
Reasoning about concurrent execution, prioritized interrupts, and exogenous
actions in the situation calculus

Giuseppe De Giacomo Yves Lesperance Hector J. Levesque
Dipartimento di Informatica e Sistemistica Department of Computer Science Department of Computer Science

Universita di Roma "La Sapienza" Glendon College, York University University of Toronto
Via Salaria 113, 00198 Roma, Italy 2275 Bayview Ave. Toronto, ON, Canada M5S 3H5

degiacomo@cdis . u n i r o m a l . i t Toronto, ON, Canada M4N 3M6 hec to r@cs . t o r o n t o . edu
lesperan@yorku.ca

Abstract
As an alternative to planning, an approach to high-
level agent control based on concurrent program
execution is considered. A formal definition in the
situation calculus of such a programming language
is presented and illustrated with a detailed exam­
ple. The language includes facilities for prioritizing
the concurrent execution, interrupting the execution
when certain conditions become true, and dealing
with exogenous actions. The language differs from
other procedural formalisms for concurrency in that
the initial state can be incompletely specified and
the primitive actions can be user-defined by axioms
in the situation calculus.

When it comes to providing high-level control for robots
or other agents in dynamic and incompletely known worlds,
approaches based on plan synthesis may end up being too
demanding computationally in all but simple settings. An al­
ternative approach that is showing promise is that of high-
level program execution [9]. The idea, roughly, is that instead
of searching for a sequence of actions that would take the
agent from an initial state to some goal state, the task is to
find a sequence of actions that constitutes a legal execution
of some high-level non-deterministic program. As in plan­
ning, to find such a sequence it is necessary to reason about
the preconditions and effects of the actions within the body
of the program. However, if the program happens to be al­
most deterministic, very little searching is required; as more
and more non-determinism is included, the search task be­
gins to resemble traditional planning. Thus, in formulating a
high-level program, the user gets to control the search effort
required.

The hope is that in many domains, what an agent needs to
do can be conveniently expressed using a suitably rich high-
level programming language. Previous work on the Golog
language [9] considered how to reason about actions in pro­
grams containing conditionals, iteration, recursion, and non-
deterministic operators, where the primitive actions and flu­
ents where characterized by axioms of the situation calculus.
In this paper, we explore how to execute programs incorpo­
rating a rich account of concurrency. The execution task re­
mains the same; what changes is that the programming lan­

guage, which we call ConGolog (for Concurrent Golog), be­
comes considerably more expressive. One of the nice features
of this language is that it allows us to conveniently formulate
agent controllers that pursue goal-oriented tasks while con­
currently monitoring and reacting to conditions in their envi­
ronment.

Of course ours is not the first formal model of concur­
rency. In fact, well developed approaches are available [7; 11;
3; 16]1 and our work inherits many of the intuitions behind
them. However, it is distinguished from these in at least two
fundamental ways. First, it allows incomplete information
about the environment surrounding the program. In contrast
to typical computer programs, the initial state of a ConGolog
program need only be partially specified by a collection of
axioms. Second, it allows the primitive actions (elementary
instructions) to affect the environment in a complex way. In
contrast to typical computer programs whose elementary in­
structions are simple predefined statements (e.g. variable as­
signments), the primitive actions of a ConGolog program are
determined by a separate domain-dependent action theory,
which specifies the action preconditions and effects, and deals
with the frame problem.

The rest of the paper is organized as follows: in Section 1
we very briefly review planning in the situation calculus. In
Section 2, we review the Golog programming language and
present a variant of the original specification of the high-level
execution task. In Section 3, we explain informally the sort
of concurrency we are concerned with, as well as related no­
tions of priorities and interrupts. The section concludes with
changes to the Golog specification required to handle concur­
rency. In Section 4, we present a detailed example of a re­
active multi-elevator controller formulated in ConGolog. In
Section 5, we discuss some of the properties of ConGolog, its
implementation, and topics for future research.

1 Situation Calculus
There are a number of ways of making the planning task pre­
cise, but perhaps the most appealing is to formulate a specifi­
cation in terms of a general theory of action. One candidate

1 In [13; 4] a direct use of such approaches to model concurrent
(complex) actions in AI is investigated.

DE GIACOMO, LESPERANCE, & LEVESQUE 1221

language for formulating such a theory is the situation cal­
culus [10]. We wil l not go over the language here except to
note the following components: there is a special constant So
used to denote the initial situation, namely that situation in
which no actions have yet occurred; there is a distinguished
binary function symbol do where do(a, s) denotes the suc­
cessor situation to s resulting from performing the action a;
relations whose truth values vary from situation to situation,
are called (relational) fluents, and are denoted by predicate
symbols taking a situation term as their last argument; finally,
there is a special predicate Poss(a, s) used to state that action
a is executable in situation s.

Within this language, we can formulate domain theories
which describe how the world changes as the result of the
available actions. One possibility is a theory of the following
form [14]:

• Axioms describing the initial situation, So-

• Action precondition axioms, one for each primitive ac­
tion a, characterizing Poss(a, s).

• Successor state axioms, one for each fluent F, stating
under what conditions holds as function
of what holds in situation s. These take the place of the
so-called effect axioms, but also provide a solution to the
frame problem [14].

• Unique names axioms for the primitive actions.

• Some foundational, domain independent axioms.

For any domain theory of this sort, we have a very clean spec­
ification of the planning task, which dates back to the work of
Green [5]:

Classical Planning: Given a domain theory
Axioms as above, and a goal formula with a
single free-variable s, the planning task is to find a
sequence of actions a such that:

In other words, the task is to find a sequence of actions that
is executable (each action is executed in a context where its
precondition is satisfied) and that achieves the goal (the goal
formula holds in the final state that results from performing
the actions in sequence).

2 Golog
As presented in [9], Golog is logic-programming language
whose primitive actions are those of a background domain
theory. It includes the following constructs:

1222 PLANNING A N D SCHEDULING

6 I t is convenient to include a special "empty" program nil.

7See [6] for hints on the proof of this theorem.
8Just as actions in Golog are external (e.g. there is no internal

variable assignment), in ConGolog, blocking and unblocking also
happen externally, via Poss and wait actions. Internal synchroniza­
tion primitives are easily added.

DE G 1 A C O M O , L E S P E R A N C E , & LEVESQUE 1223

It is true, though not immediately obvious, that Trans* remains
properly defined even with these axioms containing negative occur­
rences of Trans. See [1] for details.

1224 P L A N N I N G A N D S C H E D U L I N G

DE GIACOMO, LESPERANCE, & LEVESQUE 1225

Our implementat ion requires that the program's precondit ion
ax ioms, successor state ax ioms, and axioms about the ini t ial

1 0Of course, when an elevator is requested on some floor, both el­
evators may decide to serve it. It is easy to program a better strategy
that coordinates the elevators: when an elevator decides to serve a
floor, it immediately makes a fluent true for that floor, and the other
elevator wi l l not serve a floor for which that fluent is already true.

11 Although with a different emphasis, this approach is shared by
[2] where a logical formalism is proposed for concurrent database
transactions.

12Exogenous actions can be simulated by generating them proba­
bilistically or by asking the user at runtime when they should occur.

state be expressible as Prolog clauses. This is a limitation of
the implementation, not the theory.

In summary, we have shown how, given a basic action the­
ory describing an initial state and the preconditions and ef­
fects of a collection of primitive actions, it is possible to com­
bine these in complex ways appropriate for providing high-
level control. The semantics of these complex actions ends
up deriving directly from that of the underlying primitive ac­
tions. In this sense, we inherit the solution to the frame prob­
lem provided by successor state axioms for primitive actions.

There are, however, many areas for future research.
Among them, we mention: 1) incorporating sensing actions,
that is, actions whose effect is not to change the world so
much as to provide information to be used by the agent at
runtime; 2) handling non-termination, that is, developing ac­
counts of program correctness (fairness, liveness etc.) appro­
priate for controllers expected to operate indefinitely.

References
[1] A longer version of this paper, in preparation.
[2] A. J. Bonner and M. Kifer. Concurrency and communication

in transaction logic. In Proc. ICDT'95, 1995.
[3] J. De Bakker and E. De Vink. Control Flow Semantics. MIT

Press, 1996.
[4] G. De Giacomo and X. Chen. Reasoning about nondetermin-

istic and concurrent actions: A process algebra approach. In
Proc. AAAI'96, pages 658-663, 1996.

15] C. C. Green. Theorem proving by resolution as a basis for
question-answering systems. In Machine Intelligence, vol. 4,
pages 183-205. Edinburgh University Press, 1969.

[6] M. Hennessy. The Semantics of Programming Languages.
John Wiley & Sons, 1990.

[7] C. A. R. Hoare. Communicating Sequential Processes. Pren­
tice Hall Int., 1985.

18] D. Leivant. Higher order logic. In Handbook of Logic in Arti­
ficial Intelligence and Logic Programming, vol. 2, pages 229-
321. Clarendon Press, 1994.

[9] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and
R. B. Scherl. GOLOG: A logic programming language for
dynamic domains. To appear in the Journal of Logic Program­
ming, 1997.

[10] J. McCarthy and P. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In Machine Intelli­
gence, vol. 4, Edinburgh University Press, 1969.

I l l] R. Milner. Communication and Concurrency. Prentice Hall,
1989.

[12] G. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Computer Science Dept.
Aarhus Univ. Denmark, 1981.

[13] D. Pym, L. Pryor, D. Murphy. Processes for plan-execution.
In Proc. UK Planning and Scheduling SIG Workshop, 1995.

[14] R. Reiter. The frame problem in the situation calculus: A sim­
ple solution (sometimes) and a completeness result for goal
regression. In Artificial Intelligence and Mathematical Theory
of Computation: Papers in Honor of John McCarthy, pages
359-380. Academic Press, 1991.

[15] R. Reiter. Natural actions, concurrency and continuous time in
the situation calculus. In Proc. KR'96, pages 2-13, 1996.

[16] C. Stirling. Modal and temporal logics for processes. In Log­
ics for Concurrency: Structure versus Automata, LNCS 1043,
pages 149-237. Springer-Verlag, 1996.

1226 PLANNING A N D SCHEDULING

