
Min i -Bucke ts : A General Scheme for Generat ing Approx imat ions in
Au toma ted Reasoning

Rina Dechter*
Department of Information and Computer Science

University of California, Irvine
dechter@ics. uci. edu

Abst rac t

The class of algorithms for approximating rea­
soning tasks presented in this paper is based on
approximat ing the general bucket elimination
framework. The algorithms have adjustable
levels of accuracy and efficiency, and they can
be applied uniformly across many areas and
problem tasks. We introduce these algorithms
in the context of combinatorial optimization
and probabil istic inference.

1 Overv iew
Bucket elimination is a unifying algorithmic frame­
work that generalizes dynamic programming to enable
many complex problem-solving and reasoning activities.
Among the algorithms that can be accommodated wi th in
this framework are directional resolution for propo-
sitional satisfiabil ity [Dechter and Rish, 1994], adap­
tive consistency for constraint satisfaction [Dechter and
Pearl, 1987], Fourier and Gaussian el imination for linear
inequalities [Lassez and Mahler, 1992], and dynamic pro-
gramming for combinatorial opt imizat ion [Bertele and
Brioschi, 1972]. Many algorithms for probabilistic infer­
ence, such as belief updating, f inding the most proba­
ble explanation, f inding the max imum a posteriori hy­
pothesis, and computing the max imum expected ut i l i ty,
also can be expressed as bucket-elimination algorithms
[Dechter, 1996].

The main virtues of this framework are simplicity and
generality. By simplicity, we mean that extensive ter­
minology is unnecessary for complete specification of
bucket-elimination algorithms, thus making the algo­
r i thms accessible to researchers working in diverse ar­
eas. More impor tant , their uni formi ty facilitates the
transfer of ideas, applications, and solutions between dis­
ciplines. Indeed, al l bucket-elimination algorithms are

•This work was partially supported by NSF grant IRI-
9157636 and by the Air Force Office of Scientific Research,
AFOSR 900136, Rockwell International, and Amada of
America.

similar enough to make any improvement to a single al­
gori thm applicable to al l others in its class.

Normally, an input to a bucket-elimination algori thm
is a knowledge base specified by a collection of func­
tions or relations, over subsets of variables (e.g., clauses
for propositional satisfiability, constraints and cost func­
tions for constraint opt imizat ion, conditional probabil i ty
matrices for belief networks). Bucket-elimination algo-
rithms process variables one by one in a given order.
In its first step, given a variable ordering, the algori thm
partitions these functions into buckets, where the bucket
of a particular variable contains the functions defined
on that variable, provided the function is not defined on
variables higher in that ordering. The next step is to pro­
cess the buckets f rom top to bot tom. When the bucket
of variable X is processed, an "el imination procedure"
is performed over the functions in its bucket, yielding a
new function defined over all the variables mentioned in
the bucket, excluding X. This function summarizes the
"effect" of X on the remainder of the problem. The new
function is placed in a lower bucket. For i l lustrat ion
we include directional resolution, a bucket-elimination
algorithm similar to the original Davis-Putnam proce­
dure for satisfiability (Figure 1) and elim-bel, a bucket-
elimination algori thm for belief updating in probabilistic
networks (Figure 2).

An important property of variable-elimination algo-
rithms is that their performance can be predicted using
a graph parameter, w*, called the induced width [Dechter
and Pearl, 1987], also known as tree-width [Arnborg,
1985], which is the largest cluster in an opt imal tree-
embedding of a graph. In general, a given theory and its
query can be associated wi th an interaction graph. The
complexity of a bucket-elimination algori thm is time and
space exponential in the induced width of the problem's
interaction graph. The size of the induced width varies
wi th various variable orderings, so each ordering has a
different performance guarantee. Although finding the
optimal ordering is hard [Arnborg, 1985], heuristics and
approximation algorithms are available [Robertson and

DECHTER 1297

Figure 2: A lgor i thm elim-bel

Seymour, 1995].
When a problem has a large induced w id th , bucket

el iminat ion is unsuitable because of its extensive mem-
ory demand. In such cases, approximation algorithms
should be at tempted. In this paper, we present a col­
lection of parameterized algorithms that have varying
degrees of accuracy and efficiency. We demonstrate the
general scheme for combinatorial opt imizat ion and for
the probabil istic task of belief assessment.

is acyclic if it has no directed cycles. In an undirected
graph, the directions of the arcs are ignored:
and are identical. An ordered graph is a pair
(G, d) where G is an undirected graph and d —
is an ordering of the nodes. The w id th of a node in an
ordered graph is the number of the node 's neighbors that
precede it in the ordering. The w id th of an ordering d,
denoted w(d), is the maximum width over all nodes. The
induced wid th of an ordered graph, w*(d), is the width
of the induced ordered graph obtained by processing the
nodes from last to first; when node X is processed, all
its earlier neighbors in the ordering are connected. The
induced width of a graph, w*, is the minimal induced
width over all its orderings; it is also known as the tree-
wid th [Arnborg, 1985]. The moral graph of a directed
graph G is the undirected graph obtained by connecting
the parents of all the nodes in G and then removing the
arrows.

1298 PROBABILISTIC REASONING

3 A p p r o x i m a t i n g op t im iza t ion
In [Bertele and Brioschi, 1972], the non serial dynamic
programming algor i thm for the discrete optimization
problem is presented. This algor i thm can be rephrased
wi th in the bucket-elimination scheme, as shown in Fig­
ure 3. Given a part i t ioning of the cost functions into
their respective buckets, algor i thm elim-opt processes
buckets f rom top to bo t tom. When processing X p , i t
generates a new funct ion by taking the min imum rela­
tive to X p , over the sum of the functions in that bucket.
The t ime and space complexity of elim-opt is exponen­
t ia l in the induced wid th to* of the cost graph. Thus,
when its induced w id th is not small, we must resort to
approximations.

Since the complexity of processing a bucket is tied to
the ar i ty of the functions being recorded, we propose to
approximate these functions by a collection of smaller ar­
i ty functions. Let h1 , . . . , hj be the functions in the bucket
of Xp, and let S1 , . . . ,S j ; be the subsets of variables on
which those functions are defined. When elim-opt pro­
cesses the bucket of XP, it computes the function hP:

Instead, we can use a brute-force
approximation method to generate another function gp

by migrat ing the minimisat ion operator inside the sum-

DECHTER 1299

Algor i thm approx-opt is described in Figure 4. It is pa­
rameterized by two indexes that control the part i t ion-
ings.

D e f i n i t i o n 3.3 Let H be a collection of functions
h1...,lhj on subsets A partitioning of H
is canonical if any function whose arguments are sub-
sumed by another belongs to a mini-bucket with one
of its subsuming functions. A partitioning Q is an
(i , m) - partitioning iff the following three conditions
are met: the partitioning is canonical, at most m non-
subsumed functions participate in each mini-bucket, and
the total number of variables mentioned in each mini-
bucket does not exceed i.

T h e o r e m 3.4 Algorithm approx-opt(i,m) computes a
lower bound to the minimal cost in time 0(m • exp(2i))
and space

In general, as ra and i increase we get more accurate ap­
proximations. The two parameters, although dependent,
allow flexibil ity in bounding performance.

E x a m p l e 3.5 Consider the network in Figure 5. We
use ordering (A, B, C, D, E, F, G, H, I) to which we apply
both elim-opt and approx-opt(m = 1) with unbounded i.

This idea can be generalized to yield a collection of
parameterized approximation algorithms having vary­
ing degrees of accuracy and efficiency. Instead of the
elimination operator (i.e., minimization) being applied
to each singleton function in a bucket, it can be ap­
plied to a coerced part i t ioning of bucketB into min i -

Figure 4: A lgor i thm approx-opt(i,m)

After approx-opt(m=l) processes al l the buckets, we can
generate a tuple in a greedy fashion as in elim-opt: we
choose a value a of A that minimizes the sum in A'&
bucket, a value b of B minimiz ing the sum in bucket(B)
given A = a, and so on. Al though we have no guaran­
tee on the quali ty of the tuple generated, we can bound
its error a posteriori by evaluating its cost against the
derived lower bound.

3.1 M i n i - b u c k e t heur is t i cs a n d search
The mini-bucket approximations compute lower bounds
of the exact quantities, and these lower bounds can be
viewed as under-estimating heuristic functions in a m in i ­
mizat ion problem. We can associate w i th each part ia l as­
signment xp an evaluation function
where

P r o p o s i t i o n 3.6 The evaluation function f, generated
by approx-opt, provides a lower bound on the optimal
cost

We can conduct a best-first search using this heuristic
evaluation funct ion. When expanding the search tree,
the best-first a lgor i thm has a collection of t i p nodes de­
noting a part ia l value assignment and their estimated

1300 PROBABILISTIC REASONING

evaluation function. At each step, the algori thm wi l l
expand a node wi th a min imal value of the evaluation
funct ion, /. From the theory of best-first search, we
know the fol lowing: when the algor i thm terminates wi th
a complete assignment, it has found an opt imal solu­
t ion; as the heuristic function becomes more accurate,
fewer nodes are expanded; and if we use the fu l l bucket-
el iminat ion algori thm, best-first search wi l l reduce to a
greedy-like algori thm for this opt imizat ion task [Pearl,
1984]. Thus, mini-bucket approximations can be used to
generate mechanically heuristics for best-first or branch-
and-bound search.

Figure 6: Algor i thm approx-bel-max(i,m)

In summary, an upper bound gp of can be obtained
by processing one of Xp's mini-buckets by summation,
while the rest of the mini-buckets are processed by max­
imization. In addit ion to approximating by an upper
bound, we can approximate by a lower bound by ap­
plying the min operator to each mini-bucket or we can
approximate by computing a mean-value approximation
using the mean operator in each mini-bucket. A lgor i thm
approx-bel-max, which uses the maximizing el imination
operator, is described in Figure 6. Algori thms approx-
bel-min and approx-bel-mean can be obtained by replac­
ing the operator max w i th min and mean, respectively.

T h e o r e m 4.2 Algorithm approx-bel~max(i,m)
computes an upper bound to the belief P(a5i,e) in time
0(m • exp(2i)) and space 0(m • exp(i)).

Similarly, aprox-bel-min computes a lower bound on
P (x 1 , e) and approx-elim-mean computes a mean-value
of P (x 1 , e) .
R e m a r k : A lgor i thm approx-bel-max computes an upper
bound on P(x1,e) but not on P(x1\e). If an exact value
of P(e) is not available, deriving a bound on P(x1\e)
f rom a bound on P (x 1 , e) may not be easy. We can use
approx-bel-min to derive a lower bound on P(e) and use
the resulting lower bound to derive an upper bound on
P(x1\e).

DECHTER 1301

5 Rela ted work
The bucket-elimination framework provides a convenient
and succinct language in which to express el iminat ion al­
gorithms across many areas. Most of these algorithms
are widely known. In addit ion to dynamic program­
ming [Bertele and Brioschi, 1972], constraint satisfac­
t ion [Dechter and Pearl, 1987], and Fourier elimina­
t ion [Lassez and Mahler, 1992], there are variations on
these ideas and algorithms for probabil istic inference
in [Canning et al., 1978; Tatman and Shachter, 1990;
Shenoy, 1992; Zhang and Poole, 1996].

Mini-bucket approximation algorithms
parallel consistency-enforcing algorithms for constraint
processing, in particular those enforcing directional con­
sistency. Specifically, relational adaptive-consistency is a
fu l l bucket-elimination algor i thm whose approximations,
directional-relational-consistency(i, m) en­
forces bounded levels of consistency [Dechter and van
Beek, 1997]. For example, (denoting a generic m in i -
bucket a lgor i thm by elim-approx) directional relational
arc-consistency, D R C 1 , corresponds to elim-approx(m =
1)\ directional path-consistency, .DRC2 , corresponds to
elim-approx(m = 2); and so on.

Using mini-bucket approximations as heuristics for
search parallels pre-processing by local consistency
prior to backtrack search for constraint solving. In
propositional satisfiability, where the original Davis-
Putnam algor i thm [Davis and Putnam, I960] is
a bucket-elimination algor i thm, bounded-directional-
resolution w i th bound b [Dechter and Rish, 1994] cor­
responds to elim-approx(i — b).

Final ly, a collection of approximation algorithms for
sigmoid belief networks was recently presented [Jaakkola
and Jordan, 1996] in the context of a recursive algo­
r i t hm similar to bucket el iminat ion. Upper and lower
bounds are derived by approximating sigmoid functions
by Gaussian functions. This approximation can be
viewed as a singleton mini-bucket a lgor i thm where Gaus­
sian functions replace the min or max operations applied
in each mini-bucket.

6 Conclusion
We present a collection of parameterized algorithms that
approximate bucket-elimination algori thms. The basic
idea is to par t i t ion each bucket into mini-buckets in or­
der to control complexity. Due to the generality of the
bucket-elimination framework, such algorithms and their
approximations w i l l apply uni formly across areas such as
constraint opt imizat ion, satisfiability, probabil istic rea­
soning, and planning. Here we introduced the algorithms
in the context of deterministic and probabil ist ic inference
tasks.

Many questions need to be investigated in the context
of our proposal. For example, given that there are many

(i , m)-part i t ionings, and that each may result in differ­
ent accuracy, how do we determine a good part i t ioning?
Such questions should be investigated empirically, and
w i l l , we hope, yield domain-independent and domain-
dependent heuristics.

Acknowledgements
Thanks to Irina Rish for commenting on an earlier version of
the paper.

References
[Arnborg, 1985] S. A. Arnborg. Efficient algorithms for com­

binatorial problems on graphs with bounded decompos-
ability - a survey. BIT, 25:2-23, 1985.

[Bertele and Brioschi, 1972] U. Bertele and F. Brioschi. In
Nonserial Dynamic Programming. Academic Press, 1972.

[Canning et al., 1978] C. Canning, E.A. Thompson, and
M.H. Probability functions on complex pedigrees. Ad­
vances in Applied Probability, 10:26-61, 1978.

[Davis and Putnam, I960] M. Davis and H. Putnam. A com­
puting procedure for quantification theory. Journal of the
Association of Computing Machinery, 7(3), 1960.

[Dechter and Pearl, 1987] R. Dechter and J. Pearl. Network-
based heuristics for constraint satisfaction problems. Ar­
tificial Intelligence, 34:1-38, 1987.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Directional
resolution: The davis-putnam procedure, revisited. In Pro­
ceedings of Knowledge Representation (KR-94), pages 134-
145, Bonn, Germany, 1994.

[Dechter and van Beek, 1997] R. Dechter and P. van Beek.
Local and global relational consistency. Theoretical Com­
puter Science, (A preliminary version appears in CP-95
International Conference on Principles and Practice of
Constraint Programming, pp. £40-257, 1995), 1997.

[Dechter, 1996] R. Dechter. Bucket elimination: A unifying
framework for probabilistic inference algorithms. In Un­
certainty in AI (UAI-96), pages 211-219, 1996.

[Jaakkola and Jordan, 1996] T. S. Jaakkola and M. I. Jor­
dan. Recursive algorithms for approximating probabilities
in graphical models. Advances in Neural Information Pro­
cessing Systems, 9, 1996.

[Lassez and Mahler, 1992] J.-L. Lassez and M. Mahler. On
fourier's algorithm for linear constraints. Journal of Auto­
mated Reasoning, 9, 1992.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent search strate­
gies. In Addison- Wesley, 1984.

[Robertson and Seymour, 1995] N. Robertson and P. Sey­
mour. Graph minor, xi i i . the disjoint paths problem. Com­
binatorial Theory, Series B, 63:65-110, 1995.

[Shenoy, 1992] P.P. Shenoy. Valuation-based systems for
bayesian decision analysis. Operations Research, 40:463-
484, 1992.

[Tatman and Shachter, 1990] J.A.
Tatman and R.D. Shachter. Dynamic programming and
influence diagrams. IEEE Transactions on Systems, Man,
and Cybernetics, 1990.

[Zhang and Poole, 1996] N. L. Zhang and D. Poole. Exploit­
ing causal independence in bayesian network inference.
Journal of Artificial Intelligence Research, (JAIR), 1996.

1302 PROBABILISTIC REASONING

PROBABILISTIC REASONING

Probabilistic Reasoning 2: Causal Discovery

