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Abstract

We study complexity of methods using rigid
variables, like the method of matings or the
tableau method, on a decidable class of predi-
cate calculus with equality. We show some in-
trinsic complications introduced by rigid vari-
ables. We also consider strategies for increasing
multiplicity in rigid-variable methods, and for-
mally show that the use of intelligent strategies
can result in an essential gain in efficiency.

1 Introduction

Automated reasoning methods for first-order classical
logic can generally be divided in two classes.

Methods of the first class use universal variables (res-
olution [Robinson, 1965], the inverse method [Maslov,
1983]). Variables in these methods are local to a clause
(formula, sequent) and can be considered as univer-
sally quantified in this clause (respectively formula or
sequent). [Maslov et al., 1983; Maslov, 1987] charac-
terized these methods as local methods (see also [Mints,
1990]).

Methods of the second class use rigid variables (the
tableau method [Beth, 1959], the mating or the con-
nection method [Andrews, 1981; Bibel, 1981], model
elimination [Loveland, 1968], SLD-resolution [Kowalski,
1974; Apt and van Emden, 1982], SLO-resolution [De-
molombe, 1989; Rajasekar, 1989]). Variables in these
methods are local to a set of clauses (formulas, sequents)
and can be considered as universally quantified in this set
of clauses (respectively formulas or sequents). [Maslov et
al., 1983; Maslov, 1987] characterized these methods as
global methods. In this paper, we shall call such methods
rigid-variable  methods.

Both kinds of methods have their advantages and dis-
advantages which are well-known. There are papers
comparing resolution and tableau-like calculi, for exam-
ple [Eder, 1988; 1991] (see also [Bibel and Eder, 1993]).
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Recently, there have been proposals combining both
kinds of methods in one calculus, for example the equal-
ity elimination method [Degtyarev and Voronkov, 1995b;
1995a; 1996a] or a modification of model elimination
[Moser et a/., 1995].

Although there are many implementations of rigid-
variable methods, there are almost no papers investigat-
ing the intrinsic complexity of problems arising in rigid-
variable methods. In this paper we study several com-
plexity problems related to rigid-variable methods on a
decidable fragment of predicate calculus with equality.
We show that the use of such methods can introduce es-
sential complications even for this relatively simple frag-
ment. We also demonstrate that methods with rigid vari-
ables can gain from the intelligent use of strategies for
multiplicity. In addition, we show that a recent result
of [Voda and Komara, 1995] on the Herbrand skeleton
problem is related to an inadequate formulation of the
problem, and pose a new open problem.

2 Preliminaries

A term or atomic formula is ground iff it has no variables.
The symbol F denotes provability in first-order logic.
When we write ¢(,...,n F @, where @,..., ., @ are
formulas, it means provability of the formula ¢; A ... A
¥n o . Substitutions of terms #,...,¢, for variables
T1,...,Zp are denoted {ti/x,,...,t,/5,}. The applica-
tion of such a substitution 8 to a term t, is the operation
of simultaneous replacement of all occurrences of z; by
t;. The result of the application is the term denoted t8.
We shall also apply substitutions to formulas, equations
and sets of equations and use the same notation for the
result of the application.

We shall consider first-order predicate logic with
equality. The equality predicate is denoted by =, in
order to distinguish it from the metasymbol = used to
denote the identity of two expressions. The symbol =
means “equal by definition”. Atomic formulas s ~ ¢ are
called equations, and their negations —s ~ t, denoted s %
t, disequations. We do not distinguish an equation s ~ ¢
from the equation ¢ ~ s. For a technical convenience, we
can also use equations and disequations between atomic
formulas, for example P(s;,...,8m) = Q{t1,...,t,).



1. Choose a positive integer p.

2. Construct the formula v, = (p(F) V...V @(Z,))
and check whether there is a substitution & such
that the formula ,,@ is provable.

3. If such a substitution exists, then the goal formula
A%¢(ZF) is provable. Otherwise, increase p and come
back to step (2).

Figure 1: The Procedure: a typical procedure for rigid-
variable methods

Let s;,%;,...,84,t,,8,t be terms. We write s; ~
t1,...,8p = Ity F 5 = ¢t to denote that the formula
Visioot, A ... A saz=t, D sxt) is true, ie. it is prov-
able in first-order logic. Equivalently, we can say that s
and ¢ lie in the same class of the congruence generated
by {s1=t1,...,8a=tn}.

A rigid equation is an expression £ by s=~t, where £
is a finite set of equations. £ is called the left hand
side of this rigid equation, and the equation s = ¢
— its right hand side, A solution to a rigid equation
{s1211,..., 80>t} by s=t is any substitution ¢ such
that 8,0 ~ t10,...,8,0 =~ t,0 b so0 ~ to. A system
of rigid equations is a finite set of rigid equations. A
solution to a system of rigid equations R is any substi-
tution that is a solution to every rigid equation in R.
The problem of solvability of rigid equations is known
as rigid E-unification. The problem of solvability of sys-
tems of rigid equations is known as simultaneous rigid
E-unificution, or SREU for short.

We shall denote sets of equations by £, systems of
rigid equations by R and rigid equations by R. We shall
sometimes write the left hand side of a rigid equation
as a sequence of equations, for example z>~a Fy g(z)~z
instead of {x~a} by g(r)=x.

For simplicity, in this paper we consider the provabil-
ity problem for closed prenex existential formulas, ic.
formulas of the form 32p(f), where ¢{Z) is a quantifier-
free formula. There is a provability-preserving poly-
nomial time translation of arbitrary formulas to closed
prenex existential formulas by means of Skolemization
and prenexing.

According to the Herbrand theorem, such a formula
is provable if and only if there exists a positive in-
teger # and a substitution @ such that the formula
{(F1) V ...V p(Z,))¥ is provable. This fact is used in
several automated reasoning methods, for example in the
method of matings, in the way shown in Figure 1. The
procedure shown in that figure will simply be called the
Procedure.

In the method of matings, before step (2) the formula
1, is represented in the form of a mairiz M _and th.e
provability of (.6 means that any vertical path in M#¥ is
inconsistent. The tableau method represents the formula
in the form of a tree and uses branches of the tree instead
of vertical paths.

The number u used in the Procedure (the number of
copies of (p(.i) which can be used) is usually called mul-'
tiplicity.  Of course, there are various modifications of
the Procedure, for example, the goal formula may be
non-prenex. In this case the notion of multiplicity is
more complicated. Our results can also be generalized
to more complex notions of multiplicity. However, we
shall only consider prenex existential formulas, for which
the notion of multiplicity is defined as a positive integer
number.

We informally call a strategy for multiplicity any pro-
cedure which selects the initial multiplicity and increases
multiplicity in the Procedure. The standard strategy for
multiplicity is the strategy which sets p initially to 1 and
increments it by 1 on any further step. A strategy for
multiplicity is called formula-independent iff it does not
depend on the input formula.

There are various algorithms for checking, for a given
formula , Whether there is a substitution making this
formula provable. Instead of studying concrete proce-
dures, we shall study the intrinsic complexity of the
problem which can be formulated as follows.

Problem 1 (Herbrand Skeleton) Given a quantifi-
er-free formula  (x) and a positive integer y, are there
term sequences t\,..., i, such that the formula p{ty) V
o Vip(ty) s provable?

[Degtyarev et al., 1996a] give an informal survey of
several decision problems arising from the Herbrand the-
orem, including the Herbrand Skeleton problem. It is
clear that Problem 1 is decidable if and only if the fol-
lowing problem is decidable.

Problem 2 (Formula Instantiation) Given a quan-
tifier-free  formula (&}, is there a term sequence t such
that the formula @(t) is provable?

Note that the formula instantiation problem is repeat-
edly used in the procedures used by the method of mat-
ings or the tableau method.

The decidability of these problems is equivalent to the
decidability of SREU. Unfortunately, it turned out that
SREU has almost no decidable fragments which are gen-
eral enough. Some known results on SREU are the fol-
lowing.

+ SREU

1996b].

« SREU with ground left hand sides is undecidable
[Plaisted, 1995].

+« SREU with ground left hand sides and two variables
is undecidable [Veanes, 1996].

« SREU with one variable is DEXPTIME-complete
[Degtyarev et al, 1997].

is undecidable [Degtyarev and Voronkov,

The case of one variable is hardly useful in automated
reasoning. When all function symbols have arity < 1,
Formula Instantiation is equivalent to monadic SREU,
i.e. SREU in the signature where all function symbols
have arity < 1. The decidability of monadic SREU is
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an open problem. The following facts are known about
monadic SREU.

* Monadic simultaneous rigid E-unification with one
function symbol is decidable (this fact has a rather
non-trivial proof in [Degtyarev et a/., 1996b]).

* Monadic simultaneous rigid E-unification with more
than one function symbol is equivalent to a non-
trivial extension of word equations [Gurevich and
Voronkov, 1997al.

Some other decidable fragments of monadic SREU are
considered in [Gurevich and Voronkov, 1997a], but they
are hardly of much use for automated reasoning.

Since predicate calculus is undecidable, the undecid-
ability of SREU does not add much to the complexity of
predicate calculus. In this paper we consider the behav-
ior of methods based on rigid variables on a decidable
fragment of predicate calculus.

3 Ground-negative fragment of
predicate calculus

A formula v is called positive if all atomic subformulas of
i are positive. A closed formula ¢ is ground-negative iff
any occurrence of a variable in ¢ is either an occurrence
in a positive atomic subformula of ¢ or is bound by an
essentially universal quantifier (i.e. an universal quanti-
fier oceurring in  positively or an existential quantifier
ocowrring in ¢ negatively)!. [Kozen, 1977) proves the
following result.

Theorem 1 The class of provable formulas of the form
Ay AL AA, Do, where Ay, ..., An are ground atomic
formulos and o is a positive formula, s NP-complete.

Using this result, one can prove the following:

Theorem 2 The provability problem for ground-negati-
ve formulas is in IT5.

Since we only consider prenex existential formulas, such
a formula 3F(Z) is ground-negative if and only if all
negative atomic subformulas of (Z) are ground. So we
consider the Herbrand skeleton problem and the formula
instantiation problem for ground-negative formulas. We
assume that 3Z(Z) is a fixed ground-negative existential
prenex formula.

Theorem 8 The formula instantiation problem for gro-
und-negative formulas s undecidable.

Proof. We shall use the resuit proved in [Plaisted, 1995)
that SREU with ground left hand sides is undecidable.
Consider any system R of rigid equations with ground
left hand sides:

81y X1ty .., 810, = b, Fv 81ty

Bmil = lmlse 1 Fmng, = tnmng, Fv  8m by

'variables occurring in essentially universal quantifiera
can also be characterized as eigenvariables. Thus, a formula
p 18 ground-negative if and only if every variabie occurring
in a negative atom in ¢ is an eigenvariable,
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Consider also the following formula ¢:

(811 =tis A . A8y, = iy, D sty A
A

(3mt =t A ASmn, Tlyp, D Sm X in)

It is straightforward that a substitution & is a solution
to R if and only if the formula 8 is provable. Note
that all negative atoms in @ are ground. Hence, SREU
with ground left hand sides is effectively reducible to
the formula instantiation problem for ground-negative
formulas. Thus, the formula instantiation problem for
ground-negative formulas is undecidable. m]

If we consider which systems of rigid equations arise
from ground-negative formulas (e.g. according to the
procedures of [Gallier et a/., 1990; 1992]), we shall find
out that these are precisely all systems of rigid equations
with ground left hand sides.

Theorem 3 shows that a straightforward use of rigid-
variable methods can create unnecessary complications,
for example, the necessity to solve an intermediate un-
decidable subproblem in order to solve a problem in H;'
This theorem can be reformulated as a statement about
the standard strategy for multiplicity:

Theorem 4 For the standard strategy for multiplicity,
a subproblem arising at step (2) of the Procedure is un-
decidable for the class of ground-negative formulas.

Proof. Indeed, the subproblem with ¢ = 1 arising at
the first iteration of the algorithm is equivalent to the
formula instantiation problem which is undecidable by
Theorem 3. D

Hence, the use of the standard strategy may introduce
unnecessary complications into rigid-variable methods.
We can prove that the same holds for arbitrary formula-
independent strategies. To this end, we shall use a result
proven in [Veanes, 1997]. First, we cite a result by [Voda
and Komara, 1995] which generalizes the undecidability
of SREU.

We call a specialization of the Herbrand skeleton prob-
lem for any fixed p the following problem?:

Given a quantifier-free formula (Z), are
there term sequences ¢;,...,{, such that the
formula p(ty} V...V ¢(f,) is provable?

The following result is proved in [Voda and Komara,
1995]:

Theorem 5 The specialization of the Herbrand skeleton
problem for any fixed p is undecidable.

This result has recently been improved in [Veanes,
1997], where they have shown that it also holds for
ground-negative formulas:

?The Herbrand skeleton problem described in [Voda and
Komara, 1995] is precisely this specialization.



Theorem 6 The specialization of the Herbrand skele-
ton problem for ground-negative formulas and any fixed
multiplicity u is undecidable.

Theorem 4 about the standard strategy for multiplic-
ity can be generalized as follows.

Theorem 7 For any formula-independent strategy, a
subproblem arising at step (2) of the Procedure for the
class of ground-negative formulas is undecidable.

Proof. Since the strategy is formula-independent, some
J independent of the input formula will be selected at
the first iteration of step (2). Then continue similar to
the proof of Theorem 4 but using Theorem 6 instead of
Plaisted's result. D

We shall consider an intelligent strategy for multiplic-
ity in Section 4.

4 The Herbrand Skeleton Problem and
intelligent strategies for multiplicity

Intelligent strategies for multiplicity have always been
considered of paramount importance for rigid-variable
methods. However, essentially no formal results are
known about such strategies. Existing systems based on
rigid-variable methods use some heuristic methods for
incrementing multiplicity and universal variables when-
ever possible (see e.g. [Hahnle et al, 1994]). In this sec-
tion we show that there is an efficient formula-dependent
strategy for multiplicity for the class of ground-negative
formulas.

In this section ¥ = 3Fp(%) will denote a fixed ground-
negative existential prenex formula. Let A;,..., A, be
all its negative atomic subformulas. Denote by N the set
of all subsets of {1,...,n}. Introduce 2" sets of ground
atoms &; = {Ai |i € I}, for every I € N. Using trans-
formations similar to those used in the conjunctive nor-
mal form translation, we can assume that ¢(Z) has the

form

/\ ((/\ AI) D (Pf),

IeEN el
where y; are formulas constructed from atomic formulas
using A,v. Without loss of generality we can assume
that for every I,J,if J C I, then F ¢; D ws. Indeed, if
this is not true, we can replace vy by @5 Ay, then 9
will be replaced by an equivalent formula.

The notion of the least Herbrand model of a set of

formulas is standard and can be found in e.g. [Lioyd,
1987] or [Apt, 1990}
Lemma 4.1 Let A be a set of ground atomic formu-
las and ¢ be a closed formuls constructed from atomic
Jormulas using only A, V and 3. Let 9 be the least Her-
brand model of A. If D k=, then A F .

Proof. Straightforward, by induction on ¢. D

A more general variant of Lemma 4.1 also holds, where
2 is a set of universal quasy-identities (see [Makowski,
1986) or {Sheperdson, 1988]).

Lemma 4.2 Let & 1). Then for every I € N there is o
substitution 6 such that £; + ;8. '

Proof. Denote by "; the least Herbrand model of £;.
We have 9; = ¢. Since M; is & Herbrand model,
we have M; = ¢(F)8 for some substitution § making
ull variables in # ground. We prove that # satisfies the
claim.

Indeed, we have M; = (A;c; Ai) O ;8. Since My =
(Aigr Ai), we have My k= ;8. By Lemma 4.1 we have
Er k8. O

For every I € N, we denote by &; some substitution
satisfying Lemma 4.2.

Theorem 8 Let b 3. Thent V; \ o(2)8;.

Proof. Let I be an arbitrary model. Consider I =
{i] M= A:}. Since M = A, Ai, by Lemma 4.2 we
have 9 }= ¢;8;. Consider an arbitrary J € N. Let us
prove that M = (A, ; 4i) D ws8;. Consider two cases:

1. J € I. Then we have F @5 D @y. It follows that
F w185 D ws8;. Hence, I = @ 8.

2. J € I. By the choice of 9% we have M & A, A:.

In both cases we have 9 |= (A, ; Ai) D @,8;. Since J
was arbitrary, we have

A WA 4) 2 ety

JeEN et

ie. M ¢(Z)8;.
Then we have M = V. ¢(Z)0;. Since M is arbi-
trary, we have F \/, . w(Z)8;. D

Theorem 8 The following problem is in IT; (compare
it with the Herbrand Skeleton problem).

Giwven any ground-niegative formuls 3%p(T) and any
positive integer p > 2", where n is the number of neg-
ative atomic subformulus of (%), arve there term se-
quences iy,...,1, such that the formula (1) V... Veo(l;)
is provable?

Proof. By Theorem 8, if the formula 3Z¢(£) is provable,
then such term sequences I),...,I, exists. Obviously,
the converse is also true. Hence, the problem defined in
the theorem is polynomial-time equivalent to the prov-
ability problem for ground-negative formujas. By The-
orem 2, the provability problem for such formulas is in
m. D

Thus, for ground-negative formulas we have an inter-
esting phenomenon. For small values of multiplicity y
the Procedure should solve an undecidable subproblem
at step (2); for large enough values of y, this subproblem
isin 2. Thus, we have formally shown that for the class
of ground-negative formulas, formula-dependent strate-
gies for multiplicity can result in a huge gain in efficiency.

Theorem 9 also shows that the result of Voda and
Kornara is not related to formula-dependent strategies
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for multiplicity. In order to formally define a formula-
dependent strategy, we can represent the value of u on
the nith iteration of the Procedure as a function f of two
arguments: the input formula 32p(z) and the number
n. Since u should be increased with each next iteration,
we have f(3Ep(z),n + 1) > f(IZp(z),n).

Then we can formally define a strategy for multiplicity
as any function f such that

1. The first argument of f ranges over prenex existen-
tial formulas AZ¢(x);

2. The second argument of f ranges over positive in-
tegers;

3. for every positive integers k > m and every prenex
existential formula ¢ we have f(i, k) > f(v¥, m).

The following problem arises:

Problem 3 Is there a strategy for multiplicity f such
that

1. f is computable;

2. The following problem is decidable. Given a number
k and a prenez existential formule 3%p(z), are there
term sequences by, ..., 31,(2),k) Stch that the for-
mula (1)) V...V @(razp(2).5)) i provable?

This problem is still open. We conjecture that such
function does not exist, but the proof of this fact would
require some non-trivial diagonalization.

Even if this problem has a negative solution, there are
still at least two known ways for the use of rigid-variable
methods for logic with equality. One way is to augment,
rigid-variable methods by universal-variable parts, as for
example in [Degtyarev and Voronkov, 1995b; 1996a] or
|Moser et al, 1995}, Another way is to use incomplete
but terminating algorithms on step 52) of the Procedure,
as demonstrated in [Plaisted, 1995} or [Degtyarev and
Voronkov, 1996¢].
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