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Abstract

This paper is concerned with the problem of de-
termining the indirect effects or ramifications of
actions. We argue that the standard framework
in which background knowledge is given in the
form of state constraints is inadequate and that
background knowledge should instead be given
in the form of "causal laws." We represent
"causal laws" first as inference rules and later as
sentences in a modal, conditional logic Gy4- For
the framework with "causal laws," we propose a
simple fixpoint condition defining the possible
next states after performing an action. This
fixpoint condition guarantees minimal change
between states, but also enforces the require-
ment that changes be "caused." Ramification
and qualification constraints can be expressed
as "causal laws."

1 Introduction

This paper is concerned with the problem of determin-
ing the indirect effects or ramifications of actions. The
problem is usually investigated, as in [Kartha and Lif-
schitz, 1994], in a framework in which action domains
are described in part by state constraints. (Informally,
a state constraint is a formula that says of a proposition
that it is true in every possible state of the world.) Our
main objective is to argue that an adequate theory of
ramifications requires the representation of information
of a kind that is not conveyed by state constraints. In
particular, what is required is the representation of the
causal relations (or, more generally, the determination
relations) that hold between states of affairs. It turns
out that this is also the information that is needed for
an adequate theory of derived action preconditions or
qualifications.

Previous approaches to the problem of ramifications
have assumed a definition of the following kind: A ram-
ification, roughly speaking, is a change (not explicitly
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described) that is implied by the performance of an ac-
tion. In our approach, we substitute the word "caused"
for the word "implied." In determining the ramifica-
tions of actions, it is not enough, we say, to infer that
a change must occur when an action is performed; it is
necessary to infer that the action causes the change to
occur. As we will see, this stronger requirement makes it
possible to avoid unintended ramifications and to infer
derived qualifications. (The need for the latter is ar-
gued in [Ginsberg and Smith, 1988] and [Lin and Reiter,
1994].) Again roughly speaking, our theory of qualifi-
cations is this: An action cannot be performed if the
performance of the action implies a change that it does
not cause.’

The main points can be illustrated by the following
example. Imagine that Fred the turkey is on a walk.
Consider the action of making Fred dead. Intuitively, as
an indirect effect of performing the action, Fred will no
longer be walking. The reason is that Fred's being dead
causes him to stop walking. Now consider the action
of making Fred walk, but suppose that Fred is dead.
Intuitively, the action cannot be performed. The reason
is as follows: Fred can walk only if he is alive, but making
him walk does not cause him to be alive; so unless he is
already alive (or something in addition is done to cause
him to become alive) he cannot be made to walk.

The conclusions reached in the previous paragraph are
supported by the following facts. Intuitively, Fred can
be made to not walk by making him not alive, but he
cannot be made to be alive by making him walk. If
the indirect effects of an action are the facts made true
by making the direct effects of the action true, then we
should expect Fred's not walking to be an indirect effect
of making him not alive, but we should not expect Fred's
being alive to be an indirect effect of making him walk.

In general, facts about what can and cannot be done
by doing something else are contingent upon underlying
causal connections and other relations of determination.
(For a discussion of noncausal determination relations
see [Kim, 1974].) State constraints say nothing about
these, so it is not surprising that background knowledge
in the form of state constraints should prove to be in-
adequate. In the recent literature on reasoning about
by Lin [1995] these

'A similar proposal appears in

proceedings.



action, the inadequacy of state constraints has been ob-
served by Elkan [1992] and by Brewka and Hertzberg
[1993].

The central problem addressed in this paper is that
of properly denning the set of possible next states after
performing an action, given specific direct effects and
background knowledge in the form of "causal laws."?

For the standard framework in which background
knowledge is given in the form of state constraints, this
problem was solved by Winslett [1988]. It is not clear,
however, how Winslett's definition should be modified
to accommodate causal laws. Accordingly, after an ini-
tial discussion of notation and terminology in Section 2,
we go on in Section 3 to reformulate Winslett's defini-
tion, obtaining an equivalent definition of a quite dif-
ferent form. On the basis of this reformulation, in Sec-
tion 4 we present our definition for the framework with
"causal laws," represented as inference rules. In Sec-
tion 5, we show how ramification and qualification con-
straints can be encoded by inference rules. We also show
that the framework with inference rules properly extends
the standard framework.

In Sections 6-8, we give a semantic account of "causal
laws," replacing inference rules by a rule-like conditional,
for which a modal, partial state semantics is defined.
Doing so allows us to clarify the sense in which our theory
of ramifications and qualifications is a causal theory.

2 Notation and Terminology

We begin with a standard language of propositional
logic, based on a fixed set of atoms. We represent an
interpretation for the language by a maximal consistent
set of literals. Informally, we think of an interpretation
as a logically possible state of the world. For conve-
nience, we sometimes use the word "state" to mean an
interpretation. By an explicit effect we mean a set of for-
mulas. Intuitively, these are the formulas that an action
is explicitly said to cause.

The central problem in determining the ramifications
of an action is to properly define Res(E,S), the set of
possible next states after performing an action with the
explicit effect E in the state S. We address this problem
in frameworks in which background knowledge is given
in the form of state constraints and "causal laws."

By a formula constraint we mean a formula. We will
require every given formula constraint to hold in ev-
ery possible next state, so a formula constraint func-
tions (in this respect) as a state constraint. A stan-
dard example of a formula constraint is the formula
{Walking O Alive) [Baker, 1991].

We will write an inference rule as an expression of the
form

o= ()

where @ and ¥ are formulas. Informally, we will think
of (1) as expressing a relation of determination between

throughout this paper, we use the term "causal law" in
place of the more accurate but less familiar term "determi-
nation relation." Causal laws are in any case prime examples
of determination relations.

the states of affairs that make ¢ and ¢ true. One kind
of determination relation is causal. As an example, we
think of the rule ~Alive = -~ Walking as expressing the
“causal lJaw” that not being alive causes not walking.
Of course, walking does not similarly cause being alive,
which shows that the causal relation, like the inference
rule, i8 “noncontrapositive.”

The standard derivability relation - of propositional
logic 1s easily extended to take account of inference rules.
Let T’ be a set of formulas, and C' be a set of inference
rules. We say that T is closed under C if for every rule
¢=>¢ e C, if 6 €T then ¢ € I'. For any formula ¢, we
write

| O ol

to mean that @ belongs to the smallest set of formulas
containing T that is closed with respect to propositional
logic and closed under C.

3 Possible Next States: Constraints

The standard framework in which the problem of rami-
fications is addressed is one in which background knowl-
edge is given in the form of state constraints. For this
framework, the problem was solved by Winslett [1988].

Definition W For any interpretation 5, any explicit ef-
fect E, and any set B of formulaconstraints, Resy (E, S)
is the set of interpretations 5" such that

(1) S' satisfies EUB, and

(2) no other interpretation that satisfies E U B differs
from S on fewer atoms, where "fewer" is defined by
set inclusion.

Intuitively, Resly (E,S) is the set of possible next
states after performing an action with the explicit effect
E in the state 5, given background knowledge B.

As an example, let

S = {Alive, Walking}
E = {-Alive}
B = {Walking D Alive}.

Then
Resy (E,8) = {{—~Alive, ~Walking}}.

Here, -“Walking is a ramification.

It is not clear how to modify Winslett's definition to
accommodate background knowledge in the form of in-
ference rules. Accordingly, the remainder of this section
will be devoted to reformulating it.

In order to explain our reformulation, we present a
series of definitions in which we introduce, in successive
steps, first the assumption of inertia (which is needed to
solve the frame problem) and then background knowl-
edge in the form of formula constraints. Each definition
will take the following form: For any interpretation 5
and explicit effect E, Res(E,S) is the set of interpreta-
tions S' such that 5' is precisely the set of literals that
are derivable from E and the available background in-
formation (possibly including information provided by
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the assumption of inertia). Throughout this paper the
symbol L will be used to stand exclusively for hterals.

In Definition 1, we do not assume the principle of
inertia, nor do we include formula constraints. Conse-
quently, every literal in any possible next state must be
derivable from E alone.

Definition 1 For any interpretation S and any explicit
effect E, Res'(E, S) is the set of interpretations &’ such

that
S'={L.Et+ L}

Clearly, if the set {L : E' I L} is an interpretation then
this interpretation is the only element of Res'(E,S).
Otherwise, either E does not imply a value for every
atom or F is inconsistent. Since E is required to specify
not only the values of the atoms that change but also
the values of those that do not, the frame problem is
unsolved in Definition 1.

Consider, for example, the state § = {p,¢} and an
action that makes p false. Choosing £ = {—-p A ¢}, we
have Res'(E,S) = {{~p,q}}-

In the next definition (Definition 2), we assume the
principle of inertia, but do not yet include formula con-
straints. Here the frame problem is solved by the as-
sumption of inertia, which makes it possible to specify
only the values of the atoms that change. The values
of the other atoms are assumed to remain the same in
S5’ as in §. The literals in SN 5 are those whose val-
ues are preserved by inertia. We obtain Definition 2 by
adding the literals in SNS’ as additional premises to the
derivability condition in Definition 1.

Definition 2 For any interpretation S and any explicit
eflect E, Res*(E, S) is the set of interpretations S’ such

that
S'={L:(SNS)YVEF L}

Consider again the state S = {p,g} and an action
that makes p false. Choosing £ = {-p}, we have
Res’(E,8) = {{-p,q}}. Because of the assumption of
inertia, Res2(E, S) may be nonempty even when the ex-
plicit effect does not imply a value for every atom.

Given an interpretation S and an explicit effect £, the
solutions to the equation that appears in Definition 2 are
the interpretations §’ that are fixpoints of the function
AXAL : (SNX)UEF L}. The following example shows
that there may be more than one fixpoint. Let

S = {-p, ¢}
E {pvaq}.

Res’(E,8) = {{-w.q}.{p, ~a}}.

The definition of the transition function for the lan-
guage A of Gelfond and Lifschitz [1993] corresponds to
the special case of Definition 2 in which the explicit ef-
fect E is required to be a consistent set of literals. Under
this restriction, Res*(E, S) will always be a singleton.

We are now ready to reformulate Winslett’s definition
for the framework with inertia and background knowl-
edge in the form of formula constraints. We obtain Defi-
nition 3 by simply adding B to the premises of the deriv-
ability condition in Definition 2.

Then
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Definition 3 For any interpretation S, any explicit ef-
fect E, and any set B of formula constraints, Resy(E, S)
is the set of interpretations S’ such that

S={L:(SNSY)UEUBF L}.

Winslett’s definition expresses the idea of minimizing
change. Definition 3 has a very different form,; it is given
in terms of a fixpoint condition. Despite this difference,
the two definitions are equivalent, as the following propo-
sition shows,

Proposition 1 For any interprelalion S, any explicit
effect E, and any set B of formula constraints,

Resy (E,S) = Res}(E, S).

Proof. For the left-to-right direction, assume that 5 €
Res% (E,S). Let $" be a model of (SNS)UEUB. It
follows that SN &8 C §”, 50 SN& C §N 5. Since
S’ € Resy (E,S) and S” is a model of £U B, we know
that S NS’ is not a proper subset of $ N S5”. Thus,
SNS =85nS". It follows that §” = &, since 5, &,
and S” are interpretations. So S’ is the unique model
of (SNS)YUEUB. Therefore, 8 = {L : (SNS)U
EUBVYF L}, and so § € Resh{E,S). For the right-
to-left direction, assume that S' € Resy(E,S). Then
S'={L:(SNSYUEUBF L}. It follows that S’ is the
unique model of (SN S )V E U B. Let 8 be a member
of Resy (E, S) such that SNS' € §NS”. We will show
that 5 = S”. We know that S” is a model of EU B.
Since SNS' C SNS”, 5" is a model of SNS’. So 5" is
a model of (SN S') U E U B. Therefore, S = 5’. O

4 Possible Next States: Causal Laws

Given our reformulation of Winslett’s definition, it is
now a simple matter to define the possible next states
in the presence of background knowledge in the form of
“causal laws,” represented as inference rules,

We obtain the definition for Hes in the present frame-
work by replacing F in Definition 2 by Fo. We do not
include formula constraints (by similarly modifying Defi-
nition 3), because, as we will see, for the purpose of defin-
ing Res they are easily represented by inference rules.?

Definition 4 For any interpretation S, any exphcit
eflect E, and any set C of inference rules, Ress(E, S) 18
the set of interpretations S’ such that

S={L:(SNSYVEtc L}.

For example, let

S = {Alive, Walking}
E = {-Alive}
C = {-Alive = -Walking}.

Then
Rest(E, S) = {{—~Alive, ~Walking}}.

Again, “Walking is a ramification.

?Definition 4 is closely related to the definition of “rule up-
date” in [Przymusinski and Turner, 1995), which generalizes
revision programming [Marek and Truszczyniski, 1994].



One advantage of Definition 4 over Definition 3 is il-
lustrated by the following variation on the previous ex-
ample. Let

S = {-Alive,~Walking}
E = {Walking}
B = {Walking D Alive}

with C as before. Then Res&(E,S) is empty, whereas
Resy(E,8) = {{Alive, Walking)}

Intuitively, Res’cy(E, S) is correct. Since we cannot make
Alive true by making Walking true, we cannot perform
an action in state S whose explicit effect is { Walking],
because this effect implies a change (namely, making
Alive true) that the action does not cause.* This is an
example of a derived qualification.

Another advantage of using causal laws is illustrated
by the domain introduced in [Lifschitz, 1990] in which
there are two switches and a light. Let

S = {-Upt, Up2 ~0On}
E = {Uph}
B = {On=(Upl= Up2)}

Then
Resy(E,S) = {{Up1, Up2, On}, {Upt,—~Up2,-0n} }

The second state in Resg(E, S) is anomalous, and results
from the unintended ramification ->Up2. In [Lifschitz,
1990] and [Kartha and Lifschitz, 1994], this ramification
is blocked by declaring Up7 and Up2to be "in the frame"
and On to be "not in the frame." By constrast, the use of
inference rules in place of formula constraints makes the
frame/nonframe distinction unnecessary for the purpose
of limiting possible ramifications. For instance, let C
contain the inference rules

(Upl= Up2y=> On
-(Upl = Up2) = -0n,

Then
Rest.(E, 8) = {{Up!, Up2, On}}.

Notice that in each of the previous examples,
Resi{E, S} is a subset of Res%(E,S). The following
proposition shows that this relationship holds whenever
B and C are related as above.

Proposition 2 Let C be o set of inference rules, and
let B={¢ Dy :¢=>1 € C}). For every interprelation
S and exphcit effect E, Rest(E, S) C Resy(E, S).

Proof Suppose that &' € Rest(E,S). So & = {L :
(SNS)YUEFWFc L} 1t follows that 8 = {L : S' ¢ L}.
Therefore, for any formula ¢, 8 +¢ ¢ if and only if
S’ = ¢. Now consider any formula ¢ O v in B such that

*Intuitively, since not being alive causes not walking, the
conditional ( Walking O Alive) holds in every possible state
of the world, and in this sense Walking implies Alsve. How-
ever, the inference rule (—Alive = ~Walking) does not cap-
ture this intuition. This is a deficiency in the representation
of causal laws which is remedied in Sections 6-8.

S’ = ¢. We know that S’ ¢ ¢, and since ¢ = ¥ belongs
to C, it follows that 8’ o . Therefore §' |= %, which
shows that 5/ is a model of B. Clearly, §' also satisfies
E, so we have shown that S’ satisfies £ U B. Let 8" be
a model of £U B such that SN.S C SNS”. We need to
show that $” = &' Since §' and 5" are interpretations,
it is enough to show that §' C §”.

S = {L:(SNS)UEFcL) {5 € Rest(E,S)}
C {L:(SNSYUEFrcL) {SnS'CS5NnS"})
C {L:$"UEFe L} (SN S” C 8}
= {L:8"btc L} {S" satisfies E'}

Since B={¢ D¢ :6=>¢ € C}, we have {L : §" t¢
LYC {L:58"uUB*Fr L} Finally, since S satisfies B,
{L:S"UBFL}=25". 0

5 Ramification and Qualification
Constraints

Lin and Reiter [1994] draw a pragmatic distinction be-
tween two kinds of state constraints: ramification con-
straints , which yield indirect effects, and qualification
constraints, which yield action preconditions. As they
observe, the same distinction was drawn earlier by Gins-
berg and Smith [1988]. In the language of inference rules,
we can give a syntactic form to this distinction. Suppose
that @ is a formula constraint. If we wish @ to function
as a ramification constraint, we write the rule

True=> ¢.

If instead we wish @ to function as a qualification con-
straint we write the rule

-¢ => False.

In Definition 3 all formulaconstraints function as ram-
ification constraints. The correctness of our encoding of
ramification constraints is demonstrated by the following
proposition.

Proposition 3 Let B be a sel of formula constraints,
and let C = {True=> ¢ : ¢ € B}. For every interpreta-
tion S and ezphait effect £, Resy(E,S) = Rest(E, S).

Proof Due to the special form of the rules in C, it
is clear that for any set I' of formulas and any formula
¢, we have T U B F ¢ if and only if ' F ¢. Hence,
5" € Ress{E,S) it &' = {L . (SNS)YUEUVUBt+ L}iff
S ={L:(SNSYUEtg L} iff ' € Res¢(E,Sy. O

The preceding proposition also shows that the frame-
work of Definition 3 is subsumed by that of Definition 4.

As an example of a domain in which a state constraint
is intended to function as a qualification constraint, we
consider a simplified version of a domain from [Lin and
Reiter, 1994]. Imagine an ancient kingdom in which
there are two blocks. Either block may be painted yel-
low, but by order of the emperor at most one of the
blocks is permitted to be yellow at a time. Consider a
state in which the second block is yellow. Intuitively, in
this state it is not possible to paint the first block yel-
low. Representing the emperor's decree by aramification
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constraint does not conform to this intuition. Indeed, let

5 = {-1,Y:}
E = {n})
C = {T?‘UE%"(Y;/\YQ)}.

Then
Rest(E, 8) = {({N1,~Yz}}.

So painting the first block yellow changes the color of the
second block! On the other hand, if we represent the em-
peror’s decree as a qualification constraint by redefining
C as

C = {(Y1 A Ys) = False}

then Resi(E,S) is empty, which conforms to our intu-
ition that it is impossible to paint the first block yellow
in state S.

The following straightforward proposition shows that
rules of the form we write for qualification constraints
cannot lead to ramifications, but can only rule them out.

Proposition 4 Let C be a set of wnference rules, and
let ¢ be a formula. Let C' = C U {—~¢=> False}. For
all interpretations S and 5/, and any explicit effect E,
S’ € Resgi(F,S) iff 5 € Resq(E,S) and 5’ E ¢.

Brewka and Hertzberg [1993], who also use inference
rules to represent causal laws, propose a modification of
Winslett’s definition [1988] in which causal laws play a
role in the definition of minimal change between states.
Because of the role that minimal change continues to
play in their definition, they cannot express qualification
constraints in the manner shown above. Nor do they ob-
tain derived qualifications of the kind illustrated by the
Walking/Alive example.® Notice that the causal law
—~Alive=> -~ Walking has neither the form of a ramifica-
tion constraint nor the form of a qualification constraint.
In fact, as illustrated in Section 4, it sometimes leads to
ramifications and sometimes qualifications.

6 The Logic of S-Conditionals

Representing “causal laws” by inference rules is conve-
nient, but not ultimately satisfactory, for two reasons,
First, an inference rule is not an object language sen-
tence, and therefore, unlike, for example, a formula con-
straint, is not interpreted declaratively. As a result,
whereas Definitions 1-3 of Section 3 may be recast in
semantic terms by simply replacing the derivability rela-
tion by the consequence relation |=, this is not true
of Definition 4. Secondly, although a causal law in-
tuitively implies its corresponding material conditional
{(indeed, it implies the corresponding strict conditional,
which says that the material conditional holds in every
possible state of the world), an inference rule does not.
In this section, we prepare to remedy these deficiencies
in the representation of “causal laws” by defining a new
conditional logic Ca,,, which is an extension of S5 modal
logic.

*Even in cases where derived qualifications are not in-
volved, Brewka and Hertzberg may obtain results different
from those of Definition 4.
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A specific Cy,; language is given by a fixed set of atoms.
The formulas of the language are formed from its atoms
and expressions of the form (1}, i.e.,

¢ =

(where ¢ and ¢ are formulas of propositional logic), using
propositional connectives and the modal operator 0. We
say that the language is “flat,” because the operators O
and => are not allowed to occur in ¢ or ¥.¢ In the
context of a Cg,, language, an expression of the form (1)
will be called an s-conditional, and ma.;' be read as: the
truth of ¢ determines the truth of ¢ Informally, an
g-conditional ¢ => ¢ is true just 1n case in every part of
every possible state of the world in which ¢ is true, ¥’ is
true as well.

An S5 structure can be defined as a pair (X, S), where
¥ is a nonempty set of interpretations, and S is a distin-
guished interpretation in £. A Ca,, structure 1s obtained
by replacing the set £ by a set § of sets of interpreta-
tions.

A structure for a Cy,, language is a pair (§2,5), where
1 1s a nonempty set of nonempty sets of interpretations
(of the atoms of the language), and S is an interpretation
such that {S} € Q. The elements of  are called partial
states. By S(§2) we designale the set of states, defined
as: S(2) = {S: {8} € Q}. (The set S{Q} corresponds
to the set X in an S5 structure.) We impose the following
structure condition: for every partial state U € 2, there
1s a state S € S(2) such that § € U. This reflects the
natural requirement that every partial state be a part of
some state.

For any set U of interpretations and any formula ¢ of
propositional logic, we write I/ = ¢ as an abbreviation
for the expression: for all S € U, § }= ¢. Furthermore,
for any set I' of formulas of propositional logic, we write
U | I' as an abbreviation for the expression: for all
del' UEé.

We define when a structure (2, §) satisfies a formula
¢ (in symbols, (2, 5) |= ¢) as follows. For all formulas
¢ and ¢ (except in the last clause below),

@,SYEé ff ¢85, if¢isan atom,
(@,5) £ ~p il (2,5) ¢,
(2,5) E ¢ AY iff (2,5)E ¢ and (2,9) & ¥,
(2,8) E0¢ iff forall S e 8(Q), (,5) o,
(Q,5) Eé=>y iff

forall U € Q,if U |- ¢ then U E 9.

In the last clause, ¢ and ¢ are formulas of propositional
logic.

Let T be a set of formulas. A model of T is a structure
that satisfies every formula in T. We say that T entails

®Restricting ¢ and ¢ in this way is not essential. In fact,
the language Cp,: is a simplified version of a more general
language C, in which ¢ and ¢ are permitted to be arbitrary
formulas, possibly containing O and = . The advantage of
Ciat is that it is possible to give its semantics using a simpler
mode] structure than is required for C.

7An alternative reading is: ¢’s being true is a sufficient
condition for ¢’s being true. This reading iz our motivation
for the name “s-conditional.”



a formula ¢ (in symbols, T = ¢} if every model of T is
a mode] of ¢.

It is easy to see that an s-conditional entails its corre-
sponding strict conditional, that 1s,

¢=>v FEO0{¢ D). (2)

It is also easy to see that an s-conditional does not
necessarily entail its contrapositive. For example, let
S1 = {a,b}, Sa = {a,-b}, S3 = {—a, b}, and

M= ({{Sl}: {Sﬂ}r {52153}}!31)'

Observe that M k= a=pb, but M & ~b=> ~a. These
are two important properties of causal laws,

7 S-Conditionals and Inference Rules

In this section we briefly investigate the semantical re-
lationship between s-conditionals and inference rules.
Throughout this section we will use the term formula
to mean a formula of propositional logic.

For any set U/ of interpretations, by Th(U/) we mean
the set of farmulas ¢ such that U | 4. For any set T of
formulas, by Mod(T') we mean the set of interpretations
that satisfy T.

Throughout the remainder of this section, let C' be a
fixed set of s-conditionals.

Fact 1 Let (2,5) be a model of C. If U € & then
Th(U) is closed under C.

A model (2, 5) of C is called mazrtmal if there is no
model (£2', 8') of C such that 2 is a proper subset of &',
It 1s clear that the maximal models of €' can differ only
in their second components.

Even when (22, S) is maximal, the converse of Fact 1
may fail to hold. This is due to the structure condition
which requires every set {/ € {2 to contain an interpreta-
tion S’ such that {S'} € Q2. This complication motivates
the following definition.

Let T be a set of formulas. We say that I' is com-
pletable wrt a set of inference rules if there exists a max-
imal consistent superset I'Y of I' such that I' is closed
under the inference rules,

Fact 2 Let (©2,5) be a maximal model of C. For any
set U of interpretations, if Th({/) is closed under C and
completable wrt C then U € €.

In the next section we will use the following lemma to
Justify a reformulation of Definition 4.

Lemma 1 Let (2, 5) be a maxrimal model of C, and let
I’ be a set of formulas that is completable wrt C. For
any formula ¢, I' Fc ¢ if and only of for diU € Q, 3f
UET then U | ¢.

Proof.  For the left-to-right direction, assume that
I' ¢ ¢. Suppose U € @ and U | T. Then Th{U)
is logically closed, closed under C {by Fact 1), and con-
tains I'. Since ' k¢ 4, we know that ¢ is in the smallest
such set. So ¢ € Th(U). By the definition of Th, U = ¢.

For the right-to-left direction, assume that for all U €
Q,ifU |= T then U |= ¢. Let I' be the smallest logi-
cally closed set that is closed under C and contains I'.

We will show that IV is completable wrt €. Since I' is
completable wrt C, we know there is a maximal consis-
tent superset I of I' that is closed under C. Thus, I'” is
a logically closed set that is closed under {7 and contains
I'. Since I' is the smallest such set, I'¥ C T'"". Hence,
I'' is completable wrt C. Notice that I' = Th{Mod(T")).
‘Thus, by Fact 2, Mod(I") € Q2. Moreover, since I' C I,
Mod(I") = T'. Since Mod(T") € Q, Mod(T*) |= ¢. Thus,
by the definition of Th, ¢ € I’. By the choice of IV,
Fke ¢, |

8 Causality versus Implication

In this section, we recast Definition 4 semantically, rep-
resenting causal laws as s-conditionals, instead of as in-
ference rules. Doing so will allow us to clarify the sense
in which our theory of ramifications and qualifications is
a “causal” theory.

Definition 4’ Let C be a set of s-conditionals, and let
M = (£2,8") be a maximal model of C. For any state S

and explicit effect E, Res:‘\;(E, 5) is the set of states S
such that

S’:{L:

The following proposition shows that Definitions 4 and
4’ agree where both are defined.

for all U € {2,
JUESNSYUE thenU EL

Proposition 5 Let C be a sel of s-conditionals. Let
M = (Q,5") be a marimal model of C'. For any state S

and explicit effect F, Res".g(E,S) = Resﬁ;(E,S).

Proof. For any set I' of formulas of propositional logic,
let A(TY={L:forall U € Q,if U =T then U = L}. It
will be sufficient to show that for any interpretation S,
S={L:TkeL}iff S=AT).

For the left-to-right direction, let § be an nterpreta-
tion and ' be a set of formulas of propositional logic
such that § = {L : T k¢ L}. Because S = {L :T k¢ L}
and § is an interpretation, TA({S}) = {¢ : T +c ¢}.
Clearly, Th({S}) contains I" and is closed under C, which
shows that [’ is completable wrt C. By Lemma 1,
{L:T kg L} = A(T). So § = ATI).

For the right-to-left direction, let S be an interpreta-
tion and T a set of formulas of propositional logic such
that § = A(T"). Since A(T') is consistent, we know there
is a I/ € Q that satisfies I'. Moreover, since A(I') = S,
we know that for every such U, U |= L for every L € 5.
This shows that {S} belongs to  and satisfies I'. By
the definition of Th, since {S} = T, I' € Th({S}). By
Fact 1, stnce {S} € Q, Th({S}) 1s closed under C'. SoT is
completable wrt C. By Lemma 1, {L:T'F¢c L} = A(T).
SoS={L:Tke¢ L} 0

Given Propositions 3 and 4, it follows from Propo-
sition 5 that s-conditionals of the forms True = ¢ and
~¢ => False function (wri Definition 4') as ramification
and qualification constraints, respectively. It is interest-
ing to note that the first of these says that ¢ holds in ev-
ery partial state, whereas the second says that —¢ holds
in no partial state. Because partial states have truth
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value gaps, these meanings are distinct. Thus, ramifica-
tion and qualification constraints are now distinguished
semantically as well as syntactically.

In order to further explain what is distinctive about
our theory, it will be convenient to assume, for the time
being, that (SN 5') U E is finite. Moreover, in order to
simplify notation, whenever (S N 5') U £ appears in a
formula we will take it to stand for the (finite) conjunc-
tion of its elements. Using this convention, we can say

that S' € Resi;(E, S) if and only if
S={L:ME(SNS)UE=L}. (3)

Given an &’ € Resﬁ;(E, S), we will say that a literal
L € &' is a ramification if (SN S')UFE § L. Assume
that L is such a ramification. [t is interesting to contrast
the condition

MEGBNS)UESL

from Equation (3), which roughly speaking says that L
is caused, with a similar condition

MEDO(SNS)IUEDL)

which says that L is implied, in the sense that in
every possible state in which (S N S) U F is true,
L is true. Since, by (2), (SN §') U E= L entails
D((SNS)UE D L), it is clear that the former condi-
tion is stronger than the latter.

If we wished to require merely that ramifications be
implied, rather than caused, we would instead impose
the fixpoint condition

S={L:MEO{(SNS)YUVEDL)} (4)
This condition corresponds to Definition 3. To see this,
let B be a set of formula constraints, OB = {0¢ : ¢ €

B}, and M be a maximal Cg,, model of DB.® It can be
shown that

(SNSYUEUBFL Jf MEO(SNSYUEDL).
It follows that 5’ is a fixpoint of Equation {4) if and only
if ' belongs to Resy(E, S).

Let ¢ be a formula of propositional logic. It is inter-
esting to observe that in Ca,. the state constraint O¢
is logically equivalent to the s-conditional —¢ => False,
which has the form of a qualification constraint. This
may seem puzzling, since qualification constraints do not
lead to ramifications, while state constraints tradition-
ally have been used to do precisely that. The puzzle is
resolved, however, by recalling that in the causal theory
of Definition 4’ a requirement stronger than the usual
one is placed on ramifications: namely, the requirement.
that ramifications be caused (as in Equation 3) and not
merely implied (as in Equation 4).
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