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Our eyes see well only what is directly in front of them; 
they must continually scan the faces, words, and ob­
jects around us. Perceptual integration is the process of 
combining the resulting jumpy, nonuniform images (Fig­
ure 1) into our stable, comprehensive perception of the 
world. Visual robots that scan their environment with 
moving cameras must also integrate visual information. 
We describe IRV, a visual robot that sees across cam­
era movements [Prokopowicz, 1995]. Furthermore, IRV 
learns to integrate from experience, which consists of a 
series of random movements of a camera mounted on 
a motorized pan-tilt platform, observing the day-to-day 
activity in a laboratory. The learning procedure makes 
minimal assumptions, is robust, and scales. That is, 
learning proceeds without a prior analytic model, exter­
nal calibration references, or a contrived environment, 
and can compensate for arbitrary imaging distortions, 
including lens aberrations, rotation of the camera about 
its viewing axis, and spatially-varying or even random 
sampling patterns. 

IRV develops an accurate model of its own visual-
motor geometry by learning to predict the sampled im­
ages that follow each random, but precise, camera move-
ment (Figure 2). The model describes the relationship 
between any relative camera movement vector and the 
subsequent apparent motion of each pixel in the im­
age. This relationship between corresponding pairs of 
visual points and camera movement vectors IS stored in a 
representation we call the visual motor calibration map. 
The map is filled over time from natural observations 
during development. Such table-based techniques for 
perceptual-motor development have been used to learn 
hand-eye coordination [Mel, 1990] and dynamic arm con­
trol policies [Atkeson, 1990]. For example, Mel's MUR­
PHY memorized the relationship between the visual po­
sition of key points on its arm and the joint angles of the 
arm in that position. The individual experiences that 
IRV uses to fill its table are the visual shifts of pixels be­
tween successive images. This fundamentally ambiguous 
correspondence problem can not be determined from any 
single example. IRV overcomes this ambiguity by accu­
mulating evidence from every repetition of each possi­
ble camera movement. Effectively, every apparent pixel 
correspondence (there are typically hundreds for every 
pixel) votes for the existence of an actual correspon­
dence under the camera movement that just occurred. 

Figure 1: The problem: A sequence of three overlap-
ping views taken by a foveal, or spatially-varying, cam­
era. Slight changes in viewpoint emphasize completely 
different details. Any understanding of the whole Bcene 
(lower right) demands integration of information across 
eye movements, both for human and foveal computer vi­
sion. 

Eventually, enough votes accumulate to determine the 
true geometric relationship between pixels in successive 
images for the entire repertoire of movements, and the 
predictions become more accurate. 

The calibration map is implemented as a connection-
ist visual memory that, during each movement, trans-
forms visual information from the previous fixation into 
a reference frame centered on the new viewing direction. 
The visual shift of a single pixel for a particular move­
ment is embodied as a three-way connection between 
units representing the camera movement, the visual lo­
cation of a feature before the movement, and the location 
of the same feature after the movement. These connec­
tions are not present initially but develop during early 

PROKOPOWICZ AND COOPER 2 0 5 1 



Figure 2: Learning to predict foveal images. Far left : Foveal image before five degree lef tward camera movement. 
Left : Image of same scene after movement. R igh t : The ab i l i t y to predict a post-movement image begins to develop 
after about 100 repet i t ions of the same relat ive movement. Far r ight : predict ion improves after 1964 examples. 
Resolut ion in the center of the predicted image is l im i ted by the or ig inal peripheral resolut ion. 

Figure 3: Acqui red v isua l -motor model allows cal ibra-
t i on for a rb i t ra ry d is tor t ions. Top left : Another foveally-
sampled image. B o t t o m lef t : the same image w i t h ar­
b i t ra ry scrambl ing of the pixels. Du r ing learning, every 
inpu t looks l ike th is . R igh t : Same pixels, interpreted 
w i t h ca l ibra t ion based on acquired v isual -motor corre­
spondences, after about 40,000 movements, or three days 
of learning. 

experience by a hypothesize-and-test process. Over re­
peated practice movements, each visual un i t notes any 
correlat ion between i ts inputs after the movement, and 
those of other uni ts before the movement. The com­
binator ics of the prob lem make i t impossible to record 
the frequency of every conceivable correspondence be­
tween pixels. Instead, on ly a smal l random set of pos­
sible correspondences is evaluated at any t ime . Th is re­
duces the number of connections needed for learning to 
0(Np i c e l eNm o v e m e n t s) , which is feasible bo th for a r t i f i ­
cial and biological systems [Prokopowicz, 1995]. 

The learned relat ionship between corresponding pairs 
of v isual features and relat ive camera movements de­
f ines a motor-baaed met r ic tha t I R V uses to interpret 
an a rb i t ra ry non-un i fo rm visual representation in terms 
of known movement angles. Th is in terpreta t ion assigns 
a t rue v isual angle for each p ixe l , regardless of opt ica l 
or sampl ing d is tor t ions. The ca l ibrat ion workB by con­
s t ra in ing the angles assigned to pairs of corresponding 
pixels so t ha t they are separated by the size and direc­
t i on of the movement angle for wh ich they have been 

found to correspond. As the accuracy of learned visual-
motor correspondences improves, so does the accuracy 
of the constrained assignment of v isual angles to pixels 
(Figure 3). 

IRV can see over a field of v iew wider than that observ­
able f r om the camera in a single posi t ion (Figure 1). IRV 
learns to visualize in ternal ly the locat ion of peripheral 
image details tha t can no longer be resolved. The con-
nectionist v isual memory cont inual ly accumulates visual 
features near the fovea, and integrates them over t ime 
and eye movements by imag in ing where they wou ld ap-
pear f r om the present v iewing d i rect ion. We have repl i ­
cated human psychophysical experiments which show 
tha t IRV can perceive and make accurate judgements 
about simple forms too large to f i t in a single view. 

The connectionist computa t iona l architecture and the 
exper imental envi ronment approx imate the condit ions 
of biological perceptual development; the learning algo­
r i t h m is neurophysiological ly plausible. Learning and 
mature performance bo th manifest t ime and space com­
plexit ies commensurate w i t h human abi l i t ies and re­
sources. In other words, the learning algorithm scales 
completely. The results conf i rm the pract ica l i ty of v i ­
sual robots tha t learn to perceive the s tab i l i ty of the 
wor ld despite eye movements, learn to integrate geomet­
ric features across f ixations, and , in general, develop and 
cal ibrate accurate models of their own perceptual-motor 
systems. 
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