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Abst rac t 

The class of algorithms for approximating rea­
soning tasks presented in this paper is based on 
approximat ing the general bucket elimination 
framework. The algorithms have adjustable 
levels of accuracy and efficiency, and they can 
be applied uniformly across many areas and 
problem tasks. We introduce these algorithms 
in the context of combinatorial optimization 
and probabil istic inference. 

1 Overv iew 
Bucket elimination is a unifying algorithmic frame­
work that generalizes dynamic programming to enable 
many complex problem-solving and reasoning activities. 
Among the algorithms that can be accommodated wi th in 
this framework are directional resolution for propo-
sitional satisfiabil ity [Dechter and Rish, 1994], adap­
tive consistency for constraint satisfaction [Dechter and 
Pearl, 1987], Fourier and Gaussian el imination for linear 
inequalities [Lassez and Mahler, 1992], and dynamic pro-
gramming for combinatorial opt imizat ion [Bertele and 
Brioschi, 1972]. Many algorithms for probabilistic infer­
ence, such as belief updating, f inding the most proba­
ble explanation, f inding the max imum a posteriori hy­
pothesis, and computing the max imum expected ut i l i ty, 
also can be expressed as bucket-elimination algorithms 
[Dechter, 1996]. 

The main virtues of this framework are simplicity and 
generality. By simplicity, we mean that extensive ter­
minology is unnecessary for complete specification of 
bucket-elimination algorithms, thus making the algo­
r i thms accessible to researchers working in diverse ar­
eas. More impor tant , their uni formi ty facilitates the 
transfer of ideas, applications, and solutions between dis­
ciplines. Indeed, al l bucket-elimination algorithms are 
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similar enough to make any improvement to a single al­
gori thm applicable to al l others in its class. 

Normally, an input to a bucket-elimination algori thm 
is a knowledge base specified by a collection of func­
tions or relations, over subsets of variables (e.g., clauses 
for propositional satisfiability, constraints and cost func­
tions for constraint opt imizat ion, conditional probabil i ty 
matrices for belief networks). Bucket-elimination algo-
rithms process variables one by one in a given order. 
In its first step, given a variable ordering, the algori thm 
partitions these functions into buckets, where the bucket 
of a particular variable contains the functions defined 
on that variable, provided the function is not defined on 
variables higher in that ordering. The next step is to pro­
cess the buckets f rom top to bot tom. When the bucket 
of variable X is processed, an "el imination procedure" 
is performed over the functions in its bucket, yielding a 
new function defined over all the variables mentioned in 
the bucket, excluding X. This function summarizes the 
"effect" of X on the remainder of the problem. The new 
function is placed in a lower bucket. For i l lustrat ion 
we include directional resolution, a bucket-elimination 
algorithm similar to the original Davis-Putnam proce­
dure for satisfiability (Figure 1) and elim-bel, a bucket-
elimination algori thm for belief updating in probabilistic 
networks (Figure 2). 

An important property of variable-elimination algo-
rithms is that their performance can be predicted using 
a graph parameter, w*, called the induced width [Dechter 
and Pearl, 1987], also known as tree-width [Arnborg, 
1985], which is the largest cluster in an opt imal tree-
embedding of a graph. In general, a given theory and its 
query can be associated wi th an interaction graph. The 
complexity of a bucket-elimination algori thm is time and 
space exponential in the induced width of the problem's 
interaction graph. The size of the induced width varies 
wi th various variable orderings, so each ordering has a 
different performance guarantee. Although finding the 
optimal ordering is hard [Arnborg, 1985], heuristics and 
approximation algorithms are available [Robertson and 
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Figure 2: A lgor i thm elim-bel 

Seymour, 1995]. 
When a problem has a large induced w id th , bucket 

el iminat ion is unsuitable because of its extensive mem-
ory demand. In such cases, approximation algorithms 
should be at tempted. In this paper, we present a col­
lection of parameterized algorithms that have varying 
degrees of accuracy and efficiency. We demonstrate the 
general scheme for combinatorial opt imizat ion and for 
the probabil istic task of belief assessment. 

is acyclic if it has no directed cycles. In an undirected 
graph, the directions of the arcs are ignored: 
and are identical. An ordered graph is a pair 
(G, d) where G is an undirected graph and d — 
is an ordering of the nodes. The w id th of a node in an 
ordered graph is the number of the node 's neighbors that 
precede it in the ordering. The w id th of an ordering d, 
denoted w(d), is the maximum width over all nodes. The 
induced wid th of an ordered graph, w*(d), is the width 
of the induced ordered graph obtained by processing the 
nodes from last to first; when node X is processed, all 
its earlier neighbors in the ordering are connected. The 
induced width of a graph, w*, is the minimal induced 
width over all its orderings; it is also known as the tree-
wid th [Arnborg, 1985]. The moral graph of a directed 
graph G is the undirected graph obtained by connecting 
the parents of all the nodes in G and then removing the 
arrows. 
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3 A p p r o x i m a t i n g op t im iza t ion 
In [Bertele and Brioschi, 1972], the non serial dynamic 
programming algor i thm for the discrete optimization 
problem is presented. This algor i thm can be rephrased 
wi th in the bucket-elimination scheme, as shown in Fig­
ure 3. Given a part i t ioning of the cost functions into 
their respective buckets, algor i thm elim-opt processes 
buckets f rom top to bo t tom. When processing X p , i t 
generates a new funct ion by taking the min imum rela­
tive to X p , over the sum of the functions in that bucket. 
The t ime and space complexity of elim-opt is exponen­
t ia l in the induced wid th to* of the cost graph. Thus, 
when its induced w id th is not small, we must resort to 
approximations. 

Since the complexity of processing a bucket is tied to 
the ar i ty of the functions being recorded, we propose to 
approximate these functions by a collection of smaller ar­
i ty functions. Let h1 , . . . , hj be the functions in the bucket 
of Xp, and let S1 , . . . ,S j ; be the subsets of variables on 
which those functions are defined. When elim-opt pro­
cesses the bucket of XP, it computes the function hP: 

Instead, we can use a brute-force 
approximation method to generate another function gp 

by migrat ing the minimisat ion operator inside the sum-
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Algor i thm approx-opt is described in Figure 4. It is pa­
rameterized by two indexes that control the part i t ion-
ings. 

D e f i n i t i o n 3.3 Let H be a collection of functions 
h1...,lhj on subsets A partitioning of H 
is canonical if any function whose arguments are sub-
sumed by another belongs to a mini-bucket with one 
of its subsuming functions. A partitioning Q is an 
( i , m) - partitioning iff the following three conditions 
are met: the partitioning is canonical, at most m non-
subsumed functions participate in each mini-bucket, and 
the total number of variables mentioned in each mini-
bucket does not exceed i. 

T h e o r e m 3.4 Algorithm approx-opt(i,m) computes a 
lower bound to the minimal cost in time 0(m • exp(2i)) 
and space 

In general, as ra and i increase we get more accurate ap­
proximations. The two parameters, although dependent, 
allow flexibil ity in bounding performance. 

E x a m p l e 3.5 Consider the network in Figure 5. We 
use ordering (A, B, C, D, E, F, G, H, I) to which we apply 
both elim-opt and approx-opt(m = 1) with unbounded i. 

This idea can be generalized to yield a collection of 
parameterized approximation algorithms having vary­
ing degrees of accuracy and efficiency. Instead of the 
elimination operator (i.e., minimization) being applied 
to each singleton function in a bucket, it can be ap­
plied to a coerced part i t ioning of bucketB into min i -



Figure 4: A lgor i thm approx-opt(i,m) 

After approx-opt(m=l) processes al l the buckets, we can 
generate a tuple in a greedy fashion as in elim-opt: we 
choose a value a of A that minimizes the sum in A'& 
bucket, a value b of B minimiz ing the sum in bucket(B) 
given A = a, and so on. Al though we have no guaran­
tee on the quali ty of the tuple generated, we can bound 
its error a posteriori by evaluating its cost against the 
derived lower bound. 

3.1 M i n i - b u c k e t heur is t i cs a n d search 
The mini-bucket approximations compute lower bounds 
of the exact quantities, and these lower bounds can be 
viewed as under-estimating heuristic functions in a m in i ­
mizat ion problem. We can associate w i th each part ia l as­
signment xp an evaluation function 
where 

P r o p o s i t i o n 3.6 The evaluation function f, generated 
by approx-opt, provides a lower bound on the optimal 
cost 

We can conduct a best-first search using this heuristic 
evaluation funct ion. When expanding the search tree, 
the best-first a lgor i thm has a collection of t i p nodes de­
noting a part ia l value assignment and their estimated 
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evaluation function. At each step, the algori thm wi l l 
expand a node wi th a min imal value of the evaluation 
funct ion, /. From the theory of best-first search, we 
know the fol lowing: when the algor i thm terminates wi th 
a complete assignment, it has found an opt imal solu­
t ion; as the heuristic function becomes more accurate, 
fewer nodes are expanded; and if we use the fu l l bucket-
el iminat ion algori thm, best-first search wi l l reduce to a 
greedy-like algori thm for this opt imizat ion task [Pearl, 
1984]. Thus, mini-bucket approximations can be used to 
generate mechanically heuristics for best-first or branch-
and-bound search. 

Figure 6: Algor i thm approx-bel-max(i,m) 

In summary, an upper bound gp of can be obtained 
by processing one of Xp's mini-buckets by summation, 
while the rest of the mini-buckets are processed by max­
imization. In addit ion to approximating by an upper 
bound, we can approximate by a lower bound by ap­
plying the min operator to each mini-bucket or we can 
approximate by computing a mean-value approximation 
using the mean operator in each mini-bucket. A lgor i thm 
approx-bel-max, which uses the maximizing el imination 
operator, is described in Figure 6. Algori thms approx-
bel-min and approx-bel-mean can be obtained by replac­
ing the operator max w i th min and mean, respectively. 

T h e o r e m 4.2 Algorithm approx-bel~max(i,m) 
computes an upper bound to the belief P(a5i,e) in time 
0(m • exp(2i)) and space 0(m • exp(i)). 

Similarly, aprox-bel-min computes a lower bound on 
P (x 1 , e) and approx-elim-mean computes a mean-value 
of P (x 1 , e ) . 
R e m a r k : A lgor i thm approx-bel-max computes an upper 
bound on P(x1,e) but not on P(x1\e). If an exact value 
of P(e) is not available, deriving a bound on P(x1\e) 
f rom a bound on P (x 1 , e) may not be easy. We can use 
approx-bel-min to derive a lower bound on P(e) and use 
the resulting lower bound to derive an upper bound on 
P(x1\e). 

DECHTER 1301 



5 Rela ted work 
The bucket-elimination framework provides a convenient 
and succinct language in which to express el iminat ion al­
gorithms across many areas. Most of these algorithms 
are widely known. In addit ion to dynamic program­
ming [Bertele and Brioschi, 1972], constraint satisfac­
t ion [Dechter and Pearl, 1987], and Fourier elimina­
t ion [Lassez and Mahler, 1992], there are variations on 
these ideas and algorithms for probabil istic inference 
in [Canning et al., 1978; Tatman and Shachter, 1990; 
Shenoy, 1992; Zhang and Poole, 1996]. 

Mini-bucket approximation algorithms 
parallel consistency-enforcing algorithms for constraint 
processing, in particular those enforcing directional con­
sistency. Specifically, relational adaptive-consistency is a 
fu l l bucket-elimination algor i thm whose approximations, 
directional-relational-consistency(i, m) en­
forces bounded levels of consistency [Dechter and van 
Beek, 1997]. For example, (denoting a generic m in i -
bucket a lgor i thm by elim-approx) directional relational 
arc-consistency, D R C 1 , corresponds to elim-approx(m = 
1)\ directional path-consistency, .DRC2 , corresponds to 
elim-approx(m = 2); and so on. 

Using mini-bucket approximations as heuristics for 
search parallels pre-processing by local consistency 
prior to backtrack search for constraint solving. In 
propositional satisfiability, where the original Davis-
Putnam algor i thm [Davis and Putnam, I960] is 
a bucket-elimination algor i thm, bounded-directional-
resolution w i th bound b [Dechter and Rish, 1994] cor­
responds to elim-approx(i — b). 

Final ly, a collection of approximation algorithms for 
sigmoid belief networks was recently presented [Jaakkola 
and Jordan, 1996] in the context of a recursive algo­
r i t hm similar to bucket el iminat ion. Upper and lower 
bounds are derived by approximating sigmoid functions 
by Gaussian functions. This approximation can be 
viewed as a singleton mini-bucket a lgor i thm where Gaus­
sian functions replace the min or max operations applied 
in each mini-bucket. 

6 Conclusion 
We present a collection of parameterized algorithms that 
approximate bucket-elimination algori thms. The basic 
idea is to par t i t ion each bucket into mini-buckets in or­
der to control complexity. Due to the generality of the 
bucket-elimination framework, such algorithms and their 
approximations w i l l apply uni formly across areas such as 
constraint opt imizat ion, satisfiability, probabil istic rea­
soning, and planning. Here we introduced the algorithms 
in the context of deterministic and probabil ist ic inference 
tasks. 

Many questions need to be investigated in the context 
of our proposal. For example, given that there are many 

( i , m)-part i t ionings, and that each may result in differ­
ent accuracy, how do we determine a good part i t ioning? 
Such questions should be investigated empirically, and 
w i l l , we hope, yield domain-independent and domain-
dependent heuristics. 
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