A General Scheme for Generating Approximations in

Mini-Buckets:
Automated Reasoning
Rina Dechter*
Department of Information and Computer Science
University of California, Irvine
dechter@ics. uci. edu
Abstract

The class of algorithms for approximating rea-
soning tasks presented in this paper is based on
approximating the general bucket elimination
framework. The algorithms have adjustable
levels of accuracy and efficiency, and they can
be applied uniformly across many areas and
problem tasks. We introduce these algorithms
in the context of combinatorial optimization
and probabilistic inference.

1 Overview

Bucket elimination is a unifying algorithmic frame-
work that generalizes dynamic programming to enable
many complex problem-solving and reasoning activities.
Among the algorithms that can be accommodated within
this framework are directional resolution for propo-
sitional satisfiability [Dechter and Rish, 1994], adap-
tive consistency for constraint satisfaction [Dechter and
Pearl, 1987], Fourier and Gaussian elimination for linear
inequalities [Lassez and Mahler, 1992], and dynamic pro-
gramming for combinatorial optimization [Bertele and
Brioschi, 1972]. Many algorithms for probabilistic infer-
ence, such as belief updating, finding the most proba-
ble explanation, finding the maximum a posteriori hy-
pothesis, and computing the maximum expected utility,
also can be expressed as bucket-elimination algorithms
[Dechter, 1996].

The main virtues of this framework are simplicity and
generality. By simplicity, we mean that extensive ter-
minology is unnecessary for complete specification of
bucket-elimination algorithms, thus making the algo-
rithms accessible to researchers working in diverse ar-
eas. More important, their uniformity facilitates the
transfer ofideas, applications, and solutions between dis-
ciplines. Indeed, all bucket-elimination algorithms are

*This work was partially supported by NSF grant IRI-
9157636 and by the Air Force Office of Scientific Research,
AFOSR 900136, Rockwell International, and Amada of
America.

similar enough to make any improvement to a single al-
gorithm applicable to all others in its class.

Normally, an input to a bucket-elimination algorithm
is a knowledge base specified by a collection of func-
tions or relations, over subsets of variables (e.g., clauses
for propositional satisfiability, constraints and cost func-
tions for constraint optimization, conditional probability
matrices for belief networks). Bucket-elimination algo-
rithms process variables one by one in a given order.
In its first step, given a variable ordering, the algorithm
partitions these functions into buckets, where the bucket
of a particular variable contains the functions defined
on that variable, provided the function is not defined on
variables higher in that ordering. The next step is to pro-
cess the buckets from top to bottom. When the bucket
of variable X is processed, an "elimination procedure"
is performed over the functions in its bucket, yielding a
new function defined over all the variables mentioned in
the bucket, excluding X. This function summarizes the
"effect" of X on the remainder of the problem. The new
function is placed in a lower bucket. For illustration
we include directional resolution, a bucket-elimination
algorithm similar to the original Davis-Putnam proce-
dure for satisfiability (Figure 1) and elim-bel, a bucket-
elimination algorithm for belief updating in probabilistic
networks (Figure 2).

An important property of variable-elimination algo-
rithms is that their performance can be predicted using
a graph parameter, w*, called the induced width [Dechter
and Pearl, 1987], also known as ftree-width [Arnborg,
1985], which is the largest cluster in an optimal tree-
embedding of a graph. In general, a given theory and its
query can be associated with an interaction graph. The
complexity of a bucket-elimination algorithm is time and
space exponential in the induced width of the problem's
interaction graph. The size of the induced width varies
with various variable orderings, so each ordering has a
different performance guarantee. Although finding the
optimal ordering is hard [Arnborg, 1985], heuristics and
approximation algorithms are available [Robertson and

DECHTER 1297

Algorithm directional resolution

Input: A enf theory ip over @, ...,Qw; an ordering d.
Output: A decision of whether ¢ is satisfinble. If it
in, » theory E4(ip), equivalent to y; else, an empty di-
rectional extension.

1. Initialise: Generste an ordered partition of the
clouses, bucket,, ..., bucket,,, where bucket; contains all
the clauses whose highest literal is Q.

2. Backward: For p = n to 1, do:

& If bucket, contains a unit clause, perform unit reso-
lution. Put each resolvent in its bucket.

s Else, resolve each pair {(a v Q5),(8 v -Qp)} C
bucket,. If ¥ = a V 8 in empty, return Ea(y) =
theory is not satisfiable; else, determine the index of
and add - to the appropriate bucket.

3. Return: E4{y) <= | J, bucket;.

Figure 1: Algorithm directional resolution

Algorithm elim-bel

Input: A belief network BN = (G,P), P
{Pi;+; Pn}; an ordering of the variables, o
Xi, .

Outputz The belief of X, given evidence e.

1. Initimlize: Generate an ordered partition of the
conditional probability matrices into buckets. bucket;
contains all matrices whose highest variable is X;. Put
each cbeservation in its bucket. Let 5,,...,5; be the
subset of varisbles in the procesxed bucket on which
matrices {new or old) are defined.

2. Backward: For p < n downto 1, do:

For Ay, Aa, ..., A; in bucket,, do:

o { bucket with obaerved variable) If X, = =, appears
in the bucket, then subatitute X), = ry in each matrix
Ai and put the resuits in the appropriate bucket.

o Else, Up « (J,Si - {X,}. Forall U, = u,
Mu) =Y, I Ai(ep,us,). Add Ay to the largest
index vlnahl’e in U,.

3. Return: Bel(z:) = aP(z:) - Lidi(z1).

{Where the A; are in bucket;, o in a normalizing con-
stant.)

Figure 2: Algorithm elim-bel

Seymour, 1995].

When a problem has a large induced width, bucket
elimination is unsuitable because of its extensive mem-
ory demand. In such cases, approximation algorithms
should be attempted. In this paper, we present a col-
lection of parameterized algorithms that have varying
degrees of accuracy and efficiency. We demonstrate the
general scheme for combinatorial optimization and for
the probabilistic task of belief assessment.

2 Preliminaries

Definition 2.1 (graph concepta) A directed graph is
a pair, G = {V, E}, where V = {X;,...,X,} is o set
of elements and E = {(X.‘,x,'.nxi,x,' € V} 1is the set
of edges. For each variable X;, pa(X;)} or pay, i1 the
set of variables pointing to X; in G. A directed graph

1298 PROBABILISTIC REASONING

is acyclic if it has no directed cycles. In an undirected
graph, the directions of the arcs are ignored: (X.',XJ')
and {Xy,X:) are identical. An ordered graph is a pair
(G, d) where G is an undirected graph and d— Xy, ..y Xu
is an ordering of the nodes. The width of a node in an
ordered graph is the number of the node 's neighbors that
precede it in the ordering. The width of an ordering d,
denoted w(d), is the maximum width over all nodes. The
induced width of an ordered graph, w*{), is the width
of the induced ordered graph obtained by processing the
nodes from last to first; when node X is processed, all
its earlier neighbors in the ordering are connected. The
induced width of a graph, w* is the minimal induced
width over all its orderings; it is also known as the tree-
width [Armborg, 1985]. The moral graph of a directed
graph G is the undirected graph obtained by connecting
the parents of all the nodes in G and then removing the
arrows.

Definition 2.2 (belief network, cost network)

Let X = {X;,...,Xq} be o set of random variables
over multivalued domains Dy, ..., D,,. 4 belief network
ia a pair (G, P), where G 15 & directed acyclic groph
and P = {F:}. F; = {P(Xi|pa(X;))} are the condi-
tional probability motrices associated with X;. An as-
signment (X; = =1,..,Xn = za) can be abbreviated
to z = (21,...,2a). The belief network represenis a
probobility distribulion over X having the product form
P(z1, .y @a) = I, P(Zi|2pacx;y), where 25 denotes
the projection of o tuple z over a subset of variables 5.
A cost network is a triplet (X, D,C), vhere X is g sel
of discrete varisbles, X = {Xi,...,Xa}, over domdins
D = {Dy,..., Dp}, and C is a set of real-valued cost func-
tions C1, ..., C;. Each function C; is deﬁnea‘ over a subset
of uariables, 5 = {Xin X._} C; M J.. D.'J' -+ RT,
The cost graph of a cost network has a node for each
varigble ond connects nodes denoling variables appear-

ing in the same cost function.

A = a denotes a partial assignment to & subset of vari-
ables, A. An evidence set e is an instantiated subset of
variables. We use (us,2,) to denote the tuple us ap-
pended by a value zp of Xp. We define 2; = (21,..,2)
and ig = (=i|=i+1|---; 3,‘).

Deflnition 2.3 (slimination function) Given

8 function A defined over subzet of variables, S, where
X € 5, the functions {minxh), (mazxh), (meanxh},
and (3 y h) are defined over U = § - {X} ae fol-
lows. For every U = u, (minx h)}{u) = min, Ay, 2),
(mazxh)(u) = maxe h{w, z), (3 x h)(u) = ¥, Ay, 2),
and (meanxh)(u) = T, MUyrl, where |X| is the cardi-
nality of X 's domain. Given a set of functions by, ..., kj
defined over the subsets $y,..., Sy, the functions (II;hy)
and)", h; are defined over U = U;S;. ForeveryU = u,
(Thy)(u) = T i (us,) and (33, b;)(u) = 32; kj(us,)-

Algorithm elim-opt

Input: A cost network (X,D,C), € =
{C1,..,Ci}; an ordering of the variables, o; as-
signments e,

Output: The minimal cost assignment,

1. Initialise: Partition the cost components into
bucket;, ..., bucket,. Let 5, ..., 5; be the subset
of variables in the processed bucket on which the
functions are defined.

2. Backward: For p + n downto 1, do:

For hy, h3, ..., hj in bucket,, do:

o If bucket, contains X, = 2,, assign X, =z, to
each A; and put each h; in its appropriate bucket.
¢ Else, generate the functions A*: AP =
minx, 1., hi. 2% = argming hP. Add A to
the bucket of the largest-index variable in U/ +
Lﬂ:l Si - {XP}'

3. Forward: Assign values in the ordering o using
‘the recorded functions 2°** in each bucket.

Figure 3: Algorithm elim-opt

Definition 2.4 (optimization, belief assessment)
Given o cost network (X, D, C), the discrete optimiza-
tion problem is to find an assignment 2° = (29, ..., 22),
z{ € Dy, such that 2° = argmin,, Z:=1 Ci. Given g be-
lief network (G, P), the belief assessment task for X = 2
is to determine bel(z) = P(z|e).

3 Approximating optimization

In [Bertele and Brioschi, 1972], the non serial dynamic
programming algorithm for the discrete optimization
problem is presented. This algorithm can be rephrased
within the bucket-elimination scheme, as shown in Fig-
ure 3. Given a partitioning of the cost functions into
their respective buckets, algorithm elim-opt processes
buckets from top to bottom. When processing X,, it
generates a new function by taking the minimum rela-
tive to X, over the sum of the functions in that bucket.
The time and space complexity of elim-opt is exponen-
tial in the induced width to* of the cost graph. Thus,
when its induced width is not small, we must resort to
approximations.

Since the complexity of processing a bucket is tied to
the arity of the functions being recorded, we propose to
approximate these functions by a collection of smaller ar-
ity functions. Let h4,..., hj be the functions in the bucket
of X,, and let S4,...,S;; be the subsets of variables on
which those functions are defined. When elim-opt pro-
cesses the bucket of Xp, it computes the function h":
W = miny, Z£=1 h;. Instead, we can use a brute-force
approximation method to generate another function g°
by migrating the minimisation operator inside the sum-

mation. That is, g* = }7]_, minx, hi. Clearly, A” and
g7 are defined on the same arguments, and since each
function h; in the sum of A is replaced by miny, b in
the sum defining ¢®, ¢ < M. In ¢F the minimising
elimination operator minx_h; is applied separately to
each function, (so gP will never increase dimensionality)
and can be moved, separately, to a lower bucket. Thus,
once elim-opt reaches the firat variable, it has computed
a lower bound on the minimal cost.

This idea can be generalized to yield a collection of
parameterized approximation algorithms having vary-
ing degrees of accuracy and efficiency. Instead of the
elimination operator (i.e., minimization) being applied
to each singleton function in a bucket, it can be ap-
plied to a coerced partitioning of bucketB into mini-
buckets. Let @Qf = {Qy,...,@¢} be a partitioning into
mini-buckets of the functions Ay, ..., Ay in Xp’s bucket.
The mini-bucket Q; contains the functions Ay, , ..., M,.
Algorithm elim-opt computes A7: (I indexes the mini-
buckets) #? = ming, 31, ki = minx, 3y 2i, b
By migrating the minimization operator into each mini-
bucket we get g§, = 31, minx, 3, bi,. As the parti-
tioninge are more coerced, complexity as well as accuracy
increases.

Deflnition 3.1 Partitioning Q' is & refinement of Q"
iff for every set A € Q there exists a set B € @ such
that ACB.

Proposition 3.2 If in the bucket of X,, Q is o refine-
ment partitioning of @, then h® > Gor 2 gy O

Algorithm approx-opt is described in Figure 4. It is pa-
rameterized by two indexes that control the partition-
ings.

Definition 3.3 Let H be a collection of functions
hy....ih; on subsets 8y,...,8;. A partitioning of H
is canonical if any function whose arguments are sub-
sumed by another belongs to a mini-bucket with one
of its subsuming functions. A partitioning Q is an
(i, m) - partitioning iff the following three conditions
are met: the partitioning is canonical, at most m non-
subsumed functions participate in each mini-bucket, and
the total number of variables mentioned in each mini-
bucket does not exceed |.

Theorem 3.4 Algorithm approx-opt(im) computes a
lower bound to the minimal cost in time O(m < exp(2i))
and space O(m - ezp(i)) wherei <naondm < 2'. D

In general, as ra and i increase we get more accurate ap-
proximations. The two parameters, although dependent,
allow flexibility in bounding performance.

Example 3.5 Consider the network in Figure 5. We
use ordering (A, B, C, D, E, F, G, H, I) to which we apply
both elim-opt and approx-opt(m = 1) with unbounded i.

DECHTER 1299

Algorithm approx-opt(i,m)

Input: A cost network (X, D, C), {Cy, ..., Ci}; or-
dering o.

Output: A lower bound on the optimal cost.

1. Initialiset Partition the funciions into
buckety, ..., buchket,. Let Sy,...,8; be the sub-
set of variables in bucket, on which the functions
are defined. '

2. Backward: For p + n» downto 1, do:

o If bucket, containa X, = 2, assign X, = z, to
each f; and put each h; in the appropriate bucket.
o Else, for Ay, Ai,...,h; in bucket,, gener-
ate an (i, m}-mini-bucket-partitioning, Q¢ =
{Q1,....Q.}. For cach Q € Q containing
hh PR hlu de:

Generate function A', A' = minx, 33(_, b,. Add
' to the largest-index bucket in U; « U':—:l S5 —
{x,}.

3. Forward: For i = 1 to n, do:

Given £,.1, choose the 2, that minimize the sum
functions in X,"s bucket.

Figure 4: Algorithm approx-opt(i,m)

Figure 5: A coat network ¢ = OC.{J,H Q) +
Ca(G,E, D) + C3(H,F,E) + C4(F,B) + Cs(E, B, C)
+ CQ(D,C) + C?(B,A) + Cs(C,A) + CB(A)

{We omit the cost subscripts for simplicity.} The initial
partitioning into bucketls is
bucket(I} = C(1,H,G), buckei(H} = C(H,E, F),
bucket(G) = C(G, E, D), bucket(F) = C(F, B),
bucket(E) = C(E,C,B), bucket(D) = C(D,C),
bucket{C} = C(C, A), bucket(B}) = C(B, A),
bucket(A) = C(A).
Processing the buckets from top to bottom by elim-opt
will generate what we denote asr) functions:
bucket(l}) = C(1,H,G)
bucket(H) = C(H,E, F), \{H,G)
bucket(G) = C(G, ¥, D), dy(E, F,G)
buchet(F) = C(F, B), Ag(E, F, D)
bucket(E) = C(E,C, B}, Ap(E, B, D)
bucket(D) = C(D,C), Ap(C, B, D}
bucket(C) = C(C, A), Ap(C, B)
bucket(B} = C(B, A), Ac(A, B)
bucket(A) = C(A), Ag{A)

1300 PROBABILISTIC REASONING

where A (H,G} = min/C(I,H,G), Ag(E, F,G) =
ming(C(H, E, F)+ A;(H,G)), and 20 on. The optimal
cost ming (C(A) + Ap(A)) ss computed in buckeif4).

Processing by approz-opt{m = 1), and denoting fune-
tions that differ from those recorded by elim-opt by v's,
we get
bucket(f) = C{I,H,G)
buckei(H) = C(H,E, F),Al{H,G)
bucket{G} = C({G, E, D}, yu(G)
bucket(F) = C(F,B),yn(E, F)
bucket(E) = C(E,C, B),vr(E),ve(E, D)
bucket(D) = C(D,C),vs(D)
bucket{C) = €C(C, A),~g(C, B),xp(C)
bucket(B) = C(B, 4),7c(B), 1#(B)
bucket(A} = C(A)!'YC(AJ!'TB(A)‘

Bucket{H)} contains two functions, each placed in
a aeparate mini-bucket ond each processed indepen-
dently, pielding vx#(G) = mingA;(H,G) ploced in
bucket{G) ond yu(E, F) = mingC(H,E, F) placed in
bucket(F); then, in bucket{G} we generate 96{E, D} =
ming(C(G, E,D) + vx(G)); and s0 on. Finally, in
bucket(A}) we minimize over A the sum functiona in
that bucket, which provides a lower bound on the
optimal cost. The first difference in elim-opt and
approz-opt{m=1) occurs in bucket(H) and is visible in
bucket(G), where elim-opt records a function on three
varigbles, Apr(E, F, G), but approz-opt(m=1) records twe
functions, one on G ,yg(G), and one on F and F,
1(E, F).

After approx-opt(m=l) processes all the buckets, we can
generate a tuple in a greedy fashion as in elim-opt: we
choose a value a of A that minimizes the sum in A'&
bucket, a value b of B minimizing the sum in bucket(B)
given A = a, and so on. Although we have no guaran-
tee on the quality of the tuple generated, we can bound
its error a posteriori by evaluating its cost against the
derived lower bound.

3.1 Mini-bucket heuristics and search

The mini-bucket approximations compute lower bounds
of the exact quantities, and these lower bounds can be
viewed as under-estimating heuristic functions in a mini-
mization problem. We can associate with each partial as-
signment x, an evaluation function f{Zg)} = {g + h)(Ep),

where g(8p) = ToisiC{XynX, 1} Ci 204 h(Zp) =

Zjehcht, hJ

Proposition 3.6 The evaluation function f, generated
by approx-opt, provides a lower bound on the optimal
cost ©

We can conduct a best-first search using this heuristic
evaluation function. When expanding the search tree,
the best-first algorithm has a collection of tip nodes de-
noting a partial value assignment and their estimated

evaluation function. At each step, the algorithm will
expand a node with a minimal value of the evaluation
function, /. From the theory of best-first search, we
know the following: when the algorithm terminates with
a complete assignment, it has found an optimal solu-
tion; as the heuristic function becomes more accurate,
fewer nodes are expanded; and if we use the full bucket-
elimination algorithm, best-first search will reduce to a
greedy-like algorithm for this optimization task [Pearl,
1984]. Thus, mini-bucket approximations can be used to
generate mechanically heuristics for best-first or branch-
and-bound search.

4 Approximation of belief updating

The algorithm for belief assessment, elim-bel (for de-
tails see [Dechter, 1996]), in identical to elim-opt with
two changes: minimization is replaced by summation,
and summation by multiplication. Let X; = 2, be
an atomic proposition. Given a belief network (G, P)
and evidence ¢, the problem is to compute P(z4le) =
P(zy,e)/P(e). We can thus compute P(z,, e} =
2,=.; ITf_, Pz, e|2pa,) and normalize at the end. Con-
sider an ordering of the variables (X;,..,X,) and a
corresponding partition of the probability matrices into
buckets. The procedure has only a backward phase
(Figure 2). When processing a bucket, we multiply
all the bucket’s matrices, Ay, ..., A, defined over aubseta
51,..,5;, and then eliminate the bucket’s variable by
summation. The computed function is A : Up; — R,

= Tx, TH_ X, where Up = UsSi - Once
all the buckets are processed, the answer is available in
the first bucket of X,. Like all bucket-elimination algo-
rithms this algorithm’s complexity (time and space) is
Ofezp(w*(d)), where w*(d) is the induced width along
d of the moral graph.

We will now apply the mini-bucket approximation to
belief assessment. Let Q¢ = {@Q,,..., @} be a parti-
tioning into mini-buckets of the functions Aj,...,A; in
X,'s bucket. Algorithm elim-bel computes A?: (I indexes
the mini-buckets) 3 = 3, m_x=3 x, Mi=p e A,
If we, following the analog to appros-opt precisely, mi-
grate the summation cperator into each mini-bucket, we
get fo, = I, Tx, MiAy,. This, however, amounts
to computing an unnecelnnly bad upper bound of AP,
since the products Iy Ay, for ¢ > 1 are replaced by
their sume 3, T A Instead, we can bound the
product by its mmmmng function. Separating the
processing of the first mini-bucket from the rest, we
get 3 = L (T, A) - (apThiAr), which yields
92., = zx’ ((1‘[;,).;,) . Il'=,ma=x,nm\;‘). Clmly,
Proponition 4.1 For every partitioning @, AP < gs <
f%, and if in X, s bucket, Q' is a refinement partitioning
on"n then AP Sgsu Sy‘s!- a

Algorithm approx-bel-max(i,m)
Input: A belief network BN = (G,P), P =
{P, ..., Pn}; an ordering of the variables, o; evi-
dence ¢.

QOutput: An upper bound on P(z,,e).

1. Initialise: Partition the functions into buck-
eta. Let 5y,...,5; be the subset of variables in
buckeiy, on which matrices are defined.

2. Backward: For p « n downto 1, do:

» If bucket, contains X, = z,, assign X, = z, to
each A; and put each); in the appropriate bucket.
s Else, for Ay, A3, ..., A in buckety, do:

Generate Q' = {Q1, .-, Qr} an
(i, m)-partitioning. ,
o (First bucket) For Q1 = {Ay,,..., A, } first in @,

do:
Generate function A! = T TH_;)y,. Add A to
the bucket of the largest.-mtiex variable in U, «

Uf: Sli - {XP} ,

o Foreach @i, > 1,in Q = {X,,..., A, }, do:

U « U‘i=1 5, — {X,;}. Generate the functions
A = maxx, II_, A;. Add A to the bucket of the
largest-index variable in U;.

3. Output: The product in bucket of X;.

Figure 6: Algorithm approx-bel-max(i,m)

In summary, an upper bound g° of A" can be obtained
by processing one of X,s mini-buckets by summation,
while the rest of the mini-buckets are processed by max-
imization. In addition to approximating by an upper
bound, we can approximate by a lower bound by ap-
plying the min operator to each mini-bucket or we can
approximate by computing a mean-value approximation
using the mean operator in each mini-bucket. Algorithm
approx-bel-max, which uses the maximizing elimination
operator, is described in Figure 6. Algorithms approx-
bel-min and approx-bel-mean can be obtained by replac-
ing the operator max with min and mean, respectively.

Theorem 4.2 Algorithm approx-bel~max(i,m)
computes an upper bound to the belief P(ab5i,e) in time
O(m + exp(2i)) and space O(m + exp()). B

Similarly, aprox-bel-min computes a lower bound on

P(x4, e) and approx-elim-mean computes a mean-value
of P(x1,e).
Remark: Algorithm approx-bel-max computes an upper
bound on P(xs,e) but not on P(x;\e).
of P(e) is not available, deriving a bound on P(xs\e)
from a bound on P(x4, €) may not be easy. We can use
approx-bel-min to derive a lower bound on P(e) and use
the resulting lower bound to derive an upper bound on
P(xs\e).

If an exact value

DECHTER 1301

5 Related work

The bucket-elimination framework provides a convenient
and succinct language in which to express elimination al-
gorithms across many areas. Most of these algorithms
are widely known. In addition to dynamic program-
ming [Bertele and Brioschi, 1972], constraint satisfac-
tion [Dechter and Pearl, 1987], and Fourier elimina-
tion [Lassez and Mahler, 1992], there are variations on
these ideas and algorithms for probabilistic inference
in [Canning et al., 1978; Tatman and Shachter, 1990;
Shenoy, 1992; Zhang and Poole, 1996].

Mini-bucket approximation algorithms
parallel consistency-enforcing algorithms for constraint
processing, in particular those enforcing directional con-
sistency. Specifically, relational adaptive-consistency is a
full bucket-elimination algorithm whose approximations,
directional-relational-consistency(i, m) { DRC m)) en-
forces bounded levels of consistency [Dechter and van
Beek, 1997]. For example, (denoting a generic mini-
bucket algorithm by elim-approx) directional relational
arc-consistency, DRC4, corresponds to elim-approx(m =
1)\ directional path-consistency, .DRC,, corresponds to
elim-approx(m = 2); and so on.

Using mini-bucket approximations as heuristics for
search parallels pre-processing by local consistency
prior to backtrack search for constraint solving. In
propositional satisfiability, where the original Davis-
Putnam algorithm [Davis and Putnam, [1960] is
a bucket-elimination algorithm, bounded-directional-
resolution with bound b [Dechter and Rish, 1994] cor-
responds to elim-approx(i — b).

Finally, a collection of approximation algorithms for
sigmoid belief networks was recently presented [Jaakkola
and Jordan, 1996] in the context of a recursive algo-
rithm similar to bucket elimination. Upper and lower
bounds are derived by approximating sigmoid functions
by Gaussian functions. This approximation can be
viewed as a singleton mini-bucket algorithm where Gaus-
sian functions replace the min or max operations applied
in each mini-bucket.

6 Conclusion

We present a collection of parameterized algorithms that
approximate bucket-elimination algorithms. The basic
idea is to partition each bucket into mini-buckets in or-
der to control complexity. Due to the generality of the
bucket-elimination framework, such algorithms and their
approximations will apply uniformly across areas such as
constraint optimization, satisfiability, probabilistic rea-
soning, and planning. Here we introduced the algorithms
in the context ofdeterministic and probabilistic inference
tasks.

Many questions need to be investigated in the context
of our proposal. For example, given that there are many

1302 PROBABILISTIC REASONING

(i, m)-partitionings, and that each may result in differ-
ent accuracy, how do we determine a good partitioning?
Such questions should be investigated empirically, and
will, we hope, yield domain-independent and domain-
dependent heuristics.

Acknowledgements

Thanks to Irina Rish for commenting on an earlier version of
the paper.

References

[Arnborg, 1985] S. A. Arnborg. Efficient algorithms for com-
binatorial problems on graphs with bounded decompos-
ability - a survey. BIT, 25:2-23, 1985.

[Bertele and Brioschi, 1972] U. Bertele and F. Brioschi. In
Nonserial Dynamic Programming. Academic Press, 1972.

[Canning et al., 1978] C. Canning, E.A. Thompson, and
M.H. Probability functions on complex pedigrees. Ad-
vances in Applied Probability, 10:26-61, 1978.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A com-
puting procedure for quantification theory. Journal of the
Association of Computing Machinery, 7(3), 1960.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl. Network-
based heuristics for constraint satisfaction problems. Ar-
tificial Intelligence, 34:1-38, 1987.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Directional
resolution: The davis-putnam procedure, revisited. In Pro-
ceedings of Knowledge Representation (KR-94), pages 134-
145, Bonn, Germany, 1994.

[Dechter and van Beek, 1997] R. Dechter and P. van Beek.
Local and global relational consistency. Theoretical Com-
puter Science, (A preliminary version appears in CP-95
International Conference on Principles and Practice of
Constraint Programming, pp. £40-257, 1995), 1997.

[Dechter, 1996] R. Dechter. Bucket elimination: A unifying
framework for probabilistic inference algorithms. In Un-
certainty in Al (UAI-96), pages 211-219, 1996.

[Jaakkola and Jordan, 1996] T. S. Jaakkola and M. I. Jor-
dan. Recursive algorithms for approximating probabilities
in graphical models. Advances in Neural Information Pro-
cessing Systems, 9, 1996.

[Lassez and Mahler, 1992] J.-L. Lassez and M. Mahler. On
fourier's algorithm for linear constraints. Journal of Auto-
mated Reasoning, 9, 1992.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent search strate-
gies. In Addison- Wesley, 1984.

[Robertson and Seymour, 1995] N. Robertson and P. Sey-
mour. Graph minor, xiii. the disjoint paths problem. Com-
binatorial Theory, Series B, 63:65-110, 1995.

[Shenoy, 1992] P.P. Shenoy. Valuation-based systems for
bayesian decision analysis. Operations Research, 40:463-
484, 1992.

[Tatman and Shachter, 1990] J.A.
Tatman and R.D. Shachter. Dynamic programming and
influence diagrams. IEEE Transactions on Systems, Man,
and Cybernetics, 1990.

[Zhang and Poole, 1996] N. L. Zhang and D. Poole. Exploit-
ing causal independence in bayesian network inference.
Journal of Artificial Intelligence Research, (JAIR), 1996.

PROBABILISTIC REASONING

Probabilistic Reasoning 2: Causal Discovery

