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Abstract

Explicit preferences on assumptions as used
in prioritized circumscription [McCarthy, 1986;
Lifschitz, 1985; Grosof, 1991] and preferred
subtheories [Brewka, 1989] provide a clear and
declarative method for defining preferred mod-
els. In this paper, we show how to embed
preferences in the logical theory itself. This
gives a high freedom for expressing statements
about preferences. Preferences can now depend
on other assumptions and are thus dynamic.
We elaborate a preferential semantics based
on Lehmann's cumulative models, as well as
a corresponding constructive characterization,
which specifies how to correctly treat dynamic
preferences in the default reasoning system EX-
CEPT [Junker, 1992].

Keywords: nonmonotonic reasoning, common sense
reasoning.

1 Introduction

In the absence of complete information, it is necessary to
base decisions and conclusions on assumptions. If those
assumptions were arbitrary, the resulting decisions and
conclusions would be arbitrary as well. Depending on
the given information, best assumptions are chosen.

Different ways for defining best assumptions (or de-
fault rules) have been studied in nonmonotonic reason-
ing. A sound and declarative method is provided by
preferences on assumptions. They are e.g. used in prior-
itized circumscription [McCarthy, 1986; Lifschitz, 1985;
Grosof, 1991] and for preferred subtheories [Brewka,
1989].  Preferences decide which assumptions will be
selected first in presence of conflicts between assump-
tions. In absence of conflicts, they don't have any effect.
Furthermore, preferences enable a preferential semantics
leading to clear logical properties, as well as construc-
tive characterizations in form of inductive definitions.
Finally, they allow to express the important specificity
principle in inheritance systems in a clear way. All these
points are difficult to achieve in alternative approaches
such as default logic. A problem, however, is how to
specify preferences:
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1. Static preferences are specified outside the logical
theory to which they apply. They are given in form
of priorities [McCarthy, 1986; Lifschitz, 1985] or in
form of a partial order on assumptions [Brewka,
1989; Grosof, 1991]. Specifying such an ordering
is a minutely work. It would be preferable to write
down quantified and conditional statements on pref-
erences in the logical theory itself.

2. Implicit preferences are used in conditional ap-
proaches [Geffner and Pearl, 1992; Kraus et a/,
1990]. Default rules of the form o#{ \~ ji can be
(partially) ordered by exploiting specificity relations
between the contexts a,. However, other kinds of
preference knowledge cannot be expressed. We refer
the reader to [Brewka, 1994] who argues in favour
of explicit preferences.

In order to allow a clear, explicit, and flexible specifica-
tion of preferences, we embed them in the logical the-
ory itself. As a consequence, preferences on assumptions
can depend on (other) assumptions and thus become dy-
namic. We argue that those dynamic preferences are
quite natural in human commonsense reasoning and il-
lustrate this by the following example:
Jim and Jane have the following habits:

1. Normally, Jim and Jane go to at most one attrac-
tion each evening.

2. Jim prefers the theatre to the night club.
3. Jane prefers the night club to the theatre.

4- If Jim invites Jane then he respects her preferences
(and vice versa).

5. Normally Jim invites Jane.
6. An exception to 1 is Saturday.

7. An exception to 5 is Jim's birthday, where Jane in-
vites Jim.

If no further information is given we conclude that Jim
and Jane will go to the night club. When we learn that
Jim has birthday we revise this and conclude that they go
to the theatre. However, the day in question is a Satur-
day. Hence, they should go to both attractions. Finally
the news tell that the theatre is closed for work. Thus we
again conclude that they go to the night club.



Dynamic preferences have been examined in the scope
of the TASSO-project on graphic configuration under
uncertainty. The default reasoning system EXCEPT
Il uses dynamic preferences for determining an or-
der in which assumptions are inspected [Junker, 1992;
Junker, 1995]. Problems are provided by cyclic prefer-
ences, as well as by new preferences that contradict the
already chosen part of the order. Brewka succeeded to
integrate dynamic preferences into default logic [Brewka,
1994] and logic programming [Brewka, 1996]. Defaults
are applied in a certain order that is chosen initially.
The dynamic preferences obtained as consequences of
defaults must be consistent with this order.

Both approaches do not guarantee the existence of so-
lutions. Furthermore, they miss a clear preferential se-
mantics as well as a constructive characterization. In
this paper, we present a solution to these problems:

1. In section 2, we show how to embed assumptions
and preferences in a logical language.

2. We seek a preferential semantics for static prefer-
ences in section 3. We analyse limits of existing
approaches and elaborate a preferential semantics
based on cumulative models [Kraus et a/., 1990].

3. We extend this semantics to dynamic preferences
in section 4. The resulting nonmonotonic inference
relation inherits all properties of Lehmann's system
C [Kraus et a/., 1990].

4. This semantics then points out how to modify the
constructive approach in [Brewka, 1989; Junker and
Brewka, 1991] to dynamic preferences.

Finally, we discuss a simple example in section 5, as well
as related work in section 6.

2 Preferences in a Logical Language

ID this section, we show how to express preferences on
assumptions in a first-order language. For this purpose,
assumptions must be named by ground terms. Similar to
circumscription, we do not change the syntax of a logical
language, but introduce special predicate symbols:

o a unary predicate symbol ¢ for chesen assumptions’.
s a binary predicate symbol «— for preferences.

If 1,11,y are ground terms then c¢(f) means that an as-
sumption of name { is chosen and ¢; «— t; means that
the assumption of name ¢, is preferred to the assumption
of name {5. Let £ be a first-order language having the
predicate symbols ¢, ~— and an unsatisfiable constant 1.
Named defanlt rules in the sense of [Poole, 1988] can
casily be translated to this quite technical representa-
tion. A default rule d : & O % of name d means that «
normally implies 7. 1t can be written as a A e(d) D 7.
We write our example directly in the translated form.
We abbreviate night club by nc and theatre by k. Fur-
thermore, we introduce the terms onep, gop{z), thup

n fact (1) corresponds to ~ab(t).

for naming default rules; :

Vz.c(gop(z)) O go(z)

clonep} A go{nc) A go(th) D L

invites(jim, jane) D gop(nc) — gop(th)
invites(jane, jim) O gop(ih) — gop{nc)

c(invp) D tnvites(jim, jane)

saturday D -c(onep})

hasBirthday(jim) D —e(invp) A invites(jane, jim)

D LD

Since the assumptions invp, onep influence decisions
about the assumptions gop{nc) and gop(th), but not
vice versa, we put them into a level of higher priority by
adding the following preferences:

7. Vz.onep — gop(x)

8. Vz.nwp — gop(z)

In order to simplify the discussion in this paper, we fol-
low [Poole, 1988] and suppose that all possible assump-
tions are given explicitly. Furthermore, we suppose that
the set of these assumptions is finite:

1. Let A be a finite set of ground terms of £ that serve
as names of assumptions,

2. Let A := {c(t) |1 € N} be the corresponding set of
assumptions.

Thus, only assumptions from 4 will be gelected and only
preferences between elements of A will be relevant.
Given a logical theory I' C £, we consider subsets of A
that are consistent w.r.t. T'. Let {r := {A C A| AUT &
L} be the set of these assumption sets. The following
sections show how to define preferred elements of Cpr.

3 Static Preferences

In this section, we suppose that static preferences in form
of a strict partial order < C N x N are given.

We first examine existing approaches for defining pre-
ferred assumption sets. The first one follows the idea
of a preferential semantics [Shoham, 1987]. We lift the
partial order < on assumption names to a partial order
< on assumption sets and select the <g-minimal ele-
ments of Cp. We use an order proposed in [Geffner and
Pearl, 1992; Grosof, 1991], where worse assumptions are
exchanged by better assumptions:

Definition 3.1 Let <g C 24 x 24 s.t.
Ay <a As lﬂAl -',E Ay and

Ve(t) € Az — A 3e(t*) € Ay — Az 11" <t

A C A is called G-preferred assumption set of T iff 1.
A€Cr and 2. A* <g A implies A* ¢ Cr.

The order <g is transitive and irreflexive (Geffner and
Pearl, 1992]. Since the set A is finite the existence of
G-preferred assumption sets is thus guaranteed,

The second approach considers a partial order an in-
complete specification of a strict total order < C N x N
[Brewka, 1989). A strict total order on a finite set A
uniquely defines an enumeration {;,...,t, of & that
respects < in the sense that ¢; < & iff j < & for all
jk=1,..n
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We inspect the assumptions in increasing order and se-
lect them if this selection is consistent w.r.t. the already
chosen assumptions:

Definition 3.2 Lel < C N x N be a strict total order
and £y, ..., 1, be the enumeration of N that respecis <.
Let Ag:=0 end

A fTUAU{e(tiv)} B L
A1 =
™ { Ai U{e{tiy1)) otherwise

Then A, is the selection of <. A is a B-preferred as-
sumplion sct iff A 13 the selection of a strict iolal order
< which satisfies < C <.

This constructive definition immediately gives rise to an
algorithm for computing B-preferred assumption sets for
* decidable sub-languages £. [Junker and Brewka, 1991]
shows that every B-preferred assumption set is a G-
preferred one, but the inverse is not true. A counterex-
ample is the partial order 1) < 13, 12 < t4 and the the-
ory Iy = {—-c(tl) V me(ty), —e(ty) Vv ﬂc(tg), —-c(tl) W
=e(t4), —clla) V —efts), —e(ta) V —c(ts)}. When deter-
mining B-preferred theories, we must start an enumera-
tion by 13 or 13. Thus, we obtain two B-preferred sets,
namely {¢(11}) and {c{t2)}. The set {c(23),c(t4)} is G-
preferred, but not B-preferred. Hence, G-preferred as-
sumption sets cannoi serve as a preferential semantics
for B-preferred assumption sets.

Thus, we have two approaches for treating static pref-
erences on assumptions. G-preferred assumption sets
seem to be too weak since we would not accept the worst
choices {c(t3), c(tq)} as long as the better choices {c{t,)}
and {e(t2)} are possible.

If we vary the example we observe that there is no
sirict partial order <’ on assumption sets that produces
B-preferred assumption sets as minimal elements of Cr.
Consider the following theories and their B-preferred as-
sumption sets:

a: {e(t1)}, {e(t2)}

. FU U {_'c(tl)}: {C(tg)}, {C(ISL C(t.q)}
[a:=ToU{-e(ta)}:  {e(t1)}, {c(ta), e(ts))}
F3:=T;UTa: {c(ta), e(ta)}

Assume that the <'-minimal elements of Cr coincide
with the B-preferred assumption sets. From the last
case, we infet that {e(fa),c(t4)} is <'-smaller than the
sets @, {e(t3)}, and {e(t4)}. The second and third cases
show that neither {e(f;)}. nor {c(t2)} are <’-smaller
than {c(f3),c(fa)}. Hence, the set {c(ta),c(te)} must
be a B-preferred set of T, which is a contradiction. We
conclude that the simple semantical framework is not
sufficient to give a preferential semantics to B-preferred
assumption sets.

Rescue comes from Lehmann’s more general frame-
work [Kraus et al., 1990), which is based on structures
of the form C :=(8,!, —} where § is a set of states and
— € & x 8 is an antisymmetric relation on states, Each
state s € S is labelled with a set I(s) of worlds (i.e. log-
ical interpretations). A state s satisfies a theory I if al]

-
T
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interpretations in {({s) satisfy I'. Let Sr be the set of all
states satisfying I'. A state s is a «-minimal element of
Sr iff 5 € Sp and s* «~— s implies 5* ¢ Sr. ¢ can non-
monotonically be inferred from I' (written as [ ¢ 9)
iff all ~—-minimal elements of St satisfy .

The existence of —-minimal states is ensured by the
following property: The order — is called smooth on a
set X iff for all s € X there exists a «—-minimal state s*
in X such that 5* = s or 8* «~ 5. C=(8,I,~} is called
a cumulative model iff the order — is simooth on Sp for
all theories V. Lehmann has shown that each cumulative
model defines a nonmonotonic inference relation satisfy-
ing the following basic properties. Properties 4 and 5
together are called cumulativity:

a e a

f Ea=p apcythen f ey
if FaD@, ¥hoathen vy e 8
fahB ey abec fthen a ey
fape B, apcythenaAfhcey

For a given partial order < on assumption names, we
will define a particular cumulative model producing the
B-preferred assumption sets as minimal states. A B-
preferred set is determined by choosing a total comple-
tion of the given partial order. We make this explicit
by including this order in a state. Furthermore, a state
contains an assumption set A and a non-empty set of
worlds that satisfy A. This set of worlds will serve as
the label of a state.

Definition 3.3 Let A C A be an assumption set, W be
8 non-empty set of worlds satisfying A, and < TN x N
be a strict total order s.1. < C <. The triple 5 =
(W, A, <) is called a static state. Let S be the set of oll
static states.

A static state 5 := (W, A, <) is labelled with the set
{(5) := W of worlds. Let St be the set of all static states
satisfying a theory T'. The usage of a set of worlds in-
stead of a single world means that static states represent
incomplete information. If I' contains a disjunction avd
then a state satisfying I' will contain worlds that satisfy
a and worlds that satisfy b.

If a state 5 := (W, A, <) satisfies I" then all worlds w
in W satisfy I', as well as A. Since W is not empty, TUA
is consistent in this case:

TUAKEL

@R B b

if (WA <)€ESr

We compare two static states (W), Ad;,<;} and
(W, Az, <3) if they have the same total order < = <
= <3, This order < gives rise to the following lexico-
graphical order.

Definition 3.4 Let < be a sirict total order and
t1,...,1n be the enumeration of N that respects <. Then
<L C 24 x 24 is defined as follows: Ay <X Ay iff there
exisls an k 8.1 c(ty) € 4y — Ay and

A0 ’{C(h), e .,C(tk_l)} =
Az {e(ta), ..., c(ts-1)



The order <% is a strict total order and it is srnooth on
Cr for all theories I'. B-preferred sets are obtained in the
following way:

Lemma 3.1 A is the selection of < iff A ig the <L.
minimal element of Cr.

We prefer a static state (Wi, A;,<) to (Wy, Az, <) if
Ay <L As:

Definition 3.5 Let s1 = (W}, 41,<;) and 5, =
(Wa, Az, <3) be two static states. The relation <5 C
S x 8 is defined as follows: sy <g 82 ff 1. <1 = <4 and
2 A <t Ay

The resulting relation <g is a strict partial order which
is smooth on all &r. Therefore, (8,1, <g) is a cumula-
tive mode] and has all the desired properties. We now
establish the link to B-preferred assumption sets:

Theorem 3.2 A is a B-preferred assumption set of '
iff there exists @ <g-minimal state s .= (W, A, <) in St.

'Thus, we established a preferential semantics for B-
preferred assumption gets. Note that this result corrects
the approach in [Roos, 1992] who gave a first trial for
such a semantics.

4 Dynamic Preferences

In this section, we extend the preferential semantics
and the construclive characterization to dynamic pref-
erences. First, we modify the notion of a state. Given a
triple (W, 4, <), we consider all preferences, i.e. ground
formulas of the form t; — iy, that are satisfied by the
state. A preference {; «— tp is satisfied by the state if it
is satisfied by all worids in W,

Definition 4.1 Let A C A be an essumption set, W be
@ non-empty sel of worlds satisfying A, and < C N x N
be a striel total order such that iy < 1y if all worlds
w € W osatisfy 11 — s {Jor 1,12 € N). The triple
5= (W, A4.<) is called a dynamic state. Let T be the
sef of all dynamic staies.

A dynamic state s := (W, A, <) is labelled with the set
{{#) := W of worlds. Let Pr be the sel of dynamic
states satisfying the theory I'. If 5 := (W, 4, <) satis-
fies a theory I" then I' U A is consistent and < respecis
all preferences that can be derived from I' U A in the
following way:

—r,A= {(h,iz) € N x N | TuA |= i, — 12}
Let Wry 4 be the set of all worlds satisfying 'UA. Then:

Lemma 4.1 Let A C A and < C N x N be a strict
total order. s := (Wrua, A, <) is @ dynamic state iff
TUAKE L end —raC <.

We compare two dynamic states 81 = (W1, Ay, <;) and
s = (Wa, Ay, <2) even if the orders <; and <2 are dif-
ferent. s, is smaller than sy iff there is an o € 4; — Ay
such that <; and <g, as well as A, and A agree on the
elements that are <-smaller than o:

Definition 4.2 Let s; = (W), A1,<1) and 8 =
(W3, Az, <2) be two dynamic slates. Let uy,...,u, and
V1, ..., U be the lwo enumerations of N s.1. the first
one res%ects <1 and the second one respects <3. Lel
<p C 2P x 27 be defined as follows: Ay <p Az iff there
exssis a k 5. c(uy) € Ay — Ag ond

1. wi=w fori=1,.. .k
2. A ﬂ{c(u1),...,c(uk_1)} =
AN {c(u;), . .,c(u;_l)}

Lemma 4.2 <p is a strict partial order.

Thus, we obtained a simple preferential semantics for
dynamic preferences. We require that the total order of
a state respects the preferences that are satisfied by all
worlds of the state and we use a kind of lexicographical
order for comparing states with different base orders.

Before showing that <p is smooth and that D ;=
(D,1, <p) is a cumulative model, we give a constructive
characterization of the <p-minimal states of Dp. We
will, step by step, construct an assumption set A, as
well as a corresponding order <. Since preferences are
dynamic we have {c avoid certain pitfalls.

1. We can obtain cyclic preferences such as ¢; « {3 and
ty — 1;. A relation « has a cycle iff its transitive
closure —1 is not irreflexive,

2. We can obtain preferences {y — i3 although we have
already chosen t; < 3.

If the first case is obtained by the initial preferences
which are derived from I' then there is no dynamic state
satisfying I':

Definition 4.3 A theory T is ceiled D-consisient iff T
ts consistent and "'I-tﬁ ss irreflezive.

Lemma 4.3 There ezisis a dynamic state sotigfying T
tff ' ts D-consistent.

The question is what to do if any of the two problematic
cases above is obtained after adding an assumption o
to a set A of already selected assumptions. The answer
is quite simple: Don’t select o because otherwise the
current construction will not lead to a dynamic state.
This modifies the constructive definition as follows:

Definition 4.4 Let T be a consisient theory, Let < C
N x N be a strict total order and t,,.. . ,t, be the eny-
meration of N that respects <. Let B; := A; U{c(ti+1)}.
We define Ag := @ and

Ai YTUAU{e(tipr)} b= L
Ai of «F g is not irreflezive
Aip1 =4 A ftj—rp, iy forak,jst
k<jandk<i+1
AU {eltiv1)]} otherwise

Then A; is the dynamic selection of t1,...,1; and A, #s
the dynamic selection of <. The sequence t1,...,1; is
correct iff

ty —r,4; tjg1 tmplies k< j+1
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for j=0,...,i—1. The order < is correct §ff t;,..., %
is correct foraelli=1,..  n.

A is a D-preferred assumption set of [ iff A is the
dynamib selection of a correct strict total order <.

'We now explore the properties of these definitions. First
of all, dynamic selections are consistent and correct or-
ders respect the dynamic preferences they produce:

Lemma 4.4 Lei I" be a consisient theory and < C N x
N be a strict total order. Let A be the dynamic selection
of <. Then TUAE L. If < is correct then «—r 4 C <.

(orrect sequences 1y,...,%; can be constructed incre-
mentally. In each step, we pick a best element ?;,,
among the non-enumerated assumptions and add it af-
ter ¢;. t;+1 must be a best element w.r.t. the preferences
—r.4, in order to guarantee that ¢,...,¢;, ¢4 i8 cor-
rect. Let R; =N — {t;,....;}:

ti41 E{:GRilﬂyER.‘iy‘—r,A.- 3}

The existence of such best elernents is insured since cyclic
preferences are avoided:

Lemma 4.5 Let T' be a D-consisient theory. Let
t1.....1; be a correct sequence of elements of N and A,
its dynamic selection. Then there ezisls gn enumeration
Ligto.. s ty of N = {ty,... . i} st ty,...1; is correct
forall j=1,... ,n.
Consider a dynamic state s := (W, 4,<)in Dy, If 4 is
the dynamic selection of < then <« is correct and s is a
< p-minimal state in Dp. Otherwise, there exists a state
that is <p-smaller:
Lemma 4.6 Let ' be a D-consistent theory and s =
(W, A, <) be o dynamic state in Dp. Lei A® be the dy-
namic selection of <.

f. If A= A" then < s correcl.

2 IfA= A" end s* <p s then s* ¢ Dr.

3. If A# A then (Wryas, A*, <) <p s.
‘These lemmas allow to establish the two main theorems
of the paper. First, <p-minimal states have a construc-
tive characterization:
Theorem 4.7 Let C £ be a theory. A ts a D-preferred

assumption sel of T iff there ezisis a dynamic state
(W, A, <) that 1s @ <p-minimal element of Dr.

Second, we can now demonstrate the smocithness of <p:
Lemma 4.8 ‘<p is smooth on Dp for T C L.
Theorem 4.9 D :=(D,l,<p) is & cumulative model.

Therefore, the nonmonotonic inference relation ~p has
the five basic properties of system C.

It is straightforward to adapt our approach to
Lehmann’'s preferential models. A preferential model is
a triple C := (5,1, <) where S is a set of states, ! a func-
tion mapping each state to a single world, and < is a
strict partial order on states that is smooth on all Sr,
i.e. the set of states satisfying a theory I'. Preferential
models additionally support reasoning by cases:

6. opcv, BhcyimpliesaVfiey
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We obtain a preferential model by restricting dynamic
states (W, A, <) to those where the set W of worlds is a
singleton, i.e. contains only one world. Further work
is needed to adapt the constructive approach to this
preferential-model semantics.

5 Example

We determine the D-preferred assumption sets of our
initial example. Let Ty be the set of formulas 0.-8 and

I'y := To U {birthday(jim)}
Iy := Iy U {saturday}
[3:= Iy U {—~go(th)}

We consider two correct strict total orders <; and <,
where

gop(ne) <1 gop(th)

gop(th) <2 gop(ne)
Due to formulas 7. and 8., the assumptions onep, invp
are smaller than the assumptions gop(nc) and gop(th).
These formulas have been included to give the assump-
tions onep, invp a higher priority. Now we consider the
dynamic selections A; ; of T'y and <;:

Agy = {c(enep), e(invp), c(gep(nc))} *
Aoz = {c(onep), c(inup), c(gop(th))}
Av,1 = {c(onep), c(gop(nc)}}

A2 = {c(onep), c(gop(th))} *
Az = {c(gop(nc)), c(gop{th))}
Az s = {e(gop(th)), c{gop(nc))}
Az = {c{gop(nc}}}

Az 2 = {c(gop(nc))} *

Since a normal invitation c(invp)) implies gop(nc) <—
gop(th) the order <, is not correct w.r.t. T, Since the
theory T, implies gop(th) <— gop(nc) the order <; is not
correct w.r.t. T4, T2, and T3. As a consequence, each T;
has a unique D-preferred assumption set (marked with
a *) and we obtain the following inferences:

To pp go{nc) T2 bvp go(nc) A go(th)
Ty bp go(th)  T'spp gonc)

The conclusions change from T, to T, since the prefer-
ences change. The change from T4 to T, is due to the
removal of a conflict. The final change is due to a new
inconsistency.

6 Related Work

Brewka has extended Reiter's default logic by dynamic
preferences on defaults [Brewka, 1994). As in our ap-
proach, defaults are named by constants and prefer-
ences between defaults are expressed by a binary pred-
icate symbol. The additional expressiveness of default
logic, however, makes it difficult to establish a prefer-
ential semantics. Even normal defaults as considered in
[Brewka, 1994] do not have a cumulative-model seman-
tics as shown by Makinson. In order to compare both
approaches, we restrict our attention to normal defaults
without prerequisites, which correspond to assumptions.



Brewka requires that a theory T' contains axioms stat-
ing that the predicate symbol — represents a strict par-
tial order. These axioms ensure that no cyclic prefer-
ences are obtained. In our approach, we did not want
to change the original theory I’ and therefore required s
corresponding property on the meta-level. Brewka de-
termines preferred sssumption sets as follows. An as-
sumption selt 4 C A is a BD-preferred iff 1. it is the
(static !) selection of a strict total order < C A x N
and 2. TUAU {t; — t2 | t; < t3} is consistent. Here,
a tolal order on assumptions is chosen initially and veri-
fied in the end by comparing the chosen preferences with
those that are implied by TUA. Unfortunately, there are
examples that don’t have BD-preferred assumptions:

e(t1) Dty — 1y, efty) Dty + 1y

The order {; < t, is not compatible with its (static)
selection {c(f3)}, but correct w.r.t. its dynamic selection
{e(#2)}. The selection of ¢(t;) fails in the second case
since the preference ¢, — U contradicts the ordert; < t;.
An analogue argument holds for {3 < t;.

The example shows that cyclic dependencies between
preferences and assumptions make the search for pre-
ferred assumption sets quite difficult. Therefore, we in-
terleave the construction of an order and an assumption
set and we do not choose assumptions that have draw-
backs on the already chosen part of the order.

7 Conclusion

We showed how preferences on assumptions can directly
be expressed in a logical theory. The resulting system
offers a high degree of freedom for "programming" pref-
erence rules: Preferences can be used in implications,
in quantified statements, and can themselves depend on
other assumptions.

Finding a clear mathematical treatment of dynamic
preferences turned out to be a non-trivial task. We de-
veloped a preferential semantics based on Lehmanivs cu-
mulative models and an equivalent constructive charac-
terization. The resulting nonmonotonic logic

1. allows to program preference rules,
2. satisfies all properties of Lehmann's system C,
3. can be implemented for decidable sublanguages.

In order to keep the presentation simple and intuitive, we
considered only finite assumption sets in this paper. In
a long version of the paper, we will generalize the results
to infinite assumption sets and well-founded orders on
assumptions.

Thus, an important milestone in the design of an
applicable and powerful nonmonotonic logic has been
achieved. It can be applied to default reasoning in inher-
itance system, to diagnostic reasoning, and to decision
making. Future work will concentrate on algorithms and
applications. Furthermore, we will elaborate a variant of
our approach in Lehmann's system V which additionally
supports reasoning by cases.
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