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Execut ion of classical plans in the real world can be 
problematic. Small discrepancies between a planner's 
internal representations and the real world are unavoid­
able. These can conspire to cause real-world fai lure even 
though the planner is sound and, therefore, "proves" 
that a sequence of actions achieves the desired goal. The 
diff iculty, of course, is that the planner's proof is con­
tingent on its internal world model precisely captur ing 
all relevant features of the external real wor ld . This is 
seldom the case, par t icu lar ly in robotics where uncer­
tainties abound. Small but unavoidable sensor errors 
preclude accurate knowledge of the state of the world 
Worse, the planner's own characterization of the effects 
of its actions are themselves only approximations. Real-
world execution of a sequence of actions can introduce 
and quickly magnify inconsistencies w i th the internal mi ­
cro wor ld. 

We have been investigating one response to this diff i­
culty called permissive planning [Bennett, 1993; DeJong 
and Bennett, 1993; 1995], a machine learning extension 
to classical p lanning. Our video presents GRASPER, 
a permissive planning robotic system that learns to ro­
bust ly pick up novel objects. In permissive planning, 
machine learning techniques are employed to refine the 
planning a lgor i thm based upon empir ical observations of 
success and fai lure in the wor ld. A l tera t ion of the plan­
ner is accomplished through planner bias adjustment. 
Planner bias is an inescapable facet of classical planning. 
It refers to the preference that a classical planner exhibits 
when it produces one part icular plan f rom among the (of­
ten very large) set of dist inct plans it could in principle 
construct. In the G R A S P E R system, planner bias is ad­
justed through Explanation-Based Learning of schemata 
which eclipse the native bias inherent in the conventional 
searching planner employed as the explanation engine. 

The G R A S P E R system consists of a six degree of free­
dom Prab R T X scara-type manipulator , an overhead 
camera, a frame grabber, and an I B M RT computer run­
ning Lucid Common Lisp. G R A S P E R constructs plans 
to l i f t plastic pieces of a children's puzzle. No a pr i ­
ori models of the objects are given to the system. The 
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pixel patterns f rom the camera are converted into sim­
ple polygons which serve as the object representations 
to the planner. These representations (like any internal 
representation of a real physical object) are flawed, being 
only approximations to the actual objects. GRASPER is 
given a conventional classical axiomatizat ion for how ob­
jects can be surrounded, how closing the gripper applies 
a f r ict ion force between the fingers and the object, how 
sufficient f r ic t ion establishes a grasp, how a grasped ob­
ject can be manipulated, etc. The axiomat izat ion, like 
the represented sensory data, captures the real world 
only approximately: The represented coefficient of fric­
t ion is not precise. Operators that represent arm move­
ment effects only approximate the motions they claim 
to perform. The forces that the robot fingers apply to a 
surrounded object also only approximate the operator's 
effects, and so on. 

Using its in i t ia l knowledge, a plan is constructed to 
l i f t a designated object. Not surprisingly, the in i t ia l plan 
usually fails in the real wor ld. Following the principle of 
permissive planning, the planning process, rather than 
the represented domain theory, is blamed for the short­
coming. The planning bias is adjusted. Through bias 
adjustment over several failures, the real-world effects of 
produced plans are made to conform to the projection of 
the original action sequence. The final pick-up schema 
can be interpreted as 1) squeezing harder than the world 
knowledge claims is necessary, 2) selecting grasp points 
along faces which are more nearly paral lel, 3) select­
ing grasp points closer to the object's center of geom­
etry than believed necessary, and 4) opening the gripper 
wider than believed necessary while approaching the tar­
get object. 

A unique feature of permissive planning is that the 
planning a lgor i thm rather than the underlying incorrect 
representations are adjusted to overcome execution fa i l ­
ures. This is the dual of the more conventional approach 
which successively debugs the planner's domain knowl­
edge, leaving the planning a lgor i thm unchanged. As 
refined operator definitions and object representations 
become more elaborate, the complexity of the planning 
process can grow dramatical ly. One advantage of permis­
sive planning is that the operator definitions and object 
representations remain as the implementor or iginal ly de­
f ined them. 

Permissive planning is not conceived as a general solu-

BENNETTAND DEJONG 2065 

mailto:dejong@cs.uiuc.edu


t ion to al l of the diff iculties that arise in p lanning under 
uncertainty. However, it offers a unique set of advantages 
that can complement other approaches. 
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