
Reasoning about Plans* 

W i t o l d Lukaszewicz and Ewa Madal inska-Bugaj 

Institute of Informatics, Warsaw University 
02-097 Warszawa, ul. Banacha 2, POLAND 

email: {witlu,ewama}@mimuw.edu.pl 

Abst ract 
In classical planning we are faced with the fol­
lowing formal task: Given a set A of permissible 
actions, a description a of init ial states and a 
description of final states, determine a plan 
I I , i.e. a finite sequence of actions from A, such 
that execution of II begun in any state satis­
fying is guaranteed to terminate in a state 
satisfying 
In this paper we extend the classical model of 
planning by admit t ing plans that are not as­
sured to succeed. We address two basic prob­
lems connected wi th such plans: (1) How to 
determine whether a given plan is valid (i.e. al­
ways succeeds), admissible (i.e. may succeed or 
fail) or inadmissible (i.e. never succeeds). (2) 
Given an admissible plan, determine a minimal 
set of observations that are to be made in the 
in i t ia l state (or in some intermediate state, if 
the plan is in progress) to validate or falsify 
the plan. 

1 I n t r oduc t i on 
In classical planning we are faced with the following for­
mal task: Given a set A of admissible actions, a formula 

describing the set of in i t ia l states and a formula rep­
resenting a goal to be achieved, construct a plan I I , i.e. 
a finite sequence of actions from A, such that execution 
of II begun in any state satisfying is guaranteed to 
terminate in a state satisfying 

This classical model of planning is oversimplified. In 
many practical settings it is reasonable to construct and 
execute plans that are not assured to succeed. There are 
two basic reasons for that. Firstly, it may happen that 
a plan that always achieves a final state does not exist. 
Secondly, even if such a plan exists, it may be better to 
choose a simpler, although uncertain plan. An example 
wi l l help to il lustrate this. 

Suppose I want to contact John. A l l information I 
have is his phone number and the fact that he is at home. 
Given this, the only plan I can choose is to call him. Of 
course, the plan may fai l , if John's phone line is busy, but 

•This research was partially supported by the KBN grant 
8T11C001 11. 

there is no better possibility. To guarantee the success of 
the plan, I have to know that John's line is not busy at 
the moment. Unfortunately, this information is hardly 
available. 

Assume now that, in addition, I know John's address. 
In this case, I can assure my goal by visit ing h im. How­
ever, it may sti l l be much more reasonable to give up 
this ironclad plan and to choose the previous one. 

In this paper, we extend the classical model of plan­
ning by permitt ing plans that are not assured to succeed. 
Such a plan is just a sequence of actions, considered rel­
atively to some specification. A specification consists of 
a description of the init ial states and a goal to achieve. 

Plans that need not behave according to their speci­
fications can be naturally divided into three categories: 
(1) Those that always achieve their goals (valid plans). 
(2) Those that may achieve their goals or not, depend­
ing on some additional information (admissible plans).1 

(3) Those that never achieve their goals (inadmissible 
plans). 

As an example, suppose that all we know about the 
init ial state is that a turkey is alive and the goal is to 
make it dead. There are two actions: load (loads a gun) 
and shoot (kills the turkey, provided that the gun is 
loaded). Consider three plans: (1) load; shoot; (2) shoot; 
(3) load. The first of these plans is valid, the second one 
is admissible, whereas the third one is inadmissible. 

It is important to note that an admissible plan can be 
often validated (i.e. made valid) or falsified (i.e. made 
inadmissible) by providing new observations. Reconsider 
the plan (2) stated above. The observation that the gun 
is initially loaded (resp. unloaded) validates (resp. falsi­
fies) the plan. 

This paper addresses two problems: 

(1) How to determine whether a given plan is valid, ad­
missible or inadmissible. 

(2) Given an admissible plan, determine a minimal set 
of observations that are to be made in the init ial 

1 It should be emphasized that admissible plans differ from 
what is called uncertain plans in the AI literature. This latter 
notion corresponds to plans that may fail not because some 
information is missing, but rather because they involve ac­
tions that succeed with some probability. (See [Boutilier et 
a/., 1995], for a good survey concerning uncertain plans.) 

LUKASZEWICZ & MADALINSKA-BUGAJ 1215 



state (or in some intermediate state, if the plan is 
in progress) to validate or falsify the plan. 

To represent actions occurring in plans, we use Dijk-
stra's approach originally developed to deal wi th pro-
grams [Dijkstra, 1976; Di jkstra, Scholten, 1990]. The 
advantage of Dijkstra's formalism for reasoning about 
action and change, when compared wi th purely logi­
cal approaches such as Situation Calculus [McCarthy, 
Hayes, 1969; Lifschitz, 1988; Gelfond et a/., 1991] or Fea­
tures and Fluents fSandewall, 1994], is its simplicity. It 
has been shown in [Lukaszewicz. Madaliriska, 1994; 1995; 
1995a; Jablonowski et al., 1996]. 

The paper is organized as follows. We start wi th a 
brief summary of Dijkstra's semantics for a very sim­
ple programming language. Section 3 is devoted to the 
theory of prime implicants that play an important role 
in plan analysis. In section 4, we show how action lan­
guages are to be formalized using Dijkstra's methodol­
ogy. In section 5, we provide a number of results allowing 
to analyse plans before their executions, whereas, in sec­
tion 6, these results are generalized for plans in progress. 
Finally, in section 7, we provide conclude remarks and 
future work. 

Proofs of all stated results can be found in the ful l 
version of this paper. 

2 In t roduc t i on to Di jks t ra 's semantics 

In [Dijkstra, Scholten, 1990] we are provided with a very 
simple programming language whose semantics is speci­
fied in terms of formula transformers. More specifically, 
wi th each command S there are associated two formula 
transformers, called the weakest precondition and the 
strongest postcondition, denoted by wp and sp, respec­
tively. Before providing the meaning of these transform­
ers we introduce some terminology. 

First of al l , we assume here that the programming 
language under consideration contains one type of vari­
ables only, namely Boolean variables. This assumption 
may seem overly restrictive, but as a matter of fact no 
other variables wi l l be needed for our purpose. In the 
rest of this paper Boolean variables wi l l be referred to as 
fluents. 

Let F be a set of fluents. A state over F is any function 
a f rom the members of F into the truth-values {0 ,1} . A 
state is said to be a model of a formula iff is true 
in 

The formula transformers mentioned above are to be 
understood as follows. For each command S and each 
formula 

• wp(S} ) is the formula whose models are precisely 
all states such that execution of S begun in any 
one of them is guaranteed to terminate in a state 
satisfying 

• sp(S, ) is the formula whose models are precisely 
all states such that each of them can be reached by 
starting execution of S in some state satisfying a. 

For a detailed discussion of Dijkstra's methodology the 
reader should consult [Apt, Olderog, 1991]. 

2 .1 L i s t o f c o m m a n d s 
The considered language consists of skip command, as-
signment to simple variables, alternative command and 
sequential composition of commands3. Semantics of 
these commands is specified in terms of formula trans­
formers explained above. 

1. T h e skip c o m m a n d . This is the "empty" com­
mand in that its execution does not change the com­
putation state. The semantics of skip is thus given 
by 

2We ignore the weakest liberal precondition transformer, 
considered in [Dijkstra, Scholten, 1990], because it will not 
be used in the sequel. 

1216 PLANNING A N D SCHEDULING 



LUKASZEWICZ & MADAUNSKA-BUGAJ 1217 



1218 PLANNING AND SCHEDULING 



LUKASZEWICZ & MADALINSKA-BUGAJ 1219 



Since is inconsistent w i th a, whereas is consis­
tent wi th a, we infer that there is one minimal counter-
support for Thus, if we ob­
serve that the gun is unloaded after performing the ac­
t ion spin, we know that the plan wi l l fail and should be 
given up. ■ 

7 Conclusions 
In this paper, we have argued that it makes sense to 
consider and execute plans that are not guaranteed to 
succeed. We have adressed two fundamental problems 
related to such plans: 

(1) How to determine whether a given plan is valid (i.e. 
always succeeds), admissible (i.e. succeeds or fails 
depending on some additional information) or inad­
missible (i.e. always fails). 

(2) Given an admissible plan, determine a minimal set 
of observations that are to be made in the ini t ial 
state (or in some intermediate state, if the plan is 
in progress) to validate or falsify the plan. 

To formalize actions occurring in plans, we have em­
ployed Dijkstra's semantics for programming languages. 
This allows us to represent a broad class of plans, in par­
ticular those including actions wi th non-deterministic ef­
fects. In addit ion, we do not require that ini t ial or final 
states are to be completely specified. 

We believe that technical results stated in sections 5 
and 6 can be used while constructing plans. We would 
like to pursue this topic in the future. 

Ackowledgements 
We would like to thank Wladyslaw M. Turski for his 
comments on the earlier draft of this paper. 

References 
[Apt, Olderog, 1991] K. Ap t , E.Olderog. Verification 

of Sequential and Concurrent Programs. Springer-
Verlag, 1991. 

[Boutilier et a/., 1995] C. Boutil ier, T. Dean, S. Hanks. 
Planning under Uncertainty: Structural Assump­
tions and Computational Leverage. In Proc. 3rd 
European Workshop on Planning (EWSP-95), 1995. 

[Brown, 1990] F. M. Brown. Boolean Reasoning. Kluwer 
Academic Publishers, 1990. 

[Dijkstra, 1976] E. W. Dykstra. A Discipline of Pro­
gramming. Prentice Hal l , 1976. 

[Dijkstra, Scholten, 1990] E. W. Dijkstra, C. S. 
Scholten. Predicate Calculus and Program Seman­
tics. Springer-Verlag, 1990. 

[Gelfond et a/., 1991] M. Gelfond, V. Lifschitz, A. Rabi-
nov. What Are the Limitations of Situation Calcu­
lus? In Proc. AAA1 Symposium of Logical Formal­
ization of Commonsense Reasoning, Stanford, 1991, 
55-69. 

[Jablonowski et ai, 1996] J. Jablonowski, W. Lukasze­
wicz, E. Madaliriska-Bugaj. Reasoning about Ac­
t ion and Change: Defeasible Observations and Ac­
tions wi th Abnormal Effects. In Proc. of 20th Ger­
man Conference on Artificial Intelligence, Springer-
Verlag, Lecture Notes on Art i f ic ia l Intelligence, 
1137, p.135-148. 

[Lifschitz, 1988] V. Lifschitz. Formal Theories of Ac­
t ion. In Readings in Nonmonotonic Reasoning, M. 
Ginsberg (ed.), Morgan Kaufmann Publishers, Palo 
A l to , 1988, 35-57. 

[Lukaszewicz, Madalinska, 1994] W. Lukaszewicz, E. 
Madaliriska-Bugaj. Program Verification Tech­
niques as a Tool for Reasoning about Action 
and Change. In Proc. of 18th German Conference 
on Artificial Intelligence, Springer-Verlag, Lecture 
Notes in Art i f ic ial Intelligence, 8 6 1 , 226-236, 1994. 

[Lukaszewicz, Madaliriska, 1995] W. Lukaszewicz, E. 
Madaliriska-Bugaj. Reasoning about Action and 
Change Using Dijkstra's Semantics for Program­
ming Languages: Preliminary Report. In Proc. 
IJCAI-95, Montreal, Canada, 1950-1955, 1995. 

[Lukaszewicz, Madaliriska, 1995a] W. Lukaszewicz, E. 
Madaliriska-Bugaj. Reasoning about Action and 
Change: Actions wi th Abnormal Effects. In Proc. of 
19th German Conference on Artificial Intelligence, 
Springer-Verlag, Lecture Notes in Art i f ic ial Intell i­
gence, 9 8 1 , 209-220, 1995. 

[McCarthy, Hayes, 1969] J. McCarthy, P.J. Hayes. Some 
Philosophical Problems from the Standpoint of Ar­
tif icial Intelligence. In B. Meltzer and D. Michie 
(eds.), Machine Intelligence 4, 1969, 463-502. 

[Sandewall, 1994] E. Sandewall. Features and Fluents: 
The Representation of Knowledge about Dynamical 
Systems. Oxford Logic Guides, 30, Oxford Science 
Publications, 1994. 

1220 PLANNING A N D SCHEDULING 


