benefits inquiry in
this context.

3 .4 T h e S o l u t i o n : i n t e g r a t i n g t a x o n o m i c
and non- taxonomic i n fo rma t ion

D e f i n i t i o n o f a F A N
We wish to introduce a knowledge structure that is capa
ble of representing both taxonomic and non-taxonomic
information. The aim is to represent the taxonomic in
formation in a standard inheritance network wi th excep
tions and to attach the non-taxonomic information to
the network in some way. For the (instance of the) med
ical insurance domain, we would like to represent the
fact that business rules generally apply to specific med
ical services and benefits by attaching business rules to
nodes in the network. To do this, we introduce the con
cept of a formula-augmented semantic (or inheritance)
network (FAN), an inheritance network in which sets
of logical formulae may be attached to nodes. In the
medical insurance domain, the logical formulae usually
represent business rules, but they could also represent
other sorts of information, including lists or tables.

Formally, a FAN is a tuple where
• N is a set of nodes. A node represents some set of med
ical services; e.g., Physical Therapy represents the set of
physical therapy services. A node may represent a set
of services that are covered by a particular benefit, as in
the root nodes of Figure 1.
• The set of wffs W consists of well-formed formulae of
a sorted first-order logic.
• The background B is a (possibly empty) set of wffs of
first-order logic, intuit ively representing the background
information that is true. In the medical insurance do-
main, it includes all rules that are true of al l medical
services and benefits. It may also include patients' med
ical records and pay scales. In general, it consists of
non-taxonomic information that is too general to attach

MORGENSTERN 1617

Figure 1: A portion of the medical insurance network.
Lines represent isa links; slashed lines represent cancels
links. Note the presence of non-conflicting multiple path
inheritance, and the ordering placed on links in the net
work.

Figure 2: Taking the union of wffs at nodes yields incon
sistency.

to a specific node in the network.
• £1 is the set of links on nodes, as described in sec. 3.2.
• O, the ordering on links, gives a preference on links.
This is useful for non-conflicting mult iple path inheri
tance, since it allows us to prefer one path over another.
• £2 is the set of links connecting nodes and sets of wffs.
If N is a node and W is a set of wffs, N —► W means that
the set of wffs W is attached to node N. Intuit ively, this
means that each wff of W is typically true at N.

I n h e r i t i n g W e l l - f o r m e d F o r m u l a e
CSRs must determine which set of business rules applies
to a medical service or benefit. This translates into de
termining which wffs apply to a node. Note that deter
min ing which wffs apply to a node is not the same as de
termining which wffs are attached to a node; the latter is
a t r iv ia l operation. For example (Figure 4), assume that
there is a cost-share rule attached to the Therapy node,
specifying that the co-pay is 20%, and a rule attached
to the Physical Therapy node, specifying a maximum of
twenty visits a year wi thout a doctor's wr i t ten prescrip
t ion. It seems clear that the cost-share rule attached to
Therapy also applies to Physical Therapy, since Physi
cal Therapy is a subtype of Therapy. That is, Physical
Therapy in some sense inherits wffs f rom Therapy.

The process of inherit ing wffs is considerably more
complex than standard attr ibute inheritance. One might
th ink that wff-inheritance is performed in the following
manner: To determine which wffs apply to a node N,
compute al l nodes Ni such that there is an undefeated
positive path f rom N to N i . Then take the union U of
al l wffs attached to al l such nodes N i . This suggestion,
however, leads to inconsistency, as Figure 2 shows. Since
there is an undefeated path f rom N3 to N1, we would get

Figure 3: The wffs at HGH are more specific than the
wffs at Rx, drugs and are thus preferable.

which
is obviously inconsistent. Note also that the procedure
w i l l not work correctly for node N2; although wffs(N2)
U wffs(Nl) is consistent, it is inconsistent w i th respect
to the background B.

Rather, the wffs that apply to a node are a maximally
consistent subset of There may be many maxi
mal ly consistent subsets of U; some of these are obvi
ously preferable to others. For example, in Figure 3, the
union of rules at HGH Drugs is inconsistent. We have
the choice to construct a maximal ly consistent subset by
throwing out the cost-share rule at Prescription Drugs
or by throwing out the cost-share rules at HGH Drugs.
Intuit ively, we would rather keep the cost-share rule at
H G H Drugs since it is more specific than the rule at
Drugs. Thus, we prefer the maximal ly consistent subset

It is known as a preferred maximally consistent subset
In general, we prefer wffs f rom nodes that are more

specific and/or on preferred paths. Thus, for example
(Figure 4), when one is computing the set of wffs which
apply to Cardiac Rehab, the wffs attached to Cardiac
Rehab are preferable to the wffs attached to Physical

10 A maximally consistent subset of U is a consistent subset
S that is maximal; that is, if S' is a consistent subset of U, it
is not the case that

1618 INVITED SPEAKERS

Figure 4: Preferences based on specificity and path order-
ing: Spinal Manipulation is preferred to Physical Ther-
apy and Physical Therapy to Therapy due to specificity;
from Cardiac Rehab's point of view, PM&R is preferable
to Physical Therapy due to path ordering.

Therapy, which are preferable to the wffs attached to
Therapy. In addit ion, the wffs attached to P M & R (Phys
ical Medicine and Rehabil i tation) are preferable to the
wffs attached to Physical Therapy. Thus, the preferred
maximal ly consistent set of wffs in this case is {Max-
visits

Other preference criteria may also be desired; for ex
ample, one may wish to assign some wffs a higher prior
i ty than others (as in (McCarthy, 1986)), regardless of
the rule's position in the network; for example, medical
rules might have higher priorities than administrative
rules. Likewise, one may prefer a subset of rules based on
what the rules entail; this is equivalent to preferring one
extension or model to another (as in (Shoham, 1988)).
These criteria have not, however, been implemented in
the current system.

Preferred maximal ly consistent sets are not necessarily
unique.

T h e A l g o r i t h m
How do we compute a preferred maximally consistent
subset at a focus node N? First consider the simple case
where there are no upward forking points (no mult iple
inheritance from the point of view of the focus node.)
It is clear what we do not want to do. We do not want
to first take the union of al l sets of wffs at the nodes
on the path f rom N to the root, then take maximally
consistent subsets of this large set, and finally choose
preferred maximal ly consistent subsets relative to the
specificity criterion. Such a method would be extremely
inefficient. Instead, we want to iteratively traverse the
path, and perform the computation as we go along.

Upward traversal turns out to be a better choice than
downward traversal. This method for traversing the net
work is consistent w i th the specificity criterion. One

begins at the focus node N, taking wffs(N) (the wffs at
tached to N) as the starting set. One then proceeds
up the path, at each node taking a preferred maximally
consistent subset of the set computed so far and the wffs
attached to the current node.

This process wi l l ensure that the specificity constraint
is obeyed. To ensure that path-ordering is respected in
case of forking paths, we examine all links at each forking
point in the path, order them, and recursively proceed up
the more preferred links before the less preferred links.

We must also ensure that we do not collect rules from
nodes that are only on conflicted or preempted paths;
to avoid this problem, we preprocess the FAN to remove
preempted and conflicted links (we do this using an ex
tension of the procedure in (Stein, 1992) which computes
the specificity extension at a focus node).

The complete wff-inheritance algorithm is described in
(Morgenstern, 1996a).

C o m p u t a t i o n a l Issues
It is clear that inheriting well-formed formulae is much
more computationally intensive than inheriting at t r ib-
utes. Inherit ing attributes is polynomial; inheriting wffs
(in the propositional case) is NP-hard, since computing
preferred maximally consistent subsets is NP-hard. (In
heriting general first-order wffs is clearly undecidable.)

In practice this has not proven to be a real difficulty;
by computing the set of inherited wffs iteratively, we deal
wi th relatively small sets. We have also noted a possible
divide-and-conquer strategy: it may be possible to divide
rules into disjoint subsets, based on rule type, so that sets
can contradict one another only wi th in their own type.
(This division is to a large extent natural; for example,
cost-share rules never contradict medical rules.) Finally,
polynomialtechniques discovered by Grosof (1997b) may
be applicable to sets of rules in the system.

3.5 T h e B e n e f i t s I n q u i r y S y s t e m
The Benefits Inquiry System incorporates two tools, an
inquiry tool which is used by CSRs to answer customers'
questions, and an authoring tool which is used by PMs
to modify products. Both tools use a graphical interface
which allows the user to navigate through the network
and a reasoning engine which performs both attribute
and wffinheritance. An early version of the system re
ceived excellent reviews from both the CSRs and PMs
who used i t .

4 General izing Wff - inher i tance
Can the techniques of wff-inheritance, which were de
veloped for the particular problem of benefits inquiry in
the medical insurance domain, be generalised to other
problems in industry?

Some generalisations are obvious. Wff-inheritance
would clearly be useful for benefits inquiry in other parts
of the insurance industry, such as life insurance and prop
erty and casualty insurance. In these industries, it is
also the case that services are best organized taxonom-
ically, and that business rules apply to services. Wff-

MORGENSTERN 1619

inheritance is also useful for other tasks in insurance,
such as adjudication, which would use a taxonomy of
services very close to the structure used in benefits in
quiry, and administrat ion, which would use a taxonomic
structure of products as well as services.

The nonmonotonic techniques discussed here are ap
plicable to a wide range of other problems as well. In
deed, it can be argued that the construct of a FAN and
its associated algorithms may prove useful in other do
mains which satisfy the following criteria:
1. there exists a large amount of taxonomic information
2. there exists a significant amount of non- taxonomic
information, conceptually linked to the taxonomic infor
mat ion
3. the non-taxonomic information can be mapped into
wffs

There are a number of potential domains:
• Lega l Reason ing , especially case law: Legal cases are
often organized taxonomically, and different legal rulings
are associated wi th cases; it seems that these legal ru l
ings can be mapped into wffs. Most automated legal
reasoning has been case-based (Ashley, 1991), or ana
logical; adding wff-inheritance may significantly enhance
the power of legal reasoning systems.
• M e d i c a l Reason ing a n d T r e a t m e n t : Medical con
ditions are often organised taxonomically, and protocols
are associated w i th these conditions. The protocols are
often rigorous sequences of steps which can be mapped
into wffs.
• Reason ing in Bus iness O rgan i za t i ons : The orga
nisation chart in many businesses is a perfect taxonomy,
and there are many rules associated w i th different posi
tions in the org chart.

These extensions are not straightforward; in partic
ular, mapping business or legal rules into wffs is non-
t r iv ia l . However, these examples indicate that the use
fulness of FANs extends far beyond the domain for which
they were invented.

5 Into the Future
The detailed examination of an application of nonmonot
onic reasoning to industry has taught us some valuable
lessons and has suggested several directions for future
research.
(1) We need to constantly keep our eyes open for prob
lems in industry that could benefit f rom nonmonotonic
reasoning. There are many such problems; the trick is
to identify them. Certainly, we should look out for prob
lems that could benefit f rom FANs, as suggested above.
In general, we should look for domains where exceptions
are relatively common.
(2) Basic research is st i l l crucial. We need serious re
search on theoretical aspects of nonmonotonic reasoning.
It would be best if such research were guided by specific
issues highlighted by the study of particular problems in
industry. In fact, one of the unexpected dividends of in
tensively studying a problem in industry is that it often
results in the discovery of theoretical problems that were
not previously considered. For example, while I was de

veloping the benefits inquiry system described in Section
3,1 discovered a number of issues that theories of inher
itance had not previously examined. Such problems in
clude the interaction of composition and subtyping and
non-unary inheritance (Morgenstern, 1996b).

The importance of basic research cannot be over
stated. Some of the most heartening news about the cur
rent state of nonmonotonic research is the recent spate
of exciting results regarding the complexity of some re
stricted nonmonotonic theories. Examples include the
result that computation of the answer set for courteous
logic programs, a restricted form of priorit ised defaults,
is 0 (n 2) (Grosof, 1997b). These results are being trans-
lated into commercial products. In particular, courteous
logic programs are used in RAISE, a system for bui lding
intelligent agents, now commercially released (Grosof,
1997a).
(3) The proper balance between basic research and seri
ous involvement in industry is important , but difficult to
maintain. One meaty industry problem can easily give
a theoretical researcher enough material for a decade;
on the other hand, we need to work on many industrial
problems to get a fair idea of the problems that need to
be solved, and to convince industry of the relevance of
nonmonotonic reasoning.
(4) We must develop tools to perform nonmonotonic rea
soning. We need to develop general tools for inheritance
wi th exceptions; we also need to develop a tool for gen
eral inheritance w i th wffs. Thus far, inheritance wi th
wffs has been developed for only one application and
modified for another. Such a tool w i l l facil itate the ex
tension of FANs to other problems in industry, as sug
gested above.

Finally, we must keep in mind that researchers in non
monotonic reasoning do not always face a friendly land
scape. Some things we ought to watch out for:
1. Shortsightedness. It always takes longer to solve a
problem well, especially the first t ime. Using nonmonot
onic reasoning takes a lot more t ime, and the advantages
may not always be obvious to anyone but AI researchers.
AI researchers should be prepared for the possibility of
an uphi l l batt le, both w i th one's management chain and
w i th the customer. This isn't a problem unique to the
field of nonmonotonic reasoning, of course.
2. Refusing to accept the importance of plausible rea
soning. This comes in many guises:
(i) The 80-20 rule. This line of argument runs as follows:
Even if we ignore exceptions, we'l l st i l l get things right
most (around 80%) of the t ime, and w i th very l i t t le ef
fort . Isn't i t worth taking that route?

The 80-20 rule is part icularly pernicious if one is wi l l
ing to accept wrong answers 20% of the t ime (one can
only hope that this rule is not invoked by the FAA) , but
is quite troublesome even if one is merely wi l l ing to ac
cept admissions of ignorance (answers of "I don't know")
20% of the t ime. Even in the relatively benign domain
of benefits inquiry, a system that can't answer questions
20% of the t ime is not very useful: its performance would
scarcely be better than the desktop systems that are de-

1620 INVITED SPEAKERS

signed to answer the most frequently asked questions, or
CSRs without any aid of technology who can generally
answer frequently asked questions right off the bat.
(i i) The back-to-if-then-else movement. This argument
recognises the importance of exceptions, but insists that
any branching statement is al l that is needed. Peo-
ple who use this argument are convinced that al l that
nonmonotonic reasoning is t ry ing to achieve has been
present since the days of Algol 60 or earlier,
(i i i) The protection-of-basic-researchers strategy. De
spite constantly urging nonmonotonic researchers to do
something practical, management often tries to keep a
buffer between researchers and industry. The trouble
w i th this is that if researchers can't get close enough
to industry, they can't f ind the problems that are most
suitable; if they only hear about a problem second-hand,
they don't have an accurate picture of the situation, and
they can't determine whether and how nonmonotonic
reasoning is useful.

The best way to counteract these obstacles is to
demonstrate that nonmonotonic reasoning is capable of
yielding practical results. We wi l l achieve recognition
when we affect the outside world.

A c k n o w l e d g e m e n t s : I am grateful to Ernie Davis,
Benjamin Grosof, and Moninder Singh for helpful dis
cussions and suggestions.

References
K. Ashley (1991). Modeling Legal Argument: Reasoning
with Cases and Hypotheses, M I T Press, Cambridge.
W. F. Clocksin and C.S. Mellish (1987). Programming
in Prolog, 3rd edition, Springer Verlag, Boston
E. Davis (1990). Representations of Commonsense
Knowledge, Morgan Kaufmann, San Mateo.
W . H . Dowling and J.H. Gailier(1984). Linear T ime A l
gorithms for Testing the Satisfiability of Propositional
Horn Formulae, Journal of Logic Programming 8, 267-
284.
H. Geffner(1990). Default Reasoning: Causal And Con
ditional Theories, M I T Press, Cambridge
M. Ginsberg, ed (1987). Readings in Nonmonotonic Rea
soning, Morgan Kaufmann, San Mateo.
G. Got t lob (1996). Complexity and Expressive Power of
KR Formalisms, Principles of Knowledge Representation
and Reasoning: Proceedings of the 5th Intn'l Conference
(KR-96), Morgan Kaufmann, San Francisco, 647-649.
Grosof (1997a). Bui lding Commercial Agents: an
I B M Research Perspective, Proc, 2nd Intn'l Confer
ence on Practical Applications of Intelligent Agents
and Multi-Agent Technology (PAAM97). Avai l
able as I B M Research Report RC20835 and at
http://www.research.ibm.com/people/g/grosof.
B. Grosof (1997b). Proritized Conflict Handling for
Logic Programs, I B M Research Report RC20836. Also
at http://www.research.ibm.com/people/g/gro8of.
S. Hanks and D. McDermott (1986). Default Reasoning,
Nonmonotonic Logic, and the Frame Problem, Proceed
ings, AAAI-1986, 328-333.

J. Horty (1994). Some Direct Theories of Nonmonoto
nic Inheritance in D. Gabbay, C. Hogger, and J. Robin-
son, eds: Handbook of Logic in Artificial Intelligence and
Logic Programming, Vol 8: Nonmonotonic Reasoning
and Uncertain Reasoning, Oxford University Press, Ox
ford, 111-187.
J. Horty, R. Thomason and D. Touretzky (1990). A
Skeptical Theory of Inheritance in Nonmonotonic Se
mantic Networks, Artificial Intelligence 42, 311-349.
W. Kneale and M. Kneale (1962). The Development of
Logic, Clarendon Press, Oxford.
S. Kraus, D. Lehman, and M. Magidor (1990). Nonmo
notonic Reasoning, Preferential Models, and Cumulative
Logics, Artificial Intelligence 44, 167-207.
E. Mays, R. Dionne, and R. Weida(1991). K-REP Sys
tem Overview, SIGART Bulletin, 2:3.
J. McCarthy(1980). Circumscription - A Form of Non-
Monotonic Reasoning, Artificial Intelligence 18, 27-39.
J. McCarthy (1986). Applications of Circumscription to
Formalizing Common-sense Knowledge, Artificial Intel
ligence 28, 86-116.
D. McDermott and J. Doyle (1980). Nonmonotonic
Logic I. Artificial Intelligence 18, 41-72.
L. Morgenstern (1996a). Inherit ing Well-formed Formu
lae in a Formula-Augmented Semantic Network, Princi
ples of Knowledge Representation and Reasoning: Pro
ceedings of the 5th Intn'l Conference (KR-96), 268-279.
L. Morgenstern (1996b). New Problems for In
heritance Theories, Working Papers, Third Sympo
sium on Formal Theories of Commonsense Reasoning,
Stanford, January 1996. Available at http://www-
formal.stanford.edu/leora.
L. Morgenstern (1996c). The Problem wi th Solutions to
the Frame Problem, in K. Ford and Z. Pylyshyn, eds:
The Robot's Dilemma Revisited, Ablex, 1996, 99-133.
L. Morgenstern and M. Singh (1997). An Expert System
Using Nonmonotonic Techniques for Benefits Inquiry in
the Insurance Industry, Proceedings, IJCAI-97.
R. Reiter (1980). A Logic for Default Reasoning, Artifi
cial Intelligence 18, 81-132.
J. Schmolze and T. Lipkis (1983). Classification in the
KL-ONE Representation System, Proc, IJCAI-1988.
B. Selman and H. Levesque (1993). The Complexity
of Path-Based Defeasible Inheritance, Artificial Intelli
gence 62:2, 303-340.
Y. Shoham (1988). Reasoning About Change: Time and
Causation from the Standpoint of Artificial Intelligence,
M I T Press, Cambridge.
L. Stein (1992). Resolving Ambigui ty in Nonmonotonic
Inheritance Hierarchies, Artificial Intelligence 55, 259-
310.
D. Touretsky (1986). The Mathematics of Inheritance
Systems, Morgan Kaufmann, Los Altos.
L. Zadeh (1992). Fussy Sets, in D. Dubois, H. Prade,
and R. Yager, eds. Readings in Fuzzy Sets and Intelligent
Systems, Morgan Kaufmann, San Mateo.

MORGENSTERN 1621

