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Our eyes see well only what is directly in front of them;
they must continually scan the faces, words, and ob-
jects around us. Perceptual integration is the process of
combining the resulting jumpy, nonuniform images (Fig-
ure 1) into our stable, comprehensive perception of the
world. Visual robots that scan their environment with
moving cameras must also integrate visual information.
We describe IRV, a visual robot that sees across cam-
era movements [Prokopowicz, 1995]. Furthermore, IRV
learns to integrate from experience, which consists of a
series of random movements of a camera mounted on
a motorized pan-tilt platform, observing the day-to-day
activity in a laboratory. The learning procedure makes
minimal assumptions, is robust, and scales. That is,
learning proceeds without a prior analytic model, exter-
nal calibration references, or a contrived environment,
and can compensate for arbitrary imaging distortions,
including lens aberrations, rotation of the camera about
its viewing axis, and spatially-varying or even random
sampling patterns.

IRV develops an accurate model of its own visual-
motor geometry by learning to predict the sampled im-
ages that follow each random, but precise, camera move-
ment (Figure 2). The model describes the relationship
between any relative camera movement vector and the
subsequent apparent motion of each pixel in the im-
age. This relationship between corresponding pairs of
visual points and camera movement vectors IS stored in a
representation we call the visual motor calibration map.
The map is filled over time from natural observations
during development. Such table-based techniques for
perceptual-motor development have been used to learn
hand-eye coordination [Mel, 1990] and dynamic arm con-
trol policies [Atkeson, 1990]. For example, Mel's MUR-
PHY memorized the relationship between the visual po-
sition of key points on its arm and the joint angles of the
arm in that position. The individual experiences that
IRV uses to fill its table are the visual shifts of pixels be-
tween successive images. This fundamentally ambiguous
correspondence problem can not be determined from any
single example. IRV overcomes this ambiguity by accu-
mulating evidence from every repetition of each possi-
ble camera movement. Effectively, every apparent pixel
correspondence (there are typically hundreds for every
pixel) votes for the existence of an actual correspon-
dence under the camera movement that just occurred.
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Figure 1: The problem: A sequence of three overlap-
ping views taken by a foveal, or spatially-varying, cam-
era. Slight changes in viewpoint emphasize completely
different details. Any understanding of the whole Bcene
(lower right) demands integration of information across
eye movements, both for human and foveal computer vi-

sion.

Eventually, enough votes accumulate to determine the
true geometric relationship between pixels in successive
images for the entire repertoire of movements, and the
predictions become more accurate.

The calibration map is implemented as a connection-
ist visual memory that, during each movement, trans-
forms visual information from the previous fixation into
a reference frame centered on the new viewing direction.
The visual shift of a single pixel for a particular move-
ment is embodied as a three-way connection between
units representing the camera movement, the visual lo-
cation of a feature before the movement, and the location
of the same feature after the movement. These connec-
tions are not present initially but develop during early

PROKOPOWICZ AND COOPER 2051



Figure 2: Learning to predict foveal images. Far left:

Foveal image before five degree leftward camera movement.

Left: Image of same scene after movement. Right: The ability to predict a post-movement image begins to develop

after about 100 repetitions of the same relative movement.

Far right: prediction improves after 1964 examples.

Resolution in the center of the predicted image is limited by the original peripheral resolution.

Figure 3: Acquired visual-motor model allows calibra-
tion for arbitrary distortions. Top left: Another foveally-
sampled image. Bottom left: the same image with ar-
bitrary scrambling of the pixels. During learning, every
input looks like this. Right: Same pixels, interpreted
with calibration based on acquired visual-motor corre-
spondences, after about 40,000 movements, or three days
of learning.

experience by a hypothesize-and-test process. Over re-
peated practice movements, each visual unit notes any
correlation between its inputs after the movement, and
those of other units before the movement. The com-
binatorics of the problem make it impossible to record
the frequency of every conceivable correspondence be-
tween pixels. Instead, only a small random set of pos-
sible correspondences is evaluated at any time. This re-
duces the number of connections needed for learning to
O0(NpiceieNmovements), which is feasible both for artifi-
cial and biological systems [Prokopowicz, 1995].

The learned relationship between corresponding pairs
of visual features and relative camera movements de-
fines a motor-baaed metric that IRV uses to interpret
an arbitrary non-uniform visual representation in terms
of known movement angles. This interpretation assigns
a true visual angle for each pixel, regardless of optical
or sampling distortions. The calibration workB by con-
straining the angles assigned to pairs of corresponding
pixels so that they are separated by the size and direc-
tion of the movement angle for which they have been
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found to correspond. As the accuracy of learned visual-
motor correspondences improves, so does the accuracy
of the constrained assignment of visual angles to pixels
(Figure 3).

IRV can see over a field of view wider than that observ-
able from the camera in a single position (Figure 1). IRV
learns to visualize internally the location of peripheral
image details that can no longer be resolved. The con-
nectionist visual memory continually accumulates visual
features near the fovea, and integrates them over time
and eye movements by imagining where they would ap-
pear from the present viewing direction. We have repli-
cated human psychophysical experiments which show
that IRV can perceive and make accurate judgements
about simple forms too large to fit in a single view.

The connectionist computational architecture and the
experimental environment approximate the conditions
of biological perceptual development; the learning algo-
rithm is neurophysiologically plausible. Learning and
mature performance both manifest time and space com-
plexities commensurate with human abilities and re-
sources. In other words, the learning algorithm scales
completely. The results confirm the practicality of vi-
sual robots that learn to perceive the stability of the
world despite eye movements, learn to integrate geomet-
ric features across fixations, and, in general, develop and
calibrate accurate models of their own perceptual-motor
systems.

References

[Atkeson, 1990] Christopher G. Atkeson Using local
models to control movement. In NIPS 3: Advances
in Neural Information Processing Systems, pages 316-

323, edited by David S. Touretsky, Morgan Kaufmann.

[Mel, 1990] Bartlett W. Mel Connectionist  Robot
Motion  Planning: A neurally-inspired  approach  to
visually-guided reaching. Vol. 7. Perspectives in Ar-
tificial Intelligence, Edited by B. Chandrasekaran.
Boston: Academic Press.

[Prokopowicz, 1995] Peter N. Prokopowicz. The Devel-
opment of Perceptual Integration Across Eye Move-
ments In Visual Robots. TR # 1, Intelligent Perception
And Action Lab, Institute for the Learning Sciences,
Northwestern University, June, 1994.



