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Abs t rac t 

We study complexity of methods using rigid 
variables, like the method of matings or the 
tableau method, on a decidable class of predi­
cate calculus wi th equality. We show some in­
trinsic complications introduced by rigid vari­
ables. We also consider strategies for increasing 
multiplicity in rigid-variable methods, and for­
mally show that the use of intelligent strategies 
can result in an essential gain in efficiency. 

1 I n t r oduc t i on 
Automated reasoning methods for first-order classical 
logic can generally be divided in two classes. 

Methods of the first class use universal variables (res­
olution [Robinson, 1965], the inverse method [Maslov, 
1983]). Variables in these methods are local to a clause 
(formula, sequent) and can be considered as univer­
sally quantified in this clause (respectively formula or 
sequent). [Maslov et a/., 1983; Maslov, 1987] charac­
terized these methods as local methods (see also [Mints, 
1990]). 

Methods of the second class use rigid variables (the 
tableau method [Beth, 1959], the mating or the con­
nection method [Andrews, 1981; Bibel, 1981], model 
elimination [Loveland, 1968], SLD-resolution [Kowalski, 
1974; Apt and van Emden, 1982], SLO-resolution [De-
molombe, 1989; Rajasekar, 1989]). Variables in these 
methods are local to a set of clauses (formulas, sequents) 
and can be considered as universally quantified in this set 
of clauses (respectively formulas or sequents). [Maslov et 
a/., 1983; Maslov, 1987] characterized these methods as 
global methods. In this paper, we shall call such methods 
rigid-variable methods. 

Both kinds of methods have their advantages and dis­
advantages which are well-known. There are papers 
comparing resolution and tableau-like calculi, for exam­
ple [Eder, 1988; 1991] (see also [Bibel and Eder, 1993]). 
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Recently, there have been proposals combining both 
kinds of methods in one calculus, for example the equal­
ity elimination method [Degtyarev and Voronkov, 1995b; 
1995a; 1996a] or a modification of model elimination 
[Moser et a/., 1995]. 

Although there are many implementations of rigid-
variable methods, there are almost no papers investigat­
ing the intrinsic complexity of problems arising in rigid-
variable methods. In this paper we study several com­
plexity problems related to rigid-variable methods on a 
decidable fragment of predicate calculus with equality. 
We show that the use of such methods can introduce es­
sential complications even for this relatively simple frag­
ment. We also demonstrate that methods with rigid vari­
ables can gain from the intelligent use of strategies for 
multiplicity. In addition, we show that a recent result 
of [Voda and Komara, 1995] on the Herbrand skeleton 
problem is related to an inadequate formulation of the 
problem, and pose a new open problem. 
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Figure 1: The Procedure: a typical procedure for rigid-
variable methods 

several automated reasoning methods, for example in the 
method of matings, in the way shown in Figure 1. The 
procedure shown in that figure wil l simply be called the 
Procedure. 

nomial time translation of arbitrary formulas to closed 
prenex existential formulas by means of Skolemization 
and prenexing. 

According to the Herbrand theorem, such a formula 
is provable if and only if there exists a positive in-

of rigid equations is a finite set of rigid equations. A 
solution to a system of rigid equations R is any substi­
tut ion that is a solution to every rigid equation in R. 
The problem of solvability of rigid equations is known 
as rigid E-unification. The problem of solvability of sys­
tems of rigid equations is known as simultaneous rigid 

The number μ used in the Procedure (the number of 
copies of which can be used) is usually called mul-' 
tiplicity. Of course, there are various modifications of 
the Procedure, for example, the goal formula may be 
non-prenex. In this case the notion of multiplicity is 
more complicated. Our results can also be generalized 
to more complex notions of multiplicity. However, we 
shall only consider prenex existential formulas, for which 
the notion of multiplicity is defined as a positive integer 
number. 

We informally call a strategy for multiplicity any pro­
cedure which selects the initial multiplicity and increases 
multiplicity in the Procedure. The standard strategy for 
multiplicity is the strategy which sets μ initially to 1 and 
increments it by 1 on any further step. A strategy for 
multiplicity is called formula-independent iff it does not 
depend on the input formula. 

There are various algorithms for checking, for a given 
formula , whether there is a substitution making this 
formula provable. Instead of studying concrete proce­
dures, we shall study the intrinsic complexity of the 
problem which can be formulated as follows. 

P r o b l e m 1 ( H e r b r a n d Skeleton) Given a quantifi-
er-free formula (x) and a positive integer μ, are there 
term sequences t\,..., in such that the formula 

[Degtyarev et a/., 1996a] give an informal survey of 
several decision problems arising from the Herbrand the­
orem, including the Herbrand Skeleton problem. It is 
clear that Problem 1 is decidable if and only if the fol­
lowing problem is decidable. 

P r o b l e m 2 (Formu la Ins tan t i a t i on ) Given a quan-
tifier-free formula , is there a term sequence t such 
that the formula is provable? 

Note that the formula instantiation problem is repeat­
edly used in the procedures used by the method of mat-
ings or the tableau method. 

The decidability of these problems is equivalent to the 
decidability of SREU. Unfortunately, it turned out that 
SREU has almost no decidable fragments which are gen­
eral enough. Some known results on SREU are the fol­
lowing. 

• SREU is undecidable [Degtyarev and Voronkov, 
1996b]. 

• SREU with ground left hand sides is undecidable 
[Plaisted, 1995]. 

• SREU with ground left hand sides and two variables 
is undecidable [Veanes, 1996]. 

• SREU with one variable is DEXPTIME-complete 
[Degtyarev et al, 1997]. 

The case of one variable is hardly useful in automated 
reasoning. When all function symbols have arity < 1, 
Formula Instantiation is equivalent to monadic SREU, 
i.e. SREU in the signature where all function symbols 
have arity < 1. The decidability of monadic SREU is 



If we consider which systems of rigid equations arise 
from ground-negative formulas (e.g. according to the 
procedures of [Gallier et a/., 1990; 1992]), we shall find 
out that these are precisely all systems of rigid equations 
with ground left hand sides. 

Theorem 3 shows that a straightforward use of rigid-
variable methods can create unnecessary complications, 
for example, the necessity to solve an intermediate un-
decidable subproblem in order to solve a problem in 
This theorem can be reformulated as a statement about 
the standard strategy for multiplicity: 

T h e o r e m 4 For the standard strategy for multiplicity, 
a subproblem arising at step (2) of the Procedure is un-
decidable for the class of ground-negative formulas. 

Proof. Indeed, the subproblem with arising at 
the first iteration of the algorithm is equivalent to the 
formula instantiation problem which is undecidable by 
Theorem 3. D 

Hence, the use of the standard strategy may introduce 
unnecessary complications into rigid-variable methods. 
We can prove that the same holds for arbitrary formula-
independent strategies. To this end, we shall use a result 
proven in [Veanes, 1997]. First, we cite a result by [Voda 
and Komara, 1995] which generalizes the undecidability 
of SREU. 

We call a specialization of the Herbrand skeleton prob­
lem for any fixed μ the following problem2: 

The following result is proved in [Voda and Komara, 
1995]: 

T h e o r e m 5 The specialization of the Herbrand skeleton 
problem for any fixed μ is undecidable. 

This result has recently been improved in [Veanes, 
1997], where they have shown that it also holds for 
ground-negative formulas: 

2The Herbrand skeleton problem described in [Voda and 
Komara, 1995] is precisely this specialization. 
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an open problem. The following facts are known about 
monadic SREU. 

• Monadic simultaneous rigid E-unification with one 
function symbol is decidable (this fact has a rather 
non-trivial proof in [Degtyarev et a/., 1996b]). 

• Monadic simultaneous rigid E-unification with more 
than one function symbol is equivalent to a non-
tr ivial extension of word equations [Gurevich and 
Voronkov, 1997a]. 

Some other decidable fragments of monadic SREU are 
considered in [Gurevich and Voronkov, 1997a], but they 
are hardly of much use for automated reasoning. 

Since predicate calculus is undecidable, the undecid­
ability of SREU does not add much to the complexity of 
predicate calculus. In this paper we consider the behav­
ior of methods based on rigid variables on a decidable 
fragment of predicate calculus. 



T h e o r e m 6 The specialization of the Herbrand skele­
ton problem for ground-negative formulas and any fixed 
multiplicity μ is undecidable. 

Theorem 4 about the standard strategy for multiplic­
ity can be generalized as follows. 
T h e o r e m 7 For any formula-independent strategy, a 
subproblem arising at step (2) of the Procedure for the 
class of ground-negative formulas is undecidable. 
Proof. Since the strategy is formula-independent, some 
μ independent of the input formula wil l be selected at 
the first iteration of step (2). Then continue similar to 
the proof of Theorem 4 but using Theorem 6 instead of 
Plaisted's result. D 

We shall consider an intelligent strategy for multiplic-
ity in Section 4. 

4 The Herb rand Skeleton Prob lem and 
inte l l igent strategies for mu l t i p l i c i t y 

Intelligent strategies for multiplicity have always been 
considered of paramount importance for rigid-variable 
methods. However, essentially no formal results are 
known about such strategies. Existing systems based on 
rigid-variable methods use some heuristic methods for 
incrementing multiplicity and universal variables when­
ever possible (see e.g. [Hahnle et al, 1994]). In this sec­
tion we show that there is an efficient formula-dependent 
strategy for multiplicity for the class of ground-negative 
formulas. 

Thus, for ground-negative formulas we have an inter­
esting phenomenon. For small values of multiplicity μ 
the Procedure should solve an undecidable subproblem 
at step (2); for large enough values of μ, this subproblem 
is in II2. Thus, we have formally shown that for the class 
of ground-negative formulas, formula-dependent strate­
gies for multiplicity can result in a huge gain in efficiency. 

Theorem 9 also shows that the result of Voda and 
Kornara is not related to formula-dependent strategies 
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