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Abstract. 
Psychological experiments on children's devel­
opment of spatial knowledge suggest experience 
at self-locomotion with visual tracking as im­
portant factors. Yet, the mechanism underly­
ing development is unknown. We propose a 
robot that learns to mentally track a target ob­
ject (i.e., maintaining a representation of an ob­
ject's position when outside the field-of-view) 
as a model for spatial development. Mental 
tracking is considered as prediction of an ob­
ject's position given the previous environmen­
tal state and motor commands, and the current 
environment state resulting from movement. 
Following Jordan and Rumelhart's (1992) for­
ward modeling architecture the system consists 
of two components: an inverse model of sen­
sory input to desired motor commands; and 
a forward model of motor commands to de­
sired sensory input (goals). The robot was 
tested on the "three cups" paradigm (where 
children are required to select the cup contain­
ing the hidden object under various movement 
conditions). Consistent with child develop­
ment, without the capacity for self-locomotion 
the robot's errors are self-center based. When 
given the ability of self-locomotion the robot 
responds allocentrically. 

1 I n t roduc t i on 
This research challenges the traditional approach 
of theory construction in cognitive development by 
using the framework of robot learning. Tradition­
ally, researchers in cognitive development (e.g., de­
velopmental psychologist) have focused on general 
and abstract descriptions of experimental data as 
explanations for their observations. However, de­
velopmental psychology is intrinsically limited with 
respect to the question "how does development oc­
cur?", because of difficulties in the methodology 
(e.g., scientists should not open an infant's head to 
check for internal representations, and should not 

control their everyday experiences). Instead of real 
infants, we need a substitute that can be used for 
testing the theory and controlling conditions with­
out ethical limitation. Consequently, the require­
ment of a computer simulation can no longer be 
ignored. 

Over the past few decades several studies have 
been conducted on computational models of cog­
nitive development. For example, Klahr and Wal-
lance developed a computer model of acquisition of 
number conservation1 using self-modifying produc-
tion system [Klahr and Wallance, 1976], Drescher 
proposed a schema mechanism to elaborate and test 
Piaget's theory from a constructivist's perspective 
[Dresher, 199l]. However, what is lacking in these 
approaches is an account of the interaction between 
children and environment. Consequently, models 
based on these approaches sometimes lack realism. 
We should pay more attention to the dynamics of 
cognitive development in the real world. 

In contrast to these approaches, we propose us­
ing autonomous robots as the subject of cognitive 
development, and constructing computer programs 
by which robots can develop or learn analogously to 
infants. The advantage of using robots is twofold. 
First, we can utilize a robot's vision sensors and 
actuators as the inputs and outputs of the model. 
This forces us to use the same input stimuli and 
action goals as those of the infant, whereas the in­
put and output representations of a computer sim­
ulation must be assumed. Second, we can con­
struct a theory absorbing activeness in cognitive de­
velopment. Recently, researchers have emphasized 
the importance of activeness (i.e., mobility) of in­
fants during development [Thelen and Smith, 1994]. 
However, the theory derived from this stream needs 

1Conservation is a term introduced by Piaget for the 
child's understanding that quantitative aspects of a set of 
materials are not changed or affected by transformations of 
the display itself. 
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to be tested and refined in more detail. We believe 
that using a robot leads us to a more concrete the­
ory. More recently, Elman et, al. published an 
exciting book on development from a connectionist 
perspective [Elman et a/., 1996]. We follow their ap­
proach, but concentrate much more on interaction 
between individuals and environment. 

As a first step to constructing a complete com­
putational theory of cognitive development, we ad­
dress the question of how infants relate to their spa­
tial environments, and how this changes as the in­
fant matures. To explore these issues, we focus on 
the change of mental tracking: the ability to update 
spatial relations between self and object without 
real (visual) tracking during the locomotion. We 
modeled the development of mental tracking as a 
learning task for a simulated robot, and conducted 
experiments simulating an infant's experience of lo­
comotion. 

The following sections describe our first results of 
modeling infant's spatial development. In Section 
2, psychological evidence for spatial development is 
introduced. In Section 3, we elaborate our model 
for the development of mental tracking. Section 4 
describes an empirical experiment with a simulated 
robot. In Section 5, we discuss the implications of 
our approach and future work. 

2 Psychological Evidence for Spat ial 
Development 

2.1 Egocentrism in early infants 
Piaget suggested that before infants are 1 year old, 
they exhibit a kind of sensorimotor egocentrism [Pi­
aget, 1971]. Although the term egocentrism refers 
to young children's general tendency to view the 
world solely from their own perspective2, we focus 
on infant's egocentric behavior in the spatial envi-
ronments and how egocentric behavior changes into 
the allocentric behavior that normal adults exhibit. 
In other words, we address the question of how in­
fants relate to their spatial environment, and how 
this changes as the infant matures. 

Figure 1 shows an experiment designed to investi­
gate infant's spatial searching [Bower, 1979]. A doll 
(prize) was put inside one of three cups, in this case 
the middle one, and then the infant moved around 
the table. The doll's relative position from the in­
fant's view was changed from 'middle' to 'right'. 
Thus, the infant should look for the doll under the 
right cup. However, early infants frequently fail to 

2 Piaget used the word egocentrism referring not only to 
spatial behavior but also to more genera] aspects of young 
children such as egocentic communication. 

Figure 1: Self centered representation of space. 

compensate for changes in their own spatial posi­
tion. They continue to turn in the direction that 
previously led them toward the target (middle cup). 
The egocentric behavior in the searching task can 
be observed up to the age of about 18-months, but 
older children consistently show non-egocentric be­
havior on spatial tasks that involve searching for 
objects from different view points. 

In the searching task the containers (cups) used 
to hide the prize were the same size and color. 
However, the actual environment provides much 
more information than position. In fact, infants 
can search the prize more correctly when distinctive 
cues (landmarks) are provided [Acredelo, 1979]. 

Phenomena concerning egocentrism are quite 
controversial and there are still many on-going stud­
ies. However, it's important to note that egocentic 
encoding of the target's position is not so irrational 
for infants who cannot move around. Pre-walking 
infants don't have to take into account changes in 
their own position in order to search for the target. 

2.2 Effect of Locomotor Experience 
So far, we have seen an interesting developmental 
change in infants spatial behavior. 12-year-olds be­
have egocentrically and 18-year-olds do not. What 
is the difference between 12-year-olds and 18-year-
olds? How does egocentric behavior change into 
allocentric behavior? Experience in moving around 
environments seems to be one of the factors that ef­
fects the difference in the searching task. Kermoian 
and Campos suggested the importance of locomotor 
experience [Kermoian and Campos, 1988]. Infants 
who have experience in a walker or who can crawl 
are superior in spatial tasks to infants who have no 
such experiences. 

Acredelo, Asams and Goodwyn conducted exper­
iments to test the role of self-locomotion as opposed 
to passive transport concerning infant's spatial cog­
nition [Acredelo et al., 1984]. Their results sug-
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gested the importance of active movement with vi­
sual tracking. When 12-month-olds walked to the 
other side of a layout and have the opportunity to 
continually looked in the direction of a hidden prize, 
they looked in that direction more often and sub­
sequently did better at turning toward the object 
from the new location than children who were car­
ried. In contrast, when they could not see the prize 
as they walk from one position to the other, they 
were subsequently no better in turning toward it 
than children who were carried. Based on these re­
sults they hypothesized self-produced motion leads 
to more effective deployment of visual attention. 

3 Learn ing to Men ta l l y Track 
The psychological experiments mentioned previ­
ously suggest two important factors for the spatial 
development: 

• self-locomotor experience; and 

• visual tracking. 

Yet, it is still unclear what information is central 
in promoting the change from egocentric behavior 
to allocentric behavior. In Acredelo's experiments, 
18-month-olds can behave correctly without visual 
tracking of the target object. This leads us to the 
necessity of modeling the mechanism of the change, 
taking into account of the effect of locomotion ex­
perience. 

In this section, we focus on the change of the abil­
i ty of updating the spatial relation between self and 
target object without visual tracking during loco­
motion. We call this ability mental tracking, and 
propose a learning architecture for mental tracking 
by which robots can learn it analogously to infants. 
Firstly, we present our assumptions and identify the 
information that is available during the experience 
of self-locomotion. 

3.1 Forma l i za t ion as a Robo t Learn ing 
Task 

The Robot 
Figure 2 shows a robot that was used for model­
ing infant spatial development. The robot is based 
on Nomad 200 (Nomadic Technologies,Inc). It can 
control two wheels and trunk orientation. The 
robot is equipped with a movable stereo-camera 
(Sony EVID30 x 2) that is connected with a vision 
processing unit that uses a Fujitsu tracking module 
and DSP board(TMS320C40 x 2) for accelerating 
image processing. Using these facilities, the robot 
can detect relative distance and orientation to the 
target. 

Figure 2: A robot for modeling cognitive development. 

Locomotion Experience 
Suppose that the above robot is the infant who has 
just started toddling. What types of information 
can the robot receive from walking? We assume 
that the self-locomotion experience of robots can 
be characterized by applying a next-state function / 
and an output function g successively. At time step 
n - 1 the robot produces motor command u[n - 1]. 
In conjunction with the state of the environment 
x[n - 1], the motor command determines the next 
state: 

(1) 
Corresponding to each state x[n] there is also a 

sensation y[n]: 

(2) 
We assume that the robot has access to the state 

of the environment: y{[n]) can be seen as visual 
information directly obtained from the camera. The 
formalism is analogous to a standard state-action 
loop of mobile robot. 

The Learning Task for Visual Tracking 
Now we model the experience of locomotion with 
visual tracking. Locomotion experience with visual 
tracking can be modeled with a robot that moves 
while tracking the target with its movable camera 
and trunk. In other words, the task of visual track­
ing can be seen as generation of motor commands 
to the camera and the trunk to keep the target ob­
ject on the center of the visual image. Note that we 
should consider two types of motor commands; one 
for moving and the other for visual tracking. 

Let be a desired sensation, and in this case 
the target object in the center of the visual image. 
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Let be a motor command for moving3, and 
be a command for visual tracking. Given the 

state (representing the current posture of 
the robot), the robot produces 
an action 

The learning task for visual tracking with loco­
motion is to make appropriate adjustments to the 
input-to-action mapping h based on data obtained 
from interaction with the environment. Note that 
we assume is also given. This is because 
the robot should know how to move to the next po­
sition. The robot produces independently 
of visual tracking. 

3.2 T h e Learn ing A r c h i t e c t u r e for M e n t a l 
T rack ing 

So far, we have defined the learning task for vi­
sual tracking with locomotion: Nonetheless, what 
we need is a model of mental tracking. It must be 
noted here that mental tracking can be accomplished 
by mentally simulating visual tracking. In other 
words, if the robot can learn to track the target 
while in motion, the robot can mentally track the 
target by applying input-to-action mapping h suc­
cessively as an internal process. First, we present a 
learning architecture for visual tracking with loco­
motion, and then describe how to use the acquired 
knowledge for mental tracking. 

Learning Inverse Model 
As mentioned above, the learning task for visual 
tracking is to determine a proper command 
given This is analogous to 
the so called inverse model in control system design. 
A controller receives the desired sensation as 
input and must find actions that cause actual sensa­
tions to be as close as possible to the desired sensa­
tion. The controller must invert the transformation 
from actions to sensations. 

We developed this mechanism based on the neu­
ral network architecture proposed by Jordan and 
Rumelhart [Jordan and Rumelhart, 1992]. There 
are several reasons for using their approach. One of 
the advantages of this architecture is that we don't 
need an explicit teacher. The robot can use the 
difference between predicted position of the target 
and the next input of the target position as training 
data. Another reason is that the architecture is ca­
pable of addressing the many-to-one mapping prob­
lem from actions to sensations. The robot shown in 

3The motor command can be seen as the command to 
move the robot's two wheels. 

Figure 2 must control at least two parameters, one 
for the camera and the other for the trunk to track 
the target. So there are infinite number of possible 
inverse models4. 

Using these features, the mechanism learns to 
produce appropriate motor command to 
keep the target in the center of the visual image, 
given the current state and a motor com­
mand to move to the next position 

Figure 3: The learning mechanism for visual tracking 
with locomotion. 

Figure 3 shows the learning architecture for visual 
tracking. denotes a desired position of the 
target in the visual image, denotes a proper 
command to the movable camera. y([n]) denotes 
the actual position of the target in the visual image, 
and uv[n — 1] denotes the actual motor command 
for the movable camera. 

In order to learn the inverse model to keep the 
target in the center of the field-of-view, we need the 
difference between the proper command 
and actual command to adjust the motor 
command: 

(4) 
We used the method described in [Jordan and 

Rumelhart, 1992]. Firstly the robot learns a for­
ward model based on the difference between y*[n] 
(the output forward model) and y[n]. Here the dif­
ference (4) can be acquired by backpropagating the 
difference between y*[n] and y[n) through the for­
ward model. Then, the robot learns the inverse 
model based on the difference (4). 

The Network Architecture 
We implemented the above learning architecture us­
ing a feedforward network based on the block dia­
gram shown in Figure 3. The network is composed 

4See [Jordan and Rumelhart, 1992] for more details. 
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of two subnetworks: one for the inverse model; and 
the other for the forward model. The inverse model 
consists of 5 input, 15 hidden and 1 output units. 
The forward model consists of 6 input, 15 hidden 
and 3 output units. The output of the inverse model 
is taken as input to the forward model. 

Mental Tracking via Acquired Knowledge 
Figure 4 illustrates the way to mentally track the 
target using the learned visual tracking. The 
shaded portion denotes the acquired knowledge for 
visual tracking. The command for moving around 
in the environment is denoted as 

Note that the robot uses the output of the for­
ward model as the current state instead 
of actual input from the camera (environment). In 
order to mentally track the target with locomotion, 
the robot produces virtual command to 
the forward model as an internal process. 

Figure 4: The architecture for the mental tracing. 

4 Empi r i ca l Exper iments w i t h a 
Simulated Robot 

4.1 The Setup 
In the following experiments, we simulated three 
stages of a child's development of motor skills with 
the robot by varying its permitted actions. In stage 
1, the robot is only permitted head rotation. In 
stage 2, the robot can rotate both head and body. 
Finally, in stage 3, the robot is also permitted self-
locomotion, whereas in stages 1 and 2, locomotion 
was performed by an external agent. 

For each stage, the forward and inverse models of 
the network were trained unt i l : 

Forward mode l Prediction error was less than 
0.0005 for 50 training steps, or 50000 training 
steps were completed. 

Inverse mode l The difference between the proper 
command and actual command 

1] was less than 0.0005 for 50 training steps, or 
50000 training steps were completed. 

4.2 The Three Cups Task 
Following the "three cups" paradigm [Bower, 1979] 
discussed previously, the robot is placed in front of 
three cups and shown which cup hides the target 
object5. The robot moves (or is moved) to a new 
position from which it must predict which cup hides 
the target object. 

4.3 Results 

Figure 5: Prediction rate after each stage (average over 
10 runs). 

Figure 5 shows the rate of selection one of three 
cup after training for each of the three stages. The 
target cup (cup A) is black. The robot's perfor­
mance at stages 1 and 2 was at chance level (35%). 
However, analysis showed that responses were con­
sistent with an egocentric based prediction, not ran­
dom choice. For example, from an allocentric per­
spective, a cup on the left-hand side of one's field 
of view would appear on the right-hand side if one 
views the cups from behind. From an egocentric 
perspective, however, one would predict the target 
as being on the left-hand side, which was the robot's 
prediction for stages 1 and 2. Since the cups were 
arranged in the shape of an equilateral triangle, 
only 35% of positions will yield a correct predic­
tion based on egocentric knowledge. Under random 
choice there is no correlation between the relative 

5 This was done by labeling the target cup at the initial 
location. 
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positions of the selected cups before and after move­
ment. In stage 3, when the robot also had control 
of translational movement, its predictive accuracy 
was above chance and egocentric levels, and more 
consistent with an allocentric based choice. Thus, 
locomotion experience was important for learning 
to predict the target's position. 

Figure 6: Relative angular position of cups as a function 
of robot location at the end of stage 1. 

Figure 7: Relative angular position of cups as a function 
of robot location at the end of stage 3. 

The contrast between egocentric behaviour (at 
stage 1) and allocentric behaviour (at stage 3) is 
made clearer by plotting cup position in the robot's 
field-of-view as a function of the robot's location. 

Figure 6 shows the angular position of each cup 
relative to the center of the robot's field of view 
at various locations around the cups. The robot 
was moved along the circumference of a circle en­
closing the cups (see Figure 1), and cup positions 
were recorded at l /20th intervals. For example, 0 
on the x-axis corresponds to the robot's init ial po­

sition. For the y-axis, negative and positive values 
correspond to the left and right halves of the field-
of-view (respectively). For each location, the cup 
with the smallest angular position (in magnitude) 
is the selected cup. For example, at position 5, cup 
C was selected. As evident from Figure 6, the robot 
always selected the leftmost cup as the target. In 
other words, the robot adjusted its head so that the 
leftmost cup (relative to the robot) was positioned 
at the center of the field-of-view (0 angular posi­
tion). Consequently, the other two cups appeared in 
the right half of the field-of-view. This is to say that 
the robot behaved egocentrically. Crossovers on the 
graph (e.g., position 8) occurred because there are 
6 locations on the circumference of the enclosing 
circle for which one cup is occluded by another. 

Figure 7 shows mental tracking at the end of stage 
3. As can be seen from the graph the target cup 
(cup A) remains closest to the center of the robot's 
field-of-view for most locations (i.e., it behaved al-
locentrically). Again, the exceptional cases (i.e., 
crossovers) are due to occlusions. 

5 D i scuss ion a n d F u t u r e W o r k 
So far we have described mental tracking as a 
computational model of infant's spatial develop­
ment. The simulation results support the evidence 
found in developmental psychology: the impor­
tance of self-locomotion. Furthermore, the results 
of our simulation suggest that experience of self-
locomotion with visual tracking can accelerate spa­
tial development. This offers the key to an under­
standing of how egocentric behavior changes into 
allocentric behavior. 

As for mental tracking, Tani proposed a similar 
idea in the context of robot navigation [Tani, 1995]. 
He developed a robot that is capable of mentally 
simulating action plans based on a forward model­
ing scheme using recurrent network learning. Al­
though he was not concerned with cognitive devel­
opment, he did suggest its relevance to cognition. 

Perhaps the closest approach to ours is the Cog 
Project of Brooks and colleagues [Brooks and Lynn, 
1993]. They have been developing human-body like 
robots, humanoid. The idea of creating humanoids 
to investigate human cognition is very attractive in 
a sense that intelligence cannot come without body. 
We believe that the key concept of using robot for 
modeling cognitive development can be achieved 
even with simple mobile robots. 

Current simulations were limited to one step 
back in time (i.e., target visible from the previ­
ous time step). For more complex environments, 
the target wil l be outside the field-of-view for indef-
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inite periods. An obvious (and elegant) solution 
is to incorporate recurrent connections and have 
the network learn to remember positional informa­
tion (e.g., [Elman, 1990]). However, learning to 
maintain information over long periods in the ab­
sence of additional input is difficult without special 
learning techniques (e.g., incremental learning, [El­
man, 1993]). The extent to which mental tracking 
is maintenance of internal representations, or the 
search for alternative visual cues is an interesting 
research issue. And one that can best be addressed 
in real-world active environments such as we have 
proposed with the use of robots. 

In our simulations, we divided child's develop­
ment of motor skills into three stages. In gen­
eral, however, motor skills develop more gradually, 
and interact with spatial development more tightly. 
More likely is that the development of motor skills 
and spatial knowledge interact both ways [Thelen 
and Smith, 1994]. We need to explore this kind of 
interaction in future work. 

6 Conclusion 
In this paper, we addressed the question of how in­
fants relate to their spatial environment, and how 
this changes as the infant matures. To explore these 
issues, we introduced mental tracking as a key con­
cept, and propose a learning architecture for men­
tal tracking analogous to infants. Although there is 
much work to be done, we believe that the idea of 
using autonomous robots as the subject of develop­
ment will open a new approach to modeling cogni­
tive development. We take inspiration from recent 
work in robot vision, where the problem of making 
a robot see generated predictions leading to discov­
eries in insect vision [Franceschini et al., 1992]. We 
expect similar results for cognitive development. 
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