Reasoning about Plans*

Witold Lukaszewicz and Ewa Madalinska-Bugaj

Institute of Informatics, Warsaw University
02-097 Warszawa, ul. Banacha 2, POLAND
email: {witlu,ewama}@mimuw.edu.pl

Abstract

In classical planning we are faced with the fol-
lowing formal task: Given a set A of permissible
actions, a description a of initial states and a
description # of final states, determine a plan
Il, i.e. afinite sequence of actions from A, such
that execution of Il begun in any state satis-
fying @ is guaranteed to terminate in a state
satisfying B.

In this paper we extend the classical model of
planning by admitting plans that are not as-
sured to succeed. We address two basic prob-
lems connected with such plans: (1) How to
determine whether a given plan is valid (i.e. al-
ways succeeds), admissible (i.e. may succeed or
fail) or inadmissible (i.e. never succeeds). (2)
Given an admissible plan, determine a minimal
set of observations that are to be made in the
initial state (or in some intermediate state, if
the plan is in progress) to validate or falsify
the plan.

1 Introduction

In classical planning we are faced with the following for-
mal task: Given a set A of admissible actions, a formula
& describing the set of initial states and a formula & rep-
resenting a goal to be achieved, construct a plan |1, i.e.
a finite sequence of actions from A, such that execution
of Il begun in any state satisfying & is guaranteed to
terminate in a state satisfying £.

This classical model of planning is oversimplified. In
many practical settings it is reasonable to construct and
execute plans that are not assured to succeed. There are
two basic reasons for that. Firstly, it may happen that
a plan that always achieves a final state does not exist.
Secondly, even if such a plan exists, it may be better to
choose a simpler, although uncertain plan. An example
will help to illustrate this.

Suppose | want to contact John. All information |
have is his phone number and the fact that he is at home.
Given this, the only plan | can choose is to call him. Of
course, the plan may fail, ifJohn's phone line is busy, but

*This research was partially supported by the KBN grant
8T11C001 11.

there is no better possibility. To guarantee the success of
the plan, | have to know that John's line is not busy at
the moment. Unfortunately, this information is hardly
available.

Assume now that, in addition, | know John's address.
In this case, | can assure my goal by visiting him. How-
ever, it may still be much more reasonable to give up
this ironclad plan and to choose the previous one.

In this paper, we extend the classical model of plan-
ning by permitting plans that are not assured to succeed.
Such a plan is just a sequence of actions, considered rel-
atively to some specification. A specification consists of
a description of the initial states and a goal to achieve.

Plans that need not behave according to their speci-
fications can be naturally divided into three categories:
(1) Those that always achieve their goals (valid plans).
(2) Those that may achieve their goals or not, depend-
ing on some additional information (admissible plans).’
(3) Those that never achieve their goals (inadmissible
plans).

As an example, suppose that all we know about the
initial state is that a turkey is alive and the goal is to
make it dead. There are two actions: load (loads a gun)
and shoot (kills the turkey, provided that the gun is
loaded). Consider three plans: (1) load; shoot; (2) shoot;
(3) load. The first of these plans is valid, the second one
is admissible, whereas the third one is inadmissible.

It is important to note that an admissible plan can be
often validated (i.e. made valid) or falsified (i.e. made
inadmissible) by providing new observations. Reconsider
the plan (2) stated above. The observation that the gun
is initially loaded (resp. unloaded) validates (resp. falsi-
fies) the plan.

This paper addresses two problems:

(1) How to determine whether a given plan is valid, ad-
missible or inadmissible.

(2) Given an admissible plan, determine a minimal set
of observations that are to be made in the initial

"It should be emphasized that admissible plans differ from
what is called uncertain plansin the Al literature. This latter
notion corresponds to plans that may fail not because some
information is missing, but rather because they involve ac-
tions that succeed with some probability. (See [Boutilier et
al., 1995], for a good survey concerning uncertain plans.)

LUKASZEWICZ & MADALINSKA-BUGAJ 1215

state (or in some intermediate state, if the plan is
in progress) to validate or falsify the plan.

To represent actions occurring in plans, we use Dijk-
stra's approach originally developed to deal with pro-
grams [Dijkstra, 1976; Dijkstra, Scholten, 1990]. The
advantage of Dijkstra's formalism for reasoning about
action and change, when compared with purely logi-
cal approaches such as Situation Calculus [McCarthy,
Hayes, 1969; Lifschitz, 1988; Gelfond et a/., 1991] or Fea-
tures and Fluents fSandewall, 1994], is its simplicity. It
has been shown in [Lukaszewicz. Madaliriska, 1994; 1995;
1995a; Jablonowski et al., 1996].

The paper is organized as follows. We start with a
brief summary of Dijkstra's semantics for a very sim-
ple programming language. Section 3 is devoted to the
theory of prime implicants that play an important role
in plan analysis. In section 4, we show how action lan-
guages are to be formalized using Dijkstra's methodol-
ogy. In section 5, we provide a number of results allowing
to analyse plans before their executions, whereas, in sec-
tion 6, these results are generalized for plans in progress.
Finally, in section 7, we provide conclude remarks and
future work.

Proofs of all stated results can be found in the full
version of this paper.

2 Introduction to Dijkstra's semantics

In [Dijkstra, Scholten, 1990] we are provided with a very
simple programming language whose semantics is speci-
fied in terms of formula transformers. More specifically,
with each command S there are associated two formula
transformers, called the weakest precondition and the
strongest postcondition, denoted by wp and sp, respec-
tively. Before providing the meaning of these transform-
ers we introduce some terminology.

First of all, we assume here that the programming
language under consideration contains one type of vari-
ables only, namely Boolean variables. This assumption
may seem overly restrictive, but as a matter of fact no
other variables will be needed for our purpose. In the
rest of this paper Boolean variables will be referred to as
fluents.

Let F be aset offluents. A state over F is any function
a from the members of F into the truth-values {0,1}. A
state & is said to be a model of a formula & iff & is true
Ine.

An assertion language over a set F of fluents is the
set of all formulae constructable in the usual way from
members of F, sentential connectives (-, =, A, v, =) and
truth-constants T (true) and F (false). In what follows,
the term ‘formula’ refers always to a formula of some
fixed assertion language. If # and o are formulae and z
ia a fluent, then we write 8z «— 2] to denote the formula
which obtains from @ by replacing all occurrences of =
by a. If z is a fluent and o is a formula, then we write
3z.« as an abbreviation for a2 «— TV o[z ~ F).

2We ignore the weakest liberal precondition transformer,
considered in [Dijkstra, Scholten, 1990], because it will not
be used in the sequel.

1216 PLANNING AND SCHEDULING

The formula transformers mentioned above are to be
understood as follows. For each command S and each
formula ¢
* wp(S;) is the formula whose models are precisely
all states such that execution of S begun in any
one of them is guaranteed to terminate in a state
satisfying a.

+ sp(S, &) is the formula whose models are precisely
all states such that each of them can be reached by
starting execution of S in some state satisfying a.

For a detailed discussion of Dijkstra's methodology the
reader should consult [Apt, Olderog, 1991].

2.1 List of commands

The considered language consists of skip command, as-
signment to simple variables, alternative command and
sequential composition of commands®. Semantics of
these commands is specified in terms of formula trans-
formers explained above.

1. The skip command. This is the "empty" com-
mand in that its execution does not change the com-
putation state. The semantics of skip is thus given
by

wp(skip, a) = sp(skip, a) = o.

2. The assignmeni command. This command is of
the form =z := ¢, where z is a fluent and ¢ is &
(propositional) formula. The effect of the command
is to replace the value of = by the value of . Its
semantics is given by

wp(zr :=¢, a)=alz +—¢].

30(z = ¢,0) =Fy.((z = els —g) Ao —3]). (1)
If the fiuent z does not occur in the expression e,
the equation (1) can be simplified. In this case

sp(z:=e,a)={z =€) A 3z.0. (2)
In the sequel we shall often deal with assignment

commands, r := ¢, where e is T or F. In this case
the equation (2) can be replaced by

= _{ zATro ifeisT
sp(z ._e,a)-—{ —zA3ra feis F @)

3. The seguential composition command. This com-
mand is of the form S, ; Sz, where S and 5 are any
commands. It is executed by firat executing 5) and
then executing S;. Its semantics is given by

wp(3); Sa, ag = wp(S1, wp(Ss, o).
= ‘P(S?, SP(SI] G’))-

sp(51; 52,
4. The alternalive command. This command is of
the form
if Bi—=5 | f B.—=S5, £ (4)
where B,,..., B, are formulae and $;,...,5, are
commands. By,...,B, are called guards and ex-

pressions of the form B; — S; are called guarded

IThe original Dijkstra’s language containe abort command
and iterative commands as well, bui they are not needed for
OUr purpose. .

commands. In the sequel, we refer to the general
command (4) as IF. The command i executed as
follows. If none of the guards is true, then the ex-
ecution aborts. Otherwise, one guarded command
B; — S; with true B; is randomly selected and S; is
executed.* The semantics of IF is given by

wp(IF, a) Vie1 Bi A Ny (Bi= wp(Si, @),
sp(IF, a} Vie1(8p(Si, B; A a)).

8 Prime implicants

In this section we provide a brief introduction to the
theory of prime implicants that will play the crucial role
in the rest of this paper. Our presentation is partially
based on [Brown, 1990].

We start with some preliminary terminology.

A literalis a fluent or its negation, A term is either T
or F' or a conjunction of literals in which no fluent ap-
pears more than once. A formula i said to be in disjunc-
tive normal form gDNF, for short) if it is a digjunction
of different terms.® It is well-known that each formula
can be constructively transformed into its equivalent in
DNF. We say that a term ; absorbs a term t; if either
t; 16 T or {4 is F or 1, is a subterm of {;. For instance,
the term a absorbs the term a Al. Let & be a formula
in DNF. We write ABS(a) to denote the formula ob-
tained from o by deleting all absorbed terms. Clearly, o
and ABS{a) are equivalent.

Let ¢ be a term different from F and suppose that «
is any formula. We say that t is an implicant of o iff the
formula ¢ = « is a tautology. An implicant ¢ of « is said
to be prime iff no proper subterm of ¢ is an implicant of
[

The problem of finding all prime implicants of a given

(propositional) formula has been extensively studied in
the Switching Circuits Theory.® Actually, there exist a
number of algorithms solving this task. One of them,
usually referred to as ilerated consenasus, is given below,

Two terms are said to have an opposition if one of
them contains the fluent f and the other the fluent —f.
For instance, the terms —a Al and o A d have a single
opposition, in the fluent a.

Suppose that two terms, ¢; and &3, have exactly one
opposition. Then the consensus of ¢; and {3, writien
¢(ty,13), is the term obtained from the conjunction ¢; Aty
by deleting the opposed fluents as well as any repeated
fluents. For example, e(ma Al,aAd)is IAd.

Let o be a formula. The Blake canonical form of &,
written BCF(c), is the formula obtained from a by the
following construction.

‘Note that when more than one guard is true, the selection
of a guarded command is nondeterministic,

®In the logical literature DN F is often defined as a dis-
junction of terms where a term is understood ans either T or
F or any conjunction of literals. Note, however, that we can
always restrict ourselves to terms in which no fluent appears
more than once: each repeated occurence of a fluent I can be
removed from a term, whereas any term ircluding ! and —I
can be replaced by F.

It should be stressed that this problem is N P-complete,

(1) Replace a by its disjunctive normal form. Denote
the resulting formula by 2.

(2) Repeat as long as possible:
if # contains a pair #; and t; of terms whose con-
sensus exists and no term of # is a subformula of
c(h,fg), then 8 := ﬁVc(tl,lg).

(3) Take ABS(8). This is BCF(a).

Theorem 1 ([Brown, 1990]) Formulae o and
BCF(a) are equivalent. @

Theorem 2 {[Brown, 1890]) BCF(e) is the digjunc-
tion of all prime implicants of a. M

Example 1 Let o be (maAd)v{anbA=c)V(aA=cA~d),
Since o is in disjunctive normal form, § = o. After
performing step (2), we get

(mand)v(aAbA—c)V{aA-cA-d)V{bAdA-C).(5)

Since ABS({5)) = (5), the formula (5) is the Blake
canonical form of o, B

Classically, a prime implicant of a formula o is a min-
imal satisfiable term logically implying o. In what fol-
lows, we shall be interested in finding minimal satisfiable
terms logically implying a given formula o, under the as-
sumption that & given formula # holds. This motivates
the following definition.

Definition 1 Let o and J be formulae. A term £ is
an implicant of o wrt 8 iff (1) # At is satisfiable; (2)
B Al = aisatautology. A term { is said to be a prime
implicant of @ wrt B iff ¢ is an implicant of o wrt 8 and
no proper subterm of £ is an implicant of o wrt 7. B

The following theorem holds.

Theorem 3 A term ¢ is & prime implicant of o wrt 3
iff t is a prime implicant of # = a such that S AL is
satisfiable. &

The application of Theorem 3 requires satifiability
check. This check can be effectively done if B isin DNF.
The details follow.

Let ¢ be a tarm different from Fandlet 8 =1, V---vi,
be a formula in DN F. The guotient of # wri t, written
B/, is the formula (alsc in DN F) obtained from g by the
following construction: (1) Replace each #; containing
a fluent whose negation occurs in t by F. (2) In the
remaining terms delete all fluents occurring in ¢ (if all
fluents are deleted, replace the term by T'). For instance,
iftis-pAgand Bis ~gArv-pAs then §/tis Fvs.

The following result is straightforward.

Theorem 4 Let { be a term different from F and sup-
pose that 8 is any formula in DNF. The formula ¢ A §
is satisfiable iff 3/t contains at least one term different
from F. R

4 Action languages and plans

Specification of an action language is a three-step pro-

cess.

(1) The first step is to choose an underlying asser-
tion language L serving to represent the considered
world. In this paper, L is always the classical propo-
sitional logic based on a finite set of fluents.

LUKASZEWICZ & MADAUNSKA-BUGAJ 1217

(2) The next step is to provide action symbols repre-
senting actions. For instance, we can have the action
symbol load, representing the action that makes a
gun loaded.

(3) The final step is to provide action symbols with
Dijkstra-style semantics. This is done by first trans-
lating these symbols into commands of program-
ming language deacribed in section 2, and then cal-
culating the weakest precondition and the strongest
postcondition for the chosen actions. The action
load can be naturally translated into the assignment
command { := T, where [is the fluent standing for
loaded. The semantics of load is given by

wp(load,a) = e[l —T); sp(load,a)=1A3la,

The objects we are primarily interested in are plans.
These are expressions of the form A;;...; A,, where
Ai, ..., A, are action symbols. Each plan is always con-
sidered wrt a specification, i.e. a pair {a, 8}, where a
and # are satifiable formulae”. The plan Ay;...; 4q,
considered wrt a specification (a, 8), has the following
interpretation: the actions A;, ..., A, are to be sequen-
tially performed to achieve & goal 8, provided that the
initial state satisfies a. As remarked earlier, we never as-
sume that the execution of the plan activated in a state
satisfying o guarantees .

5 Analysis of plans

Let Il = A;:...; A, be aplan. We say that IT is vafid wrt
a specification {a, 8) iff Il terminates in a state satis{ying
3 whenever it is sctivated in & state satisfying o. I is
said to be inadmissible wrt (a,,&) iff 11 terminates in a
state satisfying =% whenever it Is activated in a state
satisfying e. Finally, Il is called admissible wrt (o, B) iff
it is neither valid wrt {a, 8} nor inadmissible wrt {a, 8}.

Formally, a plan I = 4;;...; A, is a program 1n Di-
jkstra’s language. Accordingly, wp(4,;...; A,, §) is the
formula whose models are precisely all states o such that
whenever II is activated in o, it 18 guaranted to termi-
nate in a state satisfying the goal 5. On the other hand,
if wp(Ai;...; An,=B) holds in the initial state, then the
plan II never achieves the goal . Thus we have:

Theorem 5 A plan I = A,;...; A, is valid {resp. in-
admissible) wrt {a, 8) ifl the formula o = wp(4d,;...;
An,B) (tesp. o = wp(A,;...;An,~F)) is a tautology.
Otherwise, i.e. if neither & => wp(A,;...; An,f) nor
o = wp(Aj;...; Az, ~8) is a tautology, the plan 1T is
admisaible wrt {, 5). B

As we remarked eatlier, admissible plans can be often
validated or falsified by providing new information. The
details are these.

Let IT = A;;...; A, be a plan admissible wrt {a,). A
termt = {{ A...Aly (k > 1) such that a At is satisfiable
ie called a support Eresp. counter-guppert) for I1 wrt
{o, B} iff 1 is valid (resp. inadmissible) wrt (& A2, B).
A support (resp. counter-support) t for II is said to be

TThe assumption that « and J are satisfiable is not nec-
essary. However, apecifications viclating this assumption are
of no practical interest.

1218 PLANNING AND SCHEDULING

minimal iff no proper subterm of £ is a support (resp.
counter-support) for II. Intuitively, a minima! support t
for & plan can be viewed as a minimal et of additional
observations (literals of t) whose truth in the initial state
validates the plan. Similarly, a minimal counter-support
for the plan can be viewed as a minimal set of additional
o?servat.ions whose truth in the initial state falsifies the
plan.

The next theorem provides a method of finding all
minimal supports and counter-supports for a given plan.

Theorem 6 Let I1 = A4,;...; A, be a plan admissi-
ble wrt {a,8). A term ! is a minimal support (resp.
counter-support) for II iff ¢ 18 a prime implicant of
wp(As;...; An, B) (resp. wp(As;...; An,2B) wrt o,

Example 2 We have four fluents a, I, h, d standing for
alive (a turkey), loaded (2 gun), hidden (a turkey) and
deaf (a turkey), respectively. There are two actions,
load and shoot, specified as follows.

load: ifd ~ =T |~d — {:=T;h:=TH
shoot: if IA=h — l:= Fia:=F=~ivh — I .= FHf.

Consider the plan I1 = load; shoot, regarded wrt the
specification (a A —h, =a}. It is easily verified that
wp(load; shoot,~a} = ~h AdV ~a
wp(load; shoot,a) = a A (~d V h).
Since neither a A—h = wp(load; shoot, ~a) nor aA—-h =
wp{load; shoot, a) is a tautology, we infer that the plan
1T is admissible wrt {a A —h, —a}.

Teo find all minimal supports for I1 wrt (a A -h, —a),
we calculate all prime implicants of wp(lead; shoot, —a)
wri a A —~h. By Theoremn 3, these are the prime impli-
cants of ¢ A -k = wp(load; shoot, ~a) which are con-
sistent with a A =h. Applying the algorithm stated
in section 3, it is readily verified that the BCF of
a A =h = wp(load; shoot, ~a) is —a vV h v d. Since —a
and h are both inconsistent with a A -h, we conclude
that there is one prime implicant of wp(load; shoot, —a)
wrt a A—h, namely d. Accordingly, d is the only minimal
support for Il wrt (@ A =k, ~a).

We leave it to the reader to check that the term —d is
the only minimal counter-support for 11 wrt {a A~h, ~a}.
B

The following theorem provides a partial relationship
between supports and counter-supports.

Theorem 7 Let I = Ay;...; A, be a plan admissible
wrt (o,). Suppose further that the commands eorre-
sponding to A;,..., A, are all deterministic. If all the
minimal supports for Il wrt (e,) are false in the initial
state, then at least one counter-support for 11 wrt (o, 2
is true in this state. @

Theorem 7 allows us to falsify a deterministic plan
when all its supports are false. However, the thecrem
does not generally hold for non-deterministic plans.

68 Plans in progress

In the previous section we have provided a number of
results allowing to analyse a plan before its exécution.

Sometimes, however, it is ressonable to provide a similat
snalysis when a plan is in progress. To illustrate this,
reconsider the plan from Example 2. To validate or fal-
gify this plan, we have to establish whether the turkey is
deaf or not in the initial state. Unfortunately, this ob-
servation is hardly available. On the other hand, we can
start the plan and try to figure out whether the turkey is
hidden after performing the action load. If so, we know
that the plan will fail and should be given up. Other-
wise, the plan will succeed. Clearly, it is much easier to
determine whether the turkey is hidden or not than to
determine whether it is deaf or not.
A pian in progress is any expression of the form

Ao A | Argri. A, (6)

where Ay,..., Ar, Ak41, ..., An 81 action aymbols and
1 € & < n. Such a plan, considered wrt a specification
{a, B, has the following intuitive interpretation: the ac-
tions A,,..., A;x have been already perfortned, starting
in & state satisfying «, and now the actions Apy;,..., Ay
are to be performed to achieve a state satisfying 5.

The only difference between a plan in progress of the
form (6) and the ordinary plan Ay;...; Az; Agy; ... An
is that the former has been partially executed. This
motivates the following definition.

Let T = Ay;...;Ax | Ax41;--.5A4n be a plan in
progress. Il is said to be valid (resp. admissible, in-
admissible} wrt a specification {a,8) iff the (ordinary)
plan A1;...; Ar; Akqa;-- .3 An is valid (resp. admissible,
inadmissible) wrt {a, 8}.

Let = Ay;...;Ac [Aryr;.--;An be a plan in
progress, considered wrt {a, 3}, Obviously, II can be
reduced to the plan Agqy;...; An, considered wrt {¥, §),
whete v is a formula characterizing all states reachable
after performing A,;...; Ay begun in a state satisfyin
a. By the definition of sp (the strongest pust.conditiong
transformer, v is just sp{Ay;...; Ag,a). Thus, we im-
mediately have:

Theorem 8 Let I = A;;...;Ax | Aeq1]...;An be a
plan in progress. II is valid (resp. admissible, inadmis-
sible) wrt (e,) iff the plan A,4;;...; Ay is valid (resp.
adrssible, inadmissible) wrt {sp{Ay;...; A¢, @), 8). B

Let 1 = Aj;;...;Ar | Aig1).-.;An be a plan
in progress, admissible wrt (sp(4);...; Az, @), 8). A
minimal support (resp. counter-support) for 1l is
any minimal support (resp. counter-support) for
Apyis. i Ag wrt {sp{Ay;...; Ar, @),). Intuitively, a
minimal support (resp. counter-support) for & plan
Ag;...;Ag | Argri.. .5 An i8 & minimal set of observa-
tions whose truth in the state being the result of per-
forming the actions A,:...; Ay validates (resp. falsifies)
the plan.

Exeample 2 (continued) To validate or falsify the plan
11, we have to establish the value of the fluent 4 in the
initial state. Suppose that this information is unavail-
able. All we can do in thies case is to start the plan by
performing the action load, i.e. to replace II by a plan
in progress II; = load | shoot. Since IT is admissible
wrt {a A —h, —a}, IT) is also admissible wrt {a A —h, —a).
To find minimal supports for Iy wrt {a A —h, —a}, we
calcuiate all minimal supports for the plan shoot wrt

{sp(load,a A ~h), ~a}. In view of Theorem 6, these are
prime implicants of wp(shoot, ~a) wrt sp(load,a A =h).
1t is readily verified that
sp{load,a A-h)y=dAalran-hv-dArlAhra (T}
wp(shoot, ~a) = { A —h V —a. (8)

Performing the algorithm from section 3, we get
BCF((T) = (8)) = mav-lv~hvd. It is easy to
check that implicants -h and d are consistent with (7},
whereas —a and —/ are not. Thus, II; has two minimal
supports wrt {a A -h, ~a), namely d and —A. In other
words, if we observe that the turkey is either deaf or not
hidden, after performing the action lead, we can safetely
continue the plan to achieve its goal.

To find all minimal counter-supports for IT; wrt (a A
—h,-a}, we calculate prime implicants of wp(shoot,a)
wrt sp(load, a A ~k). 1t is easily checked that these are
h and —~d. Accordingly, if we observe that the turkey is
hidden or not deaf, after executing the action load, we
know that our plan will fail and hence should be given
up. @

The next example illustrates an interesting phe-
nomenon: there are plans that can be validated or falsi-
fied only when they are in progress.

Example 3 There are two fluents, a (alive) and !
(loaded), and two actions spin and shootl, defined by
the commands
spin: fT - 1 =TT 1:=Ffi
shootl: iff— a:= F;l:= F |-t — skipfi.
Consider the plan 11 = spin; shootl, regarded wrt the
specification {a, ~a).
wp(spin; shootl, —=a) = —a. (9
wp(spin; shootl &) = F. (10)

Since neither a => (9) nor a = (10) is a tautology, we
conclude that II is admissible wrt {a, ~a}.
BCF(a=(9) = a.
BCF(a = (10}) = -a.
Since —a is inconsistent with a, there are neither minimal
supports nor minimal counter-supports for I wrt {a, ~a}.
This intuitively means that no additional observation in
the initial state can validate or falsify the pilan II.
To validate/falsify the plan II, we have to consider it in
progress. Assume therefore, that we started the pian by
performing the action spin. Denote the resulting plan,
spin | shootl, by I1;. Since I is admissible wrt {a, -a},
1l; is also admissible wrt {a, —a).
sp(spin,a) = a. (11)
wpl(shootl, ~a} =1V —a. (12}
BCF((11) = (12)) = ~a Vi,
Since —a is inconsistent with @, whereas { is consistent
with a, we conclude that there i one minimal support
for II; wrt {a, ~a}, namely {. Accordingly, if we observe
that the gun is loaded after performing the action spin,
we know that the plan will succeed.
wp(shootl,a) = -l A a. (13)
BCF((11)= (13)) = —a v -l

LUKASZEWICZ & MADALINSKA-BUGAJ 1219

Since =@ is inconsistent with a, whereas =f is consis-
tent with a, we infer that there is one minimal counter-
support for Il wrt {a, ~-a), namely =I. Thus, if we ob-
serve that the gun is unloaded after performing the ac-
tion spin, we know that the plan will fail and should be
given up. =

7 Conclusions

In this paper, we have argued that it makes sense to
consider and execute plans that are not guaranteed to
succeed. We have adressed two fundamental problems
related to such plans:

(1) How to determine whether a given plan is valid (i.e.
always succeeds), admissible (i.e. succeeds or fails
depending on some additional information) or inad-
missible (i.e. always fails).

(2) Given an admissible plan, determine a minimal set
of observations that are to be made in the initial
state (or in some intermediate state, if the plan is
in progress) to validate or falsify the plan.

To formalize actions occurring in plans, we have em-
ployed Dijkstra's semantics for programming languages.
This allows us to represent a broad class of plans, in par-
ticular those including actions with non-deterministic ef-
fects. In addition, we do not require that initial or final
states are to be completely specified.

We believe that technical results stated in sections 5
and 6 can be used while constructing plans. We would
like to pursue this topic in the future.

Ackowledgements

We would like to thank Wladyslaw M. Turski for his
comments on the earlier draft of this paper.

References
[Apt, Olderog, 1991] K. Apt, E.Olderog. Verification
of Sequential and Concurrent Programs. Springer-

Verlag, 1991.

[Boutilier et a/., 1995] C. Boutilier, T. Dean, S. Hanks.
Planning under Uncertainty: Structural Assump-
tions and Computational Leverage. In Proc. 3rd
European Workshop on Planning (EWSP-95), 1995.

[Brown, 1990] F. M. Brown. Boolean Reasoning. Kluwer
Academic Publishers, 1990.

[Dijkstra, 1976] E. W. Dykstra. A Discipline of Pro-
gramming. Prentice Hall, 1976.

[Dijkstra, Scholten, 1990] E. W. Dijkstra, C. S.
Scholten. Predicate Calculus and Program Seman-
tics. Springer-Verlag, 1990.

[Gelfond et a/., 1991] M. Gelfond, V. Lifschitz, A. Rabi-
nov. What Are the Limitations of Situation Calcu-
lus? In Proc. AAA1 Symposium of Logical Formal-
ization of Commonsense Reasoning, Stanford, 1991,
55-69.

1220 PLANNING AND SCHEDULING

[Jablonowski et ai, 1996] J. Jablonowski, W. Lukasze-
wicz, E. Madaliriska-Bugaj. Reasoning about Ac-
tion and Change: Defeasible Observations and Ac-
tions with Abnormal Effects. In Proc. of 20th Ger-
man Conference on Artificial Intelligence, Springer-
Verlag, Lecture Notes on Artificial Intelligence,
1137, p.135-148.

[Lifschitz, 1988] V. Lifschitz. Formal Theories of Ac-
tion. In Readings in Nonmonotonic Reasoning, M.
Ginsberg (ed.), Morgan Kaufmann Publishers, Palo
Alto, 1988, 35-57.

[Lukaszewicz, Madalinska, 1994] W. Lukaszewicz, E.
Madaliriska-Bugaj. Program Verification Tech-
niques as a Tool for Reasoning about Action
and Change. In Proc. of 18th German Conference
on Artificial Intelligence, Springer-Verlag, Lecture
Notes in Artificial Intelligence, 861, 226-236, 1994.

[Lukaszewicz, Madaliriska, 1995] W. Lukaszewicz, E.
Madaliriska-Bugaj. Reasoning about Action and
Change Using Dijkstra's Semantics for Program-
ming Languages: Preliminary Report. In Proc.
IJCAI-95, Montreal, Canada, 1950-1955, 1995.

[Lukaszewicz, Madaliriska, 1995a] W. Lukaszewicz, E.
Madaliriska-Bugaj. Reasoning about Action and
Change: Actions with Abnormal Effects. In Proc. of
19th German Conference on Artificial Intelligence,
Springer-Verlag, Lecture Notes in Artificial Intelli-
gence, 981, 209-220, 1995.

[McCarthy, Hayes, 1969] J. McCarthy, P.J. Hayes. Some
Philosophical Problems from the Standpoint of Ar-
tificial Intelligence. In B. Meltzer and D. Michie
(eds.), Machine Intelligence 4, 1969, 463-502.

[Sandewall, 1994] E. Sandewall. Features and Fluents:
The Representation of Knowledge about Dynamical
Systems. Oxford Logic Guides, 30, Oxford Science
Publications, 1994.

