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Abstract

In the paper, we consider the problem of supporting
automated reasoning in a large class of knowledge
representation formalisms, including terminologi-
cal and epistemic logics, whose distinctive feature
is the ability of representing and reasoning about
finite quantities. Each member of this class can be
represented using graded modalities, and thus the
considered problem can be reduced to the prob-
lem of executing graded modal logics. We solve
this problem using a set-theoretic approach that
first transforms graded modal logics into poly modal
logics with infinitely many modalities, and then re-
duces derivability in such polymodal logics to deriv-
ability in a suitable first-order set theory.

1 Introduction

The general theme of this paper is the description of a
novel approach to the problem of supporting the automa-
tion of reasoning in a family of knowledge representation
formalisms. Such a family is characterized by the fact
that its members need to represent and reason about
finite quantities, and it includes terminological logics,
epistemic logics, universal modalities, van der Hoek and
de Rijke have shown that all these languages can be rep-
resented using graded modalities [Fattorosi-Barnaba and
De Caro, 1985] (cf. [Hoek and de Rijke, 1995] for a com-
plete description of this kind of reductions). In this pa-
per, we propose an approach to automated deduction in
graded modal logics which is based on a set-theoretic
translation method introduced by D'Agostino et al. in
[D'Agostino et al., 1995] to support derivability in propo-
sitional modal’ logic.

Most inference systems for modal logic are defined in
the style of sequent or tableaux calculi, e.g. [Fitting,
1983; Wansing, 1994]. As an alternative, a number of
translation methods for modal logic into classical first-
order logic have been proposed in the literature (for a
comprehensive survey, cf. [Ohlbach, 1993]). Such meth-
ods allow the use of Predicate Calculus mechanical theo-
rem provers to implement modal theorem provers. Com-
pared with the direct approach of finding a proof algo-
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rithm for a specific class of modal logics, the transla-
tion methods have the advantage of being independent of
the particular modal logic under consideration: a single
theorem prover may be used for any translatable modal
logic.

In the standard approach, the first-order language C
into which the translation is carried out contains a con-
stant r denoting the initial world in the frame, a bi-
nary relation R(x,y) denoting the accessibility relation,
and a denumerable number of unary predicates Pi(x).
The translation function is defined by induction on the
structural complexity of the modal formula as follows:

» x(F;,z) =Pj(z);
¢ 7(—,z) commutes with the boolean connectives;
o 7(O,2) = Vy(zRy — w(¥,y)).

Efficiency concerns have motivated further investiga-
tions on the above (relational) translation method. Such
studies (e.g. [Ohlbach, 1991]) suggested a "functional”
semantics for modal logic and resulted in a family of
more efficient and general translation methods. From
the computational point of view, the functional trans-
lation may still cause some problem when using a first-
order theorem prover, due to the presence of equalities in
the translation of the axioms. A method for limiting the
complexity induced by the introduction of equality using
a mixed relational/functional translation is proposed in
[Nonnengart, 1993].

A common feature of all the methods mentioned
above is that, in order to be applied directly, the un-
derlying modal logic must have a first-order seman-
tics. All attempts to apply them to logics not hav-
ing a first-order semantics have required ad-hoc tech-
niques. Moreover, if the logic has a first-order seman-
tics, but it is only specified by Hilbert axioms, a pre-
liminary step is necessary to find the corresponding
first-order axioms. The question of automatically solv-
ing this last problem has been extensively studied and
algorithms have been proposed, e.g. [Benthem, 1985;
Gabbay and Ohlbach, 1992].

The above analysis can be easily tailored to the case
of graded modalities. The semantics of graded modali-
ties is very natural and intuitive, but it has a disadvan-



tage: the inference systems based on it deal with O, and
operators by generating a number of terms that, in
general, can be very large. This problem can be over-
come by using a Hilbert-style axiomatic system, which
allows one to perform arithmetic symbolic reasoning; in
such a case, however, the search space for proving even
very simple theorems can grow very much and it is usu-
ally rather unstructured. In view of the previous points,
a translational approach to automated reasoning with
graded modalities has been considered by Ohlbach et al.
(cf. [Ohlbach et al, 1995]). Such an approach provides
the possibility of using a standard deductive system —
thereby guaranteeing symbolic reasoning — for which
optimizations and good implementations are available.

In this paper, we exploit an alternative translation
method whose basic idea is to map modal formulae into
set-theoretic terms. Such a method works for all normal
complete finitely axiomatizable modal logics, regardless
of the first-order axiomatizability of their semantics. It
also works if the modal logic under consideration is only
specified by Hilbert axioms. Furthermore, it can be eas-
ily generalized to polymodal logics with finitely many
modalities [D'Agostino et al., 1995].

Even though graded modal logics can be seen as poly-
modal logics ([Ohlbach et al, 1995]), the set-theoretic
translation method cannot be applied directly, because
the number of modalities involved in their translation is
infinite. In the following, we show how to adapt the set-
theoretic translation for polymodal logics with finitely
many modalities to encompass an infinite number of ac-
cessibility relations (each one corresponding to a differ-
ent "grade"). As a matter of fact, graded modal logics
are treated as a special case of a more general technique
able to deal with polymodal logics with infinitely many
modalities.

2 Graded modal logics

Graded modal logics have been introduced in the 60's by
Goble [Goble, 1970], who proposed a logic with a fixed
number of modalities, each one associated with a natural
number and representing a different degree of necessity.
As an example, the formula N, A Ny, with m > n,
espresses the fact that both ¢ and ¥ ate necessary, but
¥ is more necessary than . This approach has been
later generalized by Fine (cf. [Fine, 1972]) who, inspired
by Tarskian numerical quantifiers, introduced modal op-
erators associated with natural numbers: the so-called
graded modal operators O, and <y, with n € IN. Fi-
nally, in the 80’s, Fattorosi-Barnaba, De Caro, and Cer-
rato provided sound and complete axiomatizations of
graded modal logics, together with some interesting de-
cidability results [Fattorosi-Barnaba and De Caro, 1985;
De Caro, 1988; Cerrato, 1990; 1992].

Graded modal logics allow one to express conditions
ot the number of objects satisfving a given property
such as: “at least n elements (satisfying relation R) have
property 3”. Formally, the basic system of graded modal
logic K is an extension of K cobtained by adding graded

modalities. The language of X is obtained from the stan-
dard language of pure modal logic by substituting O,
and ¢p, (n € IN) for O and ©. Formulae of K are:

Form(K,®)=p,q,...,=9,9V ¥,¥np,

where p, g, ... stand for propositional letters, and modal
formulae are defined inductively as usual.
It is convenient to define the following abbreviation:

_J =Opp ifn=0;
Olnyp = { COn-19p A ~Onyp  otherwise,
whose intuitive meaning is that v holds at exactiy n R-
accessible worlds.
K is a normal modal logic with respect to Og, and it
is characterized by the following axioms (cf. [Fattorosi-
Barnaba and De Caro, 1985]}:

Ay Fg o for any propositional tautology ;

Az Onp = Onpap;

As Do(p = ¥) = (Onp = On¥);

Ay Oo—(p AY)} — ((Olap AOmY) = Claym(p V),

and by the rules of modus ponens, substitution and ne-
cessitation:

SUB kg a « 8 otg ¢ « [a|Bly;
N f‘? U] =}"? nglp.

The semantics of K is given in terms of Kripke frames.
In particular, the satisfiability relation is defined as usual
over atomic formulae and boolean connectives, while the
clauses for graded modalities are the following ones:

wErOnp S {veW wRvAw g} > n;
wEg e {veW wRvAwEg )} <n

It is worth noting that the standard modal operators
0 and O correspond to Op and Oq, respectively, thereby
showing that K is an extension of K.

It can be showed that K is sound and complete with
respect to the class of all Kripke frames.

THEOREM 2.1 For any formule ¢ € Form(K,®), it
holds thet

b ¢ SF ¢

Soundness is proved by induction on the structural
complexity of ¢, while completeness is proved by using
an argument d la Henkin. .

The soundness and completeness proof given for K can
be immediately generalized to deal with all those graded
modal logics whose accessibility relation either excludes
pairwise distant worlde (e.g. X, D, T) or is transitive
(e.g. ail systems of graded modal logic over 35). In
order to prove the completeness of the remaining grade&
modal logics, it is necessary to work with a weakened
notion of canonical model (cf. [Cerrato, 1990]).
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3 A set-theoretic translation method

In [D’Agostino et al., 1995] D’Agostino et al. proposed a
set-thecretic translation method (O-as-Pow translation,
from now on) to execute modal logics. The main idea
underlying the O-as-Pow translation is to formalize the
notion of validity in Kripke frames by a set-theoretic for-
mula that is provable in the underlying set theory if and
only if the original formula is modally derivable. Accord-
ing to the O-as- Pow translation, any Kripke frame is the
get of its worlde and any world in a frame is the set of
those worlds accessible from it. The theory driving the
translation is a very weak, finitely (first-order) axiom-
atizable set theory, called {3 [D’Agostino et al., 1995),
whose axioms, in the language with relational symbols
€ and C, and functional symbols U, \, and Pow, are:

reylUz <> z€yVzreEz
TEY\z & 2EYAZ Kz,
zCy &> Vz(zE€Ez—zEY),
z € Pouw(y) <> zCy.
A peculiarity of the technique is the weakness of the the-
ory £1: it consists of only four axioms describing the most
rudimentary and basic among the operators of naive set
theory. In particular, notice that neither the extension-
ality axiom nor the axiom of foundation are in Q. Given
a modal formula ¢(P;,..., P,), its translation is defined
as the set-theoretic term ¢*(x,2,,...,2,), with variables
z,2y,...,25, built using U,\, and Pow. Intuitively, the
term ¢*(z,z,,...,Z,) represents the set of those worlds
{(in the frame z) in which the formula ¢ holds. The in-
ductive definition of ¢*(z,z;, ..., z,) is the following:
o P! =1z
o (pVY) =" Uy,
o (mg) =z\ 4%
* (D¢)" = Pow(¢").
For all modal formulae ¢, v, the following results hold,
showing, respectively, the completeness and the sound-
ness of the translation [D’Agostino et al., 1995]:
dbx, ¥ =
@+ Va(Trans(z)AVE(z C ¢°(2,7)) - ¥i(x C ¥°(=, ),
and

Q F Va(Trans(z)AVi(z C ¢*(z,2)) = ¥z C ¢¥*(z, 1))

> é1 ¥,
whete Trans{z) stands for Vy (y € 2 — y C z). It
18 immediate to see that, for frame-complete theories,
the above translation captures exactly the notion of K,-
derivability,

3.1 Polymodal logics with finitely many
modalities

In {D’Agostino et al., 1995}, D’Agostino et al. also show

how to generalize the O-as- Pow translation to polymodal

logics. The basic idea is to mimi¢ a polymodal frame,
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provided with finitely many accessibility relations, with
a set, provided with the membership relation only. To
this end, D’Agostino et al. defined an alternative sernan-
tics for polymodal logic, called p-semantics, that replaces
the plurality of accessibility relations «;, ..., by asin-
gle accessibility relation R and k copies Uy,... Uy of
the universe U. The p-semantics 18 formally defined as
follows.

DEFINITION 3.1 A p-frame ¥ 45 a (k + 2)-tuple
(U, U,...,Ux,R), where U Uy,..., Uy are sets and R
15 ¢ binary relation on U UUL U ... U Us, such that, for
allu,v,tsr UUUU.. . UU, fu€l, uRv and vRL,
thent € U (we will denote this property by Trans®(U)).

The intuition behind the notion of p-frame is the fol-
lowing one. Consider two worlds w,w’' € U/ such that
w < v' in the original polymodal frame. Since only one
accesgibility relation is available in p-frames, we cannot
directly access w' from w (via R) anymore. However, we
can follow a two-step path: first we move to (the unique)
w; € U; R-accessible from w; then we move from w; to
w' via R.

A p-valuation i, is a subset of U x ¢, where ¢ is
the set of propositional variables. In the case of boolean
combinations, the p-valuation =, may be lifted to the
set of all polymodal formulae in the canonical fashion.
In the case of O;, with i = 1,..., k, for all u € U/ we put

ufp 06 & Yo(uRv Av e U; —» Vi{(vRt — t |, ¢)).
A polymodal formula ¢ is p-valid in a p-frame
(U, Uy,....Us, R) if and only if for all p-veluations |,
and all worlds u € U, u |5 ¢ holds.

The link between polymodal frames and p-frames is

formally expressed by the following theorem [D’Agostino
el al., 1995):

THEOREM 3.2 If v, ¢ are polymodal formulae, then
¥ = ¢ if and only if ¢ is p-valid in all p-frames in whick
¥ ts p-valid.

A sei-theoretic counterpart of p-frames can be easily
given in the standard way. As far as the translation
of the modal operators is concerned, on the ground of
the definition of |=,, the set-theoretic semantics of O;¢
becomes:

(Bi8)" = Pow((Z \ 1) U Pow(4")),
where Z=cUy J... U

THEOREM 3.3 Let H be a k-dimensional polymodal
logic extending K @ ... ® K with the ariom schema
v(ay,, ..., ). For any polymodal formula §,

{soundness)
QF YzVy .. Vye(Transi(z) A Aziomg (2,4, .. .,
) =¥z C " (e, 41,.... 0, D)) > ¥ ES

{completeness)
Fi ¢ = QF YzVy, .. Yy (Trans?(z) A Aziompg(z,
$h.. o m)—YE2 C ' (z,0,. .., 1))



where

Aziomy(zim, e yk) is Vﬂ: g \‘"(1“ Wy Ui, 5‘))),
and Trans®(z) stands for YWz (y€ 2Az €z —yC1)
that és, z C Pow(Pouw(z)).

4 Translating graded modalities

The general scheme followed for applying the set theo-
retic translation is the one suggested by [Ohlbach et al.,
1995]: atwo-step translation that first transforms graded
modal logic into a polymodal logic with infinitely many
modalities, and then reduces derivability in such a poly-
modal logic to derivability in a suitable first-order set
theory.

A graded modal logic expresses properties of different
(infinitely many) modalities which are all referring to
the same accessibility relation. In other words, infinitely
many Kripke semantics are provided over the same ac-
cessibility relation scheme. The task of the first step
of the translation is that of rewriting the semantics of
a graded modal logic in such a way to introduce a dif-
ferent accessibility relation for each different modality.
Once this step has been performed, the next task is to
generalize the existing translation for polymodal logics
with finitely many modalities, to the case of infinitely
many ones.

The advantange of using the O-as- Pow translation is
its ability of dealing with non-first-order axiomatizable
polymedal logics. This fact has two important conse-
quences: on the one hand, it allows one to naturally
translate the polymodal counterpart of X (K g), which is
indeed non-first-order axiomatizable; on the other hand,
it can be_applied to non-first-order axiomatizable log-
ics over K. A further advantage is the fact that the
technique introduced is very general and can in fact be
employed to translate polymodal logics with infinitely
many modalities.

4.1 Polymodal logics with infinitely many
modalities

According to Kripke semantics, & K-formula of the form
Ong is true at a given world z of a frame F = (W R) if
and only if there exists ¥ C R(z) of cardinality greater
than n and such that ¢ is true at any world y € Y.

An alternative interpretation for K can be obtained
introducing & new class of worlds, denoted by Wy, repre-
senting sets of accessible worlds (Wy C Pow(W)). The
single accessibility relation R can now be replaced by the
denumerable set of relations {R, : n € IN}, where R,
associates a given world x with those elements of Wy
having cardinality greater than n. A further accessibil-
ity relation E will be used to associate a given element
of Wy with its elements. The situation is described by
the following picture:

n n
R E i
) va
z becormnes z Rn Y
¥n In

The alternative semantice described above suggests
the introduction of the following modal logic Kg. The
language of K is obtained from that of K by substi-
tuting (n), [n], ¢, and O for ¢y, and O,. Formulae are
defined as usual, and dencted by:

Form(?5,¢) =04, .., pVY, (ﬂ)‘P, <>IP
The intuitive meaning of the newly introduced symbols
is the following:
{n)p is true at a given world if and only if there exists
an R,-accessible world where  holds;
Qg is true at a given world if and only if there exists
an E-accessible world where ¢ holds.
It is immediate to see that $n,p and O,p correspond to
{n)0p and [n]<p, respectively. Clearly, on the ground of
this definition, K £ can turn out much more expressive
than K, since one can combine the modal operators of
K g arbitrarily.
DEFINITION 4.1 Azioms and rules of Kg are the
following:
N1 proposstional logic azioms together with modus po-
nens;
N2 the azioms of K for [n] and O:
[r)(¢ — ¢) = (Inle ~ [n]¥),
O(p — ¥) = (Op — DY);
NS the rule of necessitation for [n] snd Q:
ifFg, @ then F_ [n]p,
if by, v then bg, Oyp;
Ny [0}0p — [n]Op;
N5 (n}Op — (n}Op;
N6 [n)p — [n + Lp;
N7 {n+ m)D(pV $) — ((n)Oyp V (m)Dp);
N8 ({n)B{p A¥) A (m)Q(p A —¥)) — (n+m + 1)0p.
The presence of axioms N1-N3 ensures the possibility
to give a semantics to Kg eimply considering it as a
particular polymodal logic. _
It can be shown (cf. [Ohlbach et ol., 1995]) that K
is not first-order axiomatizable. -
The next question to answer is relative to the sound-
ness and completeness of K i with respect to the chosen
semantics. The soundness of Kg can be easily estab-

lished. As for completeness, a partial result can be ob-
tained making use of the following translation function:
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DEFINITION 4.2 Let I ; E(T{'Lb) - L(KE, ®) be
the function that maps formulae of K in formulae of K g
according to the following rules:

O(p)=pforallpe d;

I{~p) = ~Ii{p);

N{p o ¢¥) = O{e) o NI{y)) per o € {A,V,—, o}

I{Oayp) = (n) O (p);

[(Onyp) = [p]O(g).

The above translation function is sound and complete
(cf. [Ohlbach et al., 1995)):

THEOREM 4.3 For any formula ¢ € L(K, ®)
Fr v if and only if b, ().

From the above result, we derive the completeness of
K g for the fragment of the language consisting of the
translation of K-formulae (cf. [Ohlbach et al., 1995)):

THEOREM 4.4 For any formula p € L(K,®)
f Fr, B(p) then Fx_I(p).

The above theorem guarantees the possibility of us-
ing the system K g as an intermediate system for the
tranelation described in the next section.

4.2 The set-theoretic translation of graded
modal logics

The logic Kz can be seen as the extension of a normal
modal logic Kz, where R is the set of accessibility re-
lations {R; : : € N} U {E}, with the axiom ¥ = N4
A...A N8. From = general point of view, the problem
we want to solve is to design a (set-theoretic) translation
method that can be applied to a logic A extending Ky
with a (possibly non-first-order) axiom ¥(p;,, ..., pjm?.
Kg will thus be considered as a particular case in which
ﬂ’(P_n, lpju) lﬂ;w

A frame for H is a structure F = (W, {R;};ene),
where INZ stands for IN U {E). Since H is a polymodal
logic with infinitely many modalities, in order to apply
the set-theoretic translation method is necessary to de-
fine a semantics that allows us to consider only one a¢-
cessibility relation, to be interpreted by the membership
relation €. The fact that we must deal with infinitely
many modalities implies that we cannot use the tech-
nique introduced in [D’Agostino et al,, 1995]. The key
definition for the proposed semantics is the following no-
tion of p-frame.

DEFINITION 4.5 .
Given o frame F = (W, {R,},ens) for H, a p-frame
is a pair (S, R), where:

e S= WUUin' U:UINE | where the U; ’s are pairwise
distinct copses of W
e R is a binary relation on S such that

i. Ywe Wt € S\(WUN®) 2 e S (wRtAtRz —
* € WUNE);
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ii. Yw € W,i € INF it is not the case that wRi and
He S\ (WUNE) (wRt ALRS);
ii. Yw € W,t,u,€ S\ (W UINF),i ¢ N® (wRt A
wRu AtRiAuRi — 1t = u);
iv. vt € S\(WUNE),i,j e NZ (tRiAtRj —i=
i)-
For example, the elements z,,...,z4 below are those
in relation R; with w. The element ¢ of U; is introduced

to simulate such a relation, and the element 1 is used to
determine the index of the relation.

.i. a1y

L) L] *ry
weW tel;

*l3

*Ty

As for the semantics described in the case of finitely
many modalities, a p-valuation |, is a subset W x @
asgigning truth values to propositional variables at W-
worlds only. The extension of |5, to all H-formulae is

inductively defined as follows:
w k=p —¢ if and only if w &, ¢;
whEp,eVyifand only if wEp g or w5, ¢
w |, [i]e if and only if Vi(wRt ALRi — VY(tRvAv #
i—~vp )

The foliowing results guarantee that the proposed se-
mantics can be safely used in place of the usual one:

LEMMA 4.6 Given a p-frame (S, R), there erisis a
frame (W, {R;}ieme) in which are valid all the formulae
p-valid in (S, R).

LEMMA 4.7 For any frame (W, {R};ene), there ez-
ists a p-frame (S, R) in whick are p-valid all the formulae
valid in (W, {R;};en=)-

Any p-frame for A can be embedded in a model of a
suitable set theory in such a way that W is a set, and
any w € W is mepped in a set of elements of w;’s for
i € INE. Any w; is of the form w; = {v : wRiw} U {}.

The translation for propositional letters and boolean
connectives is defined ae usual:

P =z
(~p)* =2\ ¢"
(pVY) =" Uy".
The translation of the different modalities must be given

according to the p-semantics and replacing the accessi-
bility relation by the membership relation:

w € ([ile)* & vi(t.€ wAi €t — Yu(v € t\{i} — v € ")),

from which it can be easily checked that the translation
of [{]p, for i € NE must be defined as follows:

([)e)* = Pow((S\ Rng({i} x¢ §)) U Pow(y® U {i})).



Let  be the sub-theory of the theory Q. introduced
in [Benthem ef al., 1995] and defined as follows:

=04 {}+ x¢+ Rng.
The following two theorems state the completeness

and the soundness of the proposed translation with re-
spect to 0

THEOREM 4.8 (Completeness) For any modal
formula p € L(K3) we have that

g = OFVVe(Trans(z,y) A Aziomg(z,y) —

Vi(z C ¢*(z, . D)),
where Trans®(z,y) stands for the conjunction of the
clauses on R introduced in the definition of p-frame, and
Aziomg(z,y) is the translation of the formula consisting
of the conjunction of the azioms of H.

THEOREM 4.9 (Soundness) For any modal for-
mule p € L(Ky)

1+ Yy¥z(Trans®(z,y) A Aziomg(z,y) —

Vi(z C o' (2,1, 7)) =5 ¢
Once we have defined the set-theoretic translation in
the context of a generic extension H of Ky, the result
for K g follows as a special case:

Q - Vy¥z(Trans’(z,y) A Aziomp (z,y)

_ i V‘E.("-‘ g. #"(-’-"m z-))) :bfs #

Fr, ¢ = 0 Vyiz(Trans’(z,y) A Aziomg, (z,y)

— Y&z C " (2,5, 9))),

where A:iom}?!(z,y) is the translation of ¥, namely
Vi(z C ¥ (z,, ).

Notice that the soundness of the translation is stated
with respect to the validity in Kg, since we do not
have the completeness of K g with respect to derivabil-
ity. However, using the translation function II we can
prove the following theorem:

THEOREM 4.10 For any formula p € L(K) we have
that:

Fe e & QF VaVy(Trans?(z,y) A Aziomg _(z, y) —
vE(z C (IL{¢))*(z.v. ).

5 Conclusions and further directions

In this paper, we generalized the D-as-Pow translation,
proposed by D'Agostino et al. in [D'Agostino et al,
1995], to apply it to graded modal logic. The result-
ing method allows us to support automated reasoning
in a large class of knowledge representation formalisms
that can be reduced to graded modal logic. It can actu-
ally be applied to polymodal logics with infinitely many
modalities. Indeed, there are no axioms in the underly-
ing set theory constraining the behavior of the different
modalities; such a behavior is govemed by (the trans-
lation of) the axioms of the considered polymodal logic.
As an example, it can be exploited to execute two-sorted
metric temporal logics [Montanari and de Rijke, 1995],
provided that they are reinterpreted as (a special kind
of) propositional dynamic logics.
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