
High Performance ATP Systems by Combining Several AI Methods

Jorg Denzinger
Fachbereich Informatik

Universitat Kaiserslautern
67663 Kaiserslautern

Germany

Marc Fuchs
Fakultat fur Informatik

TU Miinchen
80290 Miinchen

Germany

Matthias Fuchs
Fachbereich Informatik

Universitat Kaiserslautern
67663 Kaiserslautern

Germany

Abstract
We present a design for an automated theorem
prover that controls its search based on ideas
from several areas of artificial intelligence (AI).
The combination of case-based reasoning, sev­
eral similarity concepts, a cooperation concept
of distributed AI and reactive planning enables
a system to learn from previous successful proof
attempts. In a kind of bootstrapping process
easy problems are used to solve more and more
complicated ones. We provide case studies from
two domains in pure equational theorem prov­
ing. These case studies show that an instanti­
ation of our architecture achieves a high grade
of automation and outperforms state-of-the-art
conventional theorem provers.

1 Introduction
Research concerned with achieving more efficient (fully
automated) theorem provers focuses on three directions:
higher inference rates, eliminating unnecessary infer­
ences, and better control of the search. Although all
these directions can indeed lead to more efficiency, bet­
ter control of the search offers the highest gains, but also
causes the most problems and has some risks. Nearly all
approaches to improving search control involve the use
of techniques and methods from other areas of artificial
intelligence (AI), as for example knowledge representa­
tion, case-based reasoning (CBR), learning, planning, or
multi-agent systems. In most of the known works only
ideas from one of these areas are exploited.

One area' that should—from the human point of
view—be the most promising for high efficiency gains
is learning. But the use of machine-learning techniques
for improving automated theorem provers faces several
severe problems. Learned knowledge has to be stored, re­
trieved, and very often must be combined. So, the focus
of attention should not be restricted to the area of ma­
chine learning. Other areas of AI must also contribute
in order to successfully apply the results the learning
techniques produce.

In this paper we present an approach to controlling
the search of an automated theorem prover that com­

bines techniques from several areas of AI to overcome
the problems that arise when trying to learn and to use
control knowledge. The central idea is to utilize a known
(i.e., learned) proof of a so-called source problem solved
previously in order to guide the search for a proof of the
target problem at hand. To this end we employ a method
called flexible re-enactment (cp. [9]).

Source problems must of course satisfy certain simi­
larity criteria with respect to the target problem. Our
techniques for maintaining a database of source problems
and our mechanisms for selecting source problems that
are the most similar to the target are inspired by CBR.
Unfortunately, one of the important premises of CBR,
namely that "smail differences between problems result
in small differences of their solutions", is not fulfilled in
automated theorem proving.

We cope with this uncertainty by applying the TEAM-
WORK method ([4]), a multi-agent approach to dis­
tributed search. TEAMWORK reduces the risk of deploy­
ing an inappropriate heuristic by having a team of heu­
ristics (agents) guide the search concurrently and coop­
eratively. The reactive planning capabilities of a further
agent, namely the supervisor, are made use of to com­
pose a suitable team (cf. [7]). Moreover, the selection
of the most suitable source problem required by flexible
re-enactment can also be integrated with TEAMWORK in
form of a specialized agent.

The combination of all these AI methods allowed us to
build a theorem prover for pure equality reasoning that
is fully automated, in both learning and proving, and
is able to solve hard problems by using a kind of boot-
strapping process that starts with easy problems and
uses their proofs to gradually solve harder and harder
problems. Besides providing the problems, no interac­
tion with the system is required. Our experiments vali­
date and substantiate the achievements of our system.

We cannot provide as many details as some readers
(and we) would like. These readers may refer to [6].

2 Equational Reasoning
Equational reasoning deals with the following problem:
Given a finite set E of equations (of terms over a fixed
signature sig) and a goal u = v. The question is whether
the goal equation is a logical consequence of E, i.e., E (=

102 AUTOMATED REASONING

u = v. Unfailing completion (e.g., [2]) has proven to be
quite successful for solving such a proof problem A =
(E, u = v). The method is also a good example for so-
called generating calculi that are based on generating
new facts until a fact describing the goal is reached.

The inference rules of a generating theorem prover can
be divided into two classes: expansion and contraction
rules (see [3]). Completion uses the expansion critical-
pair-generation and the contractions reduction and sub-
sumption. Basis for the completion procedure is a so-
called reduction ordering y that is used to restrict the
applicability of the inference rules and to avoid cycles.

An algorithmic realization of the inference rules of a
generating theorem prover can be characterized as fol­
lows. There are two sets of facts (equations in our case):
the set FA of active facts and the set Fp of passive facts.
The algorithm centers on a main loop with the follow­
ing body: At first a fact A is selected and removed from
Fp ("activate A"). After that A is normalized resulting
in a fact A'. (Normalization denotes the application of
contraction rules to a fact until none of these rules is ap­
plicable anymore.) If A' is neither trivial nor subsumed
by an active fact, all elements of FA are normalized, A'
is added to FA, and all facts that can be generated with
A' and other elements of FA are added to Fp. A proof
is found if the normalization of the two terms of the goal
leads to the same term.

Assuming that there is a given order in which contract­
ing inference rules are applied, normalization of a fact is
a deterministic process. Hence, the remaining indeter-
minism is to determine which fact should be activated
next. In order to eliminate this indeterminism, selection
strategies and heuristics are used (see, e.g., [5]). In sec­
tion 4 we present such a selection heuristic that is based
on re-enacting a successful proof attempt for a problem
that is somewhat similar to the problem at hand.

Since we want to learn from (successful) proof at­
tempts, we have to obtain, represent, and store an actual
proof run produced by the algorithm and a selection heu­
ristic. SA denotes the sequence of facts activated dur­
ing a proof run for problem A using a fixed heuristic
H. The actual proof to A is denoted by PA and it is
obtained by eliminating from SA all facts that did not
contribute to the proof. We refer to the facts occur­
ring in PA also as the set PA of positive facts. The
other facts in SA form the set NA of negative facts
that is needed for some learning approaches (see [8;
9]). A successful proof attempt is stored as the quadru­
ple (A,H,SA,VA) (or {A,C,SA,VA) with C denoting the
teams used) that allows the use of various approaches
for learning from previous proof experience.

3 Teamwork
The TEAMWORK method is a knowledge-based distribu­
tion method for certain search processes ([4]). Equa-
tional deduction by completion, as well as for example
first-order deduction by (hyper-) resolution, is a mem­
ber of this class of search processes. In a TEAMWORK-

based system there are four different types of agents:
experts, specialists, referees, and a supervisor. Experts
and specialists are the agents that work on really solving
a given problem. Experts form the core of a team. They
are problem solvers (in our case theorem pro vers) that
use the same inference mechanism (in our case unfail­
ing completion), but different selection strategies for the
next inference step to do. Specialists can also search for
a solution (using other inference mechanisms) or they
can help the supervisor, for example by analyzing and
classifying the given problem like PES (see section 5.2).
Each expert/specialist needs its own computing node.
Therefore, the supervisor determines the subset of ex­
perts/specialists that are active during a working period.

After a working period a team meeting takes place. In
the judgment phase, each active expert and specialist is
evaluated by a referee. Each referee has two tasks: judg­
ing the whole work of the expert/specialist of the last
working period and selecting outstanding results. The
first task results in a measure of success, an objective
measure that allows the supervisor to compare the ex­
perts. The second task is responsible for the cooperation
of the experts and specialists, since each selected result
will be part of the common start search state of the next
working period. The referees send the results of their
work to the supervisor.

In the cooperation phase the supervisor has to con­
struct a new starting state for the next working period,
select the members of the team for this next period and
determine the length of the period. The new start state
for the whole team consists of the whole search state of
the best expert enriched by the selected results of the
other experts and the specialists. The supervisor deter­
mines the next team with a reactive planning process in­
volving general information about components and prob­
lem domains (long-term memory) and actual informa­
tion about the performance of the components (short-
term memory). The long-term memory suggests a plan
skeleton that contains several small teams for different
phases of a proof attempt. These suggested teams are
reinforced with appropriate experts/specialists (if more
computing nodes are available). During each team meet­
ing the plan has to be updated. This means that adjust­
ments are made according to the actual results (see [7]).

TEAMWORK allows for synergetic effects that result in
enormous speed-ups and in finding solutions to problems
that are beyond the possibilities of the single experts and
specialists. While the competition of the experts directs
the whole team into interesting (and promising) parts of
the search space, the cooperation provides the experts
with excellent facts they are not able to come up with
alone. Thus gaps in their derivations towards the goal
can be closed. This makes TEAMWORK the ideal basis
for a learning theorem prover.

4 Flexible Re-enactment
Similarity between two proof problems A and B can oc­
cur in many variations. One possible kind of similarity is

DENZINGER, FUCHS, & FUCHS 103

that a considerable number of the facts that contribute
to a proof of A are also useful for proving B (or vice
versa). This means in our terminology that the associ­
ated sets of positive facts PA and PB or the proofs PA
and PB "have a lot in common" or, in other words, share
many facts. ("PA PB PB is almost equal to PA and PB")
Our goal is to think up a heuristic that is able to exploit
such a similarity.

Given 2 = (AS,/H,SAS)'PAS) AS PAST experience re­
garding a source problem As, and assuming that a tar­
get problem AT is similar to As in the way just de­
scribed, it is reasonable to concentrate on mainly deduc­
ing facts when attempting to prove AT that also played
a role in finding the source proof PAS » namely the pos­
itive facts PAS We therefore design a heuristic FlexRE
which—when trying to prove AT—makes use of J by
giving preference to facts that were important for find­
ing PAS Such facts will henceforth be referred to as fo-
cus facts. Note that focus facts are facts inferred or. infer­
able in connection with AT • They must be distinguished
from the positive facts PAS belonging to the source prob-
lem As, since it might be the case that some A 6 PAS
is not deducible at all in connection with AT (due to a
different axiomatization). PAS is merely used to deter­
mine if some fact A inferable in connection with AT is
a focus fact. To put it another way, the use of PAS is
effected by FlexRE on a strictly heuristic basis, meaning
that PAS only influences the selection of facts from Fp,
not, for instance, Fp itself. That is, PAS is a guideline
that FlexRE tries to follow if possible.

Depending on how strongly focus facts are preferred,
FlexRE will re-enact (parts of) PAS more or less quickly.
Some of the focus facts, though useful for proving As,
may be irrelevant regarding the proof VAT Of AT even­
tually found. But these irrelevant focus facts are not a
big problem. The crucial difficulty is to find those (non-
focus) facts that have to supplement the relevant focus
facts in order to obtain a proof VAT • It is very likely
that these (few) missing facts are descendants of rele­
vant focus facts. Consequently, FlexRE should also favor
descendants of focus facts. Favoring descendants should
weaken with their "distance" from focus facts, since it
cannot be assumed that the few missing facts are located
very deeply relative to focus facts.1

Preferring descendants of focus facts in addition to
giving preference to focus facts themselves justifies the
attribute 'flexible' in the term 'flexible re-enactment'
which summarizes the working method of FlexRE (see
[9] or [6]).

5 Learning and CBR in the Teamwork
Environment

In sections 3 and 4 we concentrated on how to use knowl­
edge learned from previous successful proofs (in form of

1 "Distance" and (relative) depth basically refer to the
number of inference steps separating two facts, one of these
facts contributing to the deduction of the other.

flexible re-enactment) and on how to overcome the prob­
lems such a use might cause (in form of the TEAMWORK
method with cooperation with other experts, assessment
of experts and results, and reactive planning to adapt to
the problem at hand using long- and short-term mem­
ory). The problems that remain are how to find a proof
that should be re-enacted in order to solve a given target
problem and how to structure, build, and maintain the
long-term memory from proof run to proof run.

The first problem will be tackled by a specialist PES
that is providing the supervisor with information about
known proof problems that are similar to the given tar­
get problem (see subsection 5.2). The second problem
naturally depends on how the proof problems are pre­
sented to the system. Found proofs have simply to be
extracted, analyzed and stored (the latter depending on
how specialist PES will perform its retrieval). As we shall
see in the next subsection, the necessary components are
already provided in form of TEAMWORK agents.

5.1 The Basic Learning Cycle
Systems that use learning techniques for solving their
tasks can be (very) roughly divided into two groups:
systems that have a clearly defined learning phase af­
ter which (usually) no further learning takes place, and
systems that always learn. In automated theorem prov­
ing, systems of the first type may be usable in clearly
defined situations (see, for example, [8]), but in general
learning should never stop.

Nevertheless, one can observe times in the use of a
(learning) theorem prover in which new domains are ex­
plored, and other times in which one is interested in
proving one particular problem. When exploring a new
domain, typically there is a set of problems to be solved,
and when starting the exploration no knowledge in the
prover will be triggered. In the following, we will first
concentrate on the exploration of a new domain and then
we will point out how the one-problem case is handled.

When exploring a new domain the ordering of the
problems given to a prover may influence its success.
In order to deal with this problem we decided to let
the prover handle the ordering of the given set of prob­
lems and also allow the prover to make several attempts
to solve a problem. The latter is necessary since each
solved problem may result in new knowledge that al­
lows for solving some other problems that could not be
solved so far ("bootstrapping'''). Note that the set of
problems given to the prover has to include easy and
typical problems of a domain that the prover can use to
get fundamental knowledge about this domain.

As already stated, in a TEAMWORK-based system the
long-term memory that represents knowledge about do­
mains is the responsibility of the supervisor. When con­
fronted with a set of example problems of a new do­
main, the supervisor controls not only the single proof
attempts, but a whole series of proof attempts that are
to result in solving as many of the problems as possible.

Since the supervisor has no appropriate information
when being confronted with a new domain, the first step

104 AUTOMATED REASONING

DENZINGER, FUCHS, & FUCHS 105

6 Exper imenta l Results
Finding appropriate test sets of problems for our learning
prover was not easy, because in most publications only
hard problems are given. But we must solve at least one
problem with conventional means in order to start the
bootstrapping process. Fortunately, the TPTP library
([13]) contains two domains that include related prob­
lems of various degrees of difficulty. While we could use
the domain groups (GRP) without any changes, the do­
main logic calculi (LCL) consists of several subdomains
(some of which contain only hard problems, again) and is
not given in a pure unit-equality axiomatization. There­
fore we had to transform the problems of one subdomain
(the CN calculus) for our experiments.

The achievements of a learning approach can only be
observed when results from conventional provers are also
provided. Besides two of our experts (AddWeight, or Add
for short, and Occnest, see [5]) we wil l also use O T T E R
(version 3.0, using the autonomous mode, see [l l]) to
allow a comparison. Since O T T E R has won the CADE-13
theorem prover competition ([12]) in the category "Unit
Equality Problems", we think that a comparison with
the current state-of-the-art is thus provided.

Our learning approach is integrated into our prover
D ISCOUNT (see [l]) , that is implemented in C on Unix
machines and has an old and slow inference engine. We
limited each distributed run of it to 3 minutes, while the
other provers had 10 minutes. The ordering in which
D ISCOUNT tried the problems is the lexicographical or­
dering of the names of the problem. A l l experiments
were performed on SUN Sparc-10 machines, the team
runs employing two of them. There are 125 problems
in the GRP domain and 24 in the LCL (CN) domain
(for the transformation into equality problems, for more
results and a broader analysis of them, see [6]).

Table 1 shows that our main goal, developing a prover
that is able to automatically learn and therefore to solve
more problems than other provers, has definitely been
achieved. In both domains, our learning team clearly
outperformed O T T E R and the single experts by at least
15 percent. Table 2 highlights some of the problem so­
lution chains that are produced by our prover. In the
GRP domain, problem 179-1 was solved conventionally
and used in the next round to solve problem 179-2, which
was basis for solving problem 183-1 (in the same round).
Using problem 183-1 D I S C O U N T was able to solve prob­
lem 167-3, which was then used to solve problem 167-1.
In the LCL domain, problem 047-1 was used to solve 048-
1 which allows for solving 050-1 that then is the source
for problem 051-1. Due to the immediate usage of solved

106 AUTOMATED REASONING

problems when t r y i n g to solve the next one, the chain
of the G R P doma in is the result of 4 rounds, whi le the
chain of the L C L doma in was produced in only 3 rounds
of the boo ts t rapp ing process. Note tha t any other order-
ing of the problems wou ld produce the same Table 1 and
the same chains in Table 2. On ly the number of rounds
needed may be dif ferent.

A m o n g al l the problems there is only one problem that
O T T E R can solve and our learning team cannot, but 27
problems t ha t our learning team can solve and OTTER
cannot.

In general, our exper iments show tha t our concept of
a learning theorem prover clearly outper forms current
convent ional theorem provers if the learning prover is
provided w i t h enough ''exercise" in the domain i t has
to work i n . In th is case even the learning process is
accomplished by the prover w i t hou t help f rom the user.

7 Conclusion and Future Work
We presented a concept for a learning theorem prover
tha t uses methods f r o m several areas of A l . AI methods
like p lann ing and C B R are combined w i t h the T E A M -
W O R K mul t i -agent archi tecture, result ing in a theorem
prover t ha t clearly outper forms renowned provers. A
prerequisite for the success of our system- as for a hu­
man s tudent—is the presentat ion of problem domains in
a " learnable" way, meaning tha t the presented problems
cover the whole spect rum of d i f f icu l ty ranging f rom easy
to chal lenging. In a k ind of boots t rapping process the
system is able to solve harder and harder problems w i th ­
out any in terac t ion on the par ts of a user (" teacher") .

Despite the success of our system, nevertheless most
components are on ly f i rst ideas tha t leave much room
for improvements and extensions. Also, there are other
concepts t ha t can be used (e.g., [8]) or are at least wor th
invest igat ing (e.g., the d iv is ion of problems in to easier

sub-problems on the basis of learning), t ha t w i l l provide
a wider range in the use of learned knowledge.

Acknowledgments
Th is work was supported by the Schwerpunktpro-
gramm Deduktion of the Deutsche Forschungsgemein-
schaft (DFG).

References
[I] Avenhaus, J.; Denzinger, J.; Fuchs, M.: DISCOUNT:

A System For Distributed Equational Deduction, Proc.
6th RTA, Kaiserslautern, LNCS 914, 1995, pp. 397-402.

[2] Bachmair, L.; Dershowitz, N.; Plaisted, D.: Completion
without Failure, Coll. on the Resolution of Equations
in Algebraic Structures, Austin (1987), Academic Press,
1989.

[3] Dershowitz, N.: A maximal-Literal Unit Strategy for
Horn Clauses, Proc. 2nd CTRS, Montreal, LNCS 516,
1990, pp. 14-25.

[4] Denzinger, J.: Knowledge-Based Distributed Search Us­
ing Teamwork, Proc. ICMAS-95, San Francisco, AAA1-
Press, 1995, pp. 81-88.

[5] Denzinger, J.; Fuchs, M.: Goal-oriented equational
theorem proving using teamwork, Proc. 18th Kl-94,
Saarbriicken, L N A I 861, 1994, pp. 343-354.

[6] Denzinger, J.; Fuchs, Marc; Fuchs, M.: High
Performance ATP Systems by Combining Several
AI Methods, SEKI-Report SR-96-09, University of
Kaiserslautern, 1996. (f tp: / / f tp.uni-kl .de/reports.uni-
kl/computer-science/SEKl/ 1996/Denzinger. SR-96-
09. ps.gz)

[7] Denzinger, J.; Kronenburg, M.: Planning for Dis­
tr ibuted Theorem Proving: The Teamwork Approach,
Proc. KI-96, Dresden, L N A I 1137, 1996, pp. 43-56.

[8] Fuchs, M.: Learning proof heuristics by adapting pa­
rameters, Proc. 12th WML, Tahoe City, CA, USA, 1995,
pp. 235-243.

[9] Fuchs, M.: Experiments in the Heuristic Use of Past
Proof Experience, Proc. CADE-IS, New Brunswick,
LNAI 1104, 1996, pp. 523-537.

[10] Kolodner, J.L.: An Introduction to Case-Based Reason­
ing, Artificial Intelligence Review 6:3-34, 1992,

[I I] McCune, W.W.: O T T E R 3.0 Reference manual and
Guide, Tech. rep. ANL-94/6, Argonne National Lab­
oratory, 1994.

[12] Sutcliffe, G.; Suttner, C.B.: The Design of the CADE-
13 ATP System Competit ion, Proc. CADE-13, New
Brunswick, L N A I 1104, 1996, pp. 146-160.

[13] Sutcliffe, G.; Suttner, C.B.; Yemenis, T.: The T P T P
Problem Library, Proc. 12th CADE, Nancy, L N A I 814,
1994, pp. 252-266.

D E N Z I N G E R , FUCHS, & FUCHS 107

