
Learning Extended Logic Programs 
Katsumi Inoue 

Department of Electrical 
and Electronics Engineering 

Kobe University 
Rokkodai, Nada-ku, Kobe 657, Japan 

inouefieedept.kobe-u.ac.jp 

Abstract 
This paper presents a method to generate non­
monotonic rules with exceptions from posi­
tive/negative examples and background knowl­
edge in Inductive Logic Programming. We 
adopt extended logic programs as the form 
of programs to be learned, where two kinds 
of negation—negation as failure and classical 
negation—are effectively used in the presence 
of incomplete information. While default rules 
axe generated as specialization of general rules 
that cover positive examples, exceptions to 
general rules are identified from negative ex­
amples and are then generalized to rules for 
cancellation of defaults. We implemented the 
learning system LELP based on the proposed 
method. In LELP, when the numbers of posi­
tive and negative examples are very close, ei­
ther parallel default rules with positive and 
negative consequents or nondeterministic rules 
are learned. Moreover, hierarchical defaults 
can also be learned by recursively calling the 
exception identification algorithm. 

1 Introduction 
Inductive logic programming (ILP) is a research area 
which provides theoretical frameworks and practical al­
gorithms for inductive learning of relational descriptions 
in the form of logic programs [12, 10, 4]. Most previous 
work on ILP consider definite Horn programs or classi­
cal clausal programs in the form of logic programs to be 
learned. However, research work on knowledge represen­
tation in AI has shown that such monotonic programs 
are not adequate to represent our commonsense knowl­
edge including notions of concepts and taxonomies. In 
this respect, there have been much work on nonmono­
tonic reasoning in AI . To learn default rules or concepts 
in taxonomic hierarchy, we thus need a learning mecha­
nism that can deal with nonmonotonic reasoning. 

On the other hand, recent advances on theories of logic 
programming and nonmonotonic reasoning have revealed 
that logic programs with negation as failure (NAF) is an 

Yoshimitsu Kudoh 
Division of Electronics 

and Information Engineering 
Hokkaido University 

N-13 W-8, Sapporo 060, Japan 
kudoOdb.huee.hokudai.ac.jp 

appropriate tool for knowledge representation [3]. Nor­
mal logic programs (NLPs) are the class of programs 
in which NAF is allowed to appear freely in bodies of 
rules. NLPs are useful not only to represent default rules 
or rules with exceptions but also to write shorter and 
clearer programs than definite programs in many cases 
[5]. Learning NLPs has recently been considered in such 
as [2, 15, 5, 11]. 

While learning NLPs is an important step towards a 
better learning tool, there is still a limitation as a knowl­
edge representation tool: NLPs do not allow us to deal 
directly with incomplete information [8]. NLPs automat­
ically applies the closed world assumption (CWA) to all 
predicates, and any query is answered either yes or no, in 
which the latter negative answer is the result of CWA. In 
the context of inductive concept learning, the automatic 
application of CWA is not appropriate in the presence of 
both positive and negative examples. Positive examples 
represent instances of the target concept, while nega­
tive examples are non-instances. By CWA other objects 
are assumed non-instances, but then the role of negar 
tive examples is not clear because it is as if we supply 
a complete classification of all objects. This causes the 
paradox pointed out by De Raedt and Bruynooghe [6]: 
if everything is known, why should we still learn some­
thing? In the real world, we may not know whether some 
objects are positive or negative. But such incomplete in­
formation cannot be represented by NLPs. 

To overcome the above problem of NLPs, we propose 
in this paper a new learning method which can deal with 
incomplete information in the form of extended logic pro­
grams (ELPs). ELPs are introduced by Gelfond and 
Lifschitz [8] to extend the class of NLPs by including 
classical negation (or explicit negation). The semantics 
of ELPs is given by the notion of answer sets, and is an 
extension of the stable model semantics. The answer to a 
ground query A is either yes, no, or unknown, depending 
on whether the answer set contains A, ¬, or neither. 
Using ELPs, the role of negative examples becomes clear, 
and any object not contained in either positive or nega­
tive examples is considered unknown unless the learned 
theory says that it must or must not be in that concept. 

In this paper, we present a system, called LELP 
(Learning ELPs), to learn default rules with exceptions 

176 AUTOMATED REASONING 



in the form of extended logic programs given incom­
plete positive and negative examples and background 
knowledge. LELP first generates candidate rules from 
positive examples (or negative examples if non-instances 
are much more than instances) and background knowl­
edge in an ordinary ILP framework. Exceptions can 
be identified as negative examples (or positive examples 
if candidate rules have negative consequents) that are 
derived from the generated monotonic rules and back­
ground knowledge. Default rules with NAF are then 
computed by specializing candidate rules using the open 
world specialization (OWS) algorithm. This OWS algo­
r i thm is closely related to Bain and Muggleton's CWS 
algorithm [2], but works better in the three-valued se­
mantics. Then, default cancellation rules are generated 
to cover exceptions using an ordinary ILP framework. 

In the real world, it is not easy to know that a general 
default rule should have the positive or negative conse­
quent. In LELP, it is determined according to the ratio 
of positive examples. Nevertheless, if it is stil l hard to 
know which is more general, LELP can generate nonde-
terministic rules in the context of the answer set seman­
tics. Furthermore, by calling the OWS algorithm recur­
sively, LELP can generate hierarchical default rules. 

The rest of this paper is organized as follows. Sec­
tion 2 outlines how our system LELP produces ELPs to 
learn simple default rules. Section 3 extends LELP to 
deal wi th complex concept structures with hierarchical 
exceptions. Section 4 presents related work, and Sec­
tion 5 concludes the paper. 

where L stands for the literal complementary to L. 
Then, each answer set is the set of atoms in an extension 
of the default theory. We say that a literal L is entailed 
by an ELP P if L is contained in every answer set of 
P. While we adopt the answer set semantics in this par 
per, other semantics for ELPs may be applicable to our 
learning framework with minor modification. 

We call a rule having a positive literal in its head pos­
itive rule, and a rule having a negative literal in its head 
negative rule. In the following, we denote classical nega­
tion ¬as - and NAF not as \+ in programs. 

The completeness and consistency of concept learn­
ing (see [10, 4] for instance) can be reformulated in the 
three-valued setting as follows. Let BG be an ELP as 
background knowledge, E a set of positive/negative l i t ­
erals as positive/negative examples, and Ra set of rules 
as hypotheses. R is complete wi th respect to BG and E 
if for every e € 25, e is entailed by BG U R (R covers e). 
R is consistent wi th BG and E if for any e € E, eis not 
entailed by BGuR (R does not cover e). Note here that 
positive examples are not given any higher priority than 
negative ones. Namely, both positive and negative exam­
ples are to be covered by the learned rules that are con­
sistent with background knowledge and examples. Thus, 
we wil l learn both positive and negative rules: no CWA 
is assumed to derive non-instances (see also [6]). 

Although both positive and negative rules are gener­
ated by LELP, each default rule for the target concept 
should be either positive or negative. In LELP, it is de­
termined according to the ratio of positive examples to 
all objects. In the following, we assume that positive rule 
is learned as a general rule unless otherwise specified. 

2.2 Generating General Rules 
In Algorithm 2.1, given positive (resp. negative) exam­
ples E and background knowledge BG,LELP generates 
general rules T to cover every example in E using an or­
dinary ILP technique. We denote this part of algorithm 
as GenRules(E,BG,T). In generating positive (resp. 

INOUE & K U D O H 177 



2.3 Specializing Rules using NAF 
The general rules computed to cover the positive (resp. 
negative) examples by GenRules(E,BG,T) may also 
cover the complements of some of negative (resp. pos­
itive) examples. To specialize general rules, we propose 
the algorithm of open world specialization (OWS). The 
OWS algorithm is closely related to Bain and Muggle-
ton's closed world specialization (CWS) [2]. Like CWS, 
OWS produce rules with NAF as default rules. Unlike 
CWS, however, OWS does not apply the closed world as­
sumption (CWA) to identify non-instances of the target 
concept. In OWS, exceptions are identified as objects 
contained in negative examples (or positive examples if 
the general rule is negative) such that they are proved 
from the general rule with background knowledge and 
positive (or negative) examples. 

In the following OWS algorithm, we assume here that 
each general rule in T is positive. 

2.5 Cancellation Rules 
In the OWS algorithm, the set AB of exceptions is out­
put as a set of ground atoms. However, if exceptions 
have some common properties, this expression is not in­
formative and rules about exceptions are useful. These 
rules work as default cancellation rules. 

After applying OWS, each exception is in the form of 
ground atom whose predicate is a b i Rules about excep­
tions have such abnormal predicates in their heads and 
are results of generalizations of some abnormal atoms. 
When such a common rule cannot be generated or there 
are some exceptions that cannot be covered by such a 
rule, those exceptions are left as they are. 

Since exceptions are not anticipated in general, rules 
about exceptions should be used to derive only excep­
tions. In fact, exceptions are usually minimized in non­
monotonic reasoning. To this end, we apply a limited 
form of CWA here. If a rule about exceptions is too gen­
eral, that is, it derives negative facts more than expected, 
it should be rejected. This test can be done easily using a 
bottom-up model generation procedure. The algorithm 
to generate rules about exceptions is as follows. 

178 AUTOMATED REASONING 



3 Extension 
In this section, we extend LELP to learn more complex 
concept structures. 

3.1 N o n d e t e r m i n i s t i c Ru les 
When the number of positive examples is close to that 
of negative examples, it is difficult to judge whether the 
general rule should be positive or negative. Two solu­
tions can be considered to this problem: (1) parallel de­
fault rules, and (2) nondeterministic rules. Parallel de-
fault rules are generated when exceptions exist for both 
positive and negative rules in parallel (e.g., mammals 
normally do not fly except bats, and birds normally fly 
except penguins). Nondeterministic rules are generated 
when some object is proved to be positive and negative 
by a program such that a contradiction occurs. An ex-
tension of Algorithm 2.1 is shown in Section 3.2, where 
hierarchical defaults can also be learned. 

In the following example, if the ratio of positive ex­
amples is between 40% and 60%, parallel default rules 
or nondeterministic rules are generated. 

INOUE & KUDOH 179 



180 AUTOMATED REASONING 



4 Related Work 
Bain and Muggleton's CWS algorithm [2] has been ap­
plied to non-monotonic versions of CIGOL and GOLEM 
in [l] and a learning algorithm that can acquire hier­
archical programs in [l5] CWS produces default rules 
with NAF in stratified NLPs. Since CWS is based on 
CWA in the two-valued setting, it regards every ground 
atom that is not contained in an intended model as an 
exception. In LELP, on the other hand, OWS is em­
ployed instead of CWS, and incomplete information can 
be represented in ELPs with the three-valued semantics. 

TRACYnot by Bergadano et al. [5] learns stratified 
NLPs using trace information of SLDNF derivations. 
Since this system needs the hypothesis space in advance, 
it does not invent a new predicate like abiexpressing 
exceptions, and hence seems more suitable for learning 
rules with negative knowledge and CWA rather than 
learning defaults. Martin and Vrain [ll] use the three-
valued semantics for NLPs in their inductive framework. 
Since they do not adopt ELPs, CWA is still employed 
and two kinds of negation are not distinguished. 

While no previous work adopts full ELPs in the form of 
learned programs, a limited form of classical negation has 
been used in [6, 7]. De Raedt and Bruynooghe [6] firstly 
discussed the importance of the three-valued semantics 
in ILP. However, since they did not allow NAF, an ex­
plicit list of exceptions is necessary for each rule, which 
causes the qualification problem in AL Wrobel [16] also 
used exception lists to specialize over-general rules, but 
their underlying language is monotonic first-order. Di-
mopoulos and Kakas [7] propose a learning method that 
can acquire rules with hierarchical exceptions. They also 
do not use NAF to represent defaults, but adopt their 
own nonmonotonic logic. Moreover, using the approach 
of [7], one has to determine whether each negative infor­
mation should be used in the usual specialization pro­
cess or in the exception identification process. In our 
approach, such distinction can be clearly done by an ap­
propriate usage of NAF and classical negation. 

Finally, in any previous work, nondeterministic rules 
cannot be generated, and hence commonsense knowledge 
with multiple extensions cannot be learned. 

5 Conclusion 
This paper proposed new techniques to learn nonmono­
tonic rules with exceptions, and introduced the learning 
system LELP. Extended logic programs are adopted as 
program forms, in which two kinds of negation are ef­
fectively used in the presence of incomplete information. 
Default rules are generated using OWS, and their excep­
tions are then generalized to cancellation rules. LELP 
can also learn parallel/nondeterministic rules and hier­
archical defaults within the three-valued semantics. 

In this paper, we treated every explicit negative in­
formation as an exception to a positive hypothesis. In 
the real world, however, negative knowledge may often 
be irrelevant to the concepts to be learned. In this re­
spect, a method of separation of noise from exceptions 

has been proposed in [15], Another approach is that we -
may add information that each concept can have excep­
tions or not or that CWA can be applied or not. These 
extensions can easily be accommodated within LELP. 

References 
[1] Michael Bain. Experiments in non-monotonic first-

order induction. In: [12], pages 423-436. 
[2] Michael Bain and Stephen Muggleton. Non­

monotonic learning. In: [12], pages 145-161. 
[3] Chitta Baral and Michael Gelfond. Logic program­

ming and knowledge representation. Journal of 
Logic Programming, 19/20:73-148, 1994. 

[4] Francesco Bergadano and Daniele Gunetti. Induc­
tive Logic Programming: Prom Machine Learning 
to Software Engineering. MIT Press, 1996. 

[5] F. Bergadano, D. Gunetti, M. Nicosia and G. Ruffo. 
Learning logic programs with negation as failure. In: 
Luc De Raedt, editor, Proceedings of ILP-95, pages 
33-51, K.U. Leuven, 1995. 

[6] Luc De Raedt and Maurice Bruynooghe. On nega­
tion and three-valued logic in interactive concept-
learning. In: Proceedings of ECAI '90, pages 207-
212, Pitman, 1990. 

[7] Yannis Dimopoulos and Antonis Kakas. Learning 
non-monotonic logic programs: learning exceptions. 
In: Nada Lavrac and Stefan Wrobel, editors, Pro­
ceedings of ECML-95, pages 122-137, LNAI 912, 
Springer, 1995. 

[8] Michael Gelfond and Vladimir L i f s i t z . Clas­
sical negation in logic programs and disjunctive 
databases. New Generation Computing, 9(3,4):365-
385, 1991. 

[9] Katsumi Inoue and Yoshimitsu Kudoh. Learning 
default rules in extended logic programs. Submitted 
for publication, 1997 (in Japanese). 

[10] Nada Lavrac and Saso Dzeroski. Inductive Logic 
Programming: Techniques and Applications. Ellis 
Horwood, 1994. 

[11] Lionel Martin and Christel Vrain. A three-valued 
framework for the induction of general logic pro­
grams. In: Luc De Raedt, editor, Advances in 
Inductive Logic Programming, pages 219-235, IOS 
Press, 1996. 

[12] Stephen Muggleton, editor. Inductive Logic Pro­
gramming. Academic Press, London, 1992. 

[13] Stephen Muggleton and Cao Feng. Efficient induc­
tion of logic programs. In: [12], pages 281-298. 

[14] Raymond Reiter. A logic for default reasoning. Ar­
tificial Intelligence, 13:81-132, 1980. 

[15] Ashwin Srinivasan, Stephen Muggleton and Michael 
Bain. Distinguishing exceptions from noise in non­
monotonic learning. In: Proceedings of ILP-92 
ICOT, 1992. 

[16] Stefan WrobeL On the proper definition of minimal­
ity in specialization and theory revision. In: Pavel 
B. Brazdil, editor, Proceedings of ECML-93,ages 
65-82, LNAI 667, Springer, 1993. 

INOUE & KUDOH 181 


