Reasoning about Action and Change Using Dijkstra's Semantics for

Programming Languages:

Preliminary Report*

Witold Lukaszewicz and Ewa Madaliriska-Bugaj

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw, POLAND
witlu@mimuw.edu.pl, ewama@mimuw.edu.pl

Abstract

We apply Dijkstra's semantics for programming
languages to formalization of reasoning about
action and change. The basic idea is to view
actions as formula transformers, i.e. functions
from formulae into formulae.

The major advantage of our proposal is that it
is very simple and more effective than most of
other approaches. Yet, it deals with a broad
class of actions, including those with random
and indirect effects. Also, both temporal pre-
diction and postdiction reasoning tasks can be
solved without restricting initial nor final states
to completely specified.

1 Introduction

We apply Dijkstra's semantics for programming lan-
guages [Dijkstra, 1976; Dijkstra and Scholten, 1990] to
formalization of reasoning about action and change. The
basic idea is to specify effects of actions in terms of for-
mula transformers, i.e. functions from formulae into for-
mulae. More specifically, with each action A we associate
two formula transformers, called the strongest postcondi-
tion for A and the weakest liberal precondition for A. The
former, when applied to a formula a, returns a formula
representing the set of all states that can be achieved by
starting execution of A in some state satisfying a. The
latter, when applied to a formula a, returns a formula
providing a description of all states such that whenever
execution of A starts in any one of them and terminates,
the output state satisfies a.’

The idea of employing formula transformers to spec-
ify effects of actions is not new in the Al literature.
Waldinger [1977], in the context of STRIPS system
[Fikes and Nilsson, 1971], introduces a notion of a re-
pression operator which corresponds closely to the weak-
est precondition transformer. Pednault [1986; 1988;

*This research was supported in part by the ESPRIT Ba-
sic Research Action No. 6156 - DRUMS Il and by KBN grant
3 P406 019 06.

" We do not use the weakest precondition transformer (wp)
which plays a prominent role in reasoning about programs.
The reason is that, in general, the wp transformer is slightly
too strong for our purposes.

1950 TEMPORAL REASONING

1989] employes regression operators for plan synthesis.
In [Pednault, 1986] a notion of progression operator,
corresponding to Dijkstra's strongest postcondition, is
introduced and analysed.

Formula transformers approach to reasoning about ac-
tion and change has one major advantage and one major
weakness when compared to purely logical formalisms
such as Situation Calculus [Hayes and McCarthy, 1969;
Lifschitz, 1988; Lifschitz and Rabinov, 1989; Gelfond et
al., 1991; Baker, 1991] or Features and Fluents [Sande-
wall, 1994]. On the positive side, describing effects of
actions in terms of formula transformers decreases com-
putational complexity. The price to pay for it is the loss
of expressibility.

Our proposal combines computational effectiveness
with expressibility. Although not so expressible as Sit-
uation Calculus or Feature and Fluents, the formalism
specified here allows to deal with a broad class of ac-
tions, including those with random and indirect effects.
Also, both temporal prediction and postdiction reason-
ing tasks can be solved without restricting initial nor
final states to completely specified.?

The paper is organized as follows. Section 2 is a brief
introduction to Dijkstra's semantics for a simple pro-
gramming language. In section 3, we outline a general
procedure to define action languages using Dijkstra's
methodology, illustrate this procedure by specifying a
simple "shooting" language, and introduce a notion of
an action scenario. Section 4 defines the kind of rea-
soning we shall be interested in, and provides a simple
method of realizing this type of inference. In section 5,
we illustrate this method by considering a number of ex-
amples, well-known from the Al literature. Section 6 is
devoted to actions with indirect effects. Finally, section
7 contains discussion and ideas for future work.

For lack of space, we omit proofs of the results pro-
vided here. The full version of the paper is available
in pub/papers/CRIT/Dijkstra/ijcai95.ps by anonymous
ftp to ftp.mimuw.edu.pl.

2This paper is part of a general programme of applying
Dijkstra's approach to reasoning about action and change.
In [Lukaszewicz and Madalinska-Bugaj, 1994], we used this
methodology to formalize deterministic actions without indi-
rect effects. In [Lukaszewicz and Madaliriska-Bugaj, 1995],
we combined Dijkstra's semantics with Reiter's default logic
to deal with actions where abnormal effects are allowed.

2 Introduction to Dijkstra's semantics

In [Dijkstra and Scholten, 1990] we are provided with a
simple programming language whose semantics is spec-
ified in terms of formula trasformers. More specifically,
with each command 5 there are associated three such
transformers, called the weakest precondition, the weak-
est liberal precondition and the strongest postcondition,
denoted by wp.S, wip.S and sp.S, respectively. Before
providing the meaning of these transformers, we have to
make some remarks and introduce some terminology.

We assume here that the programming language under
consideration contains one type of variables only, namely
Boolean variables. This assumption may seem overly
restrictive, but no other variables will be needed for our
purpose.

Let V' be a set of Boolean variables. A siaie over V is
any function o from V into the truth-values {0, 1}.

An assertion language over a set V of Boolean vari-
ables, denoted by L(V), is the set of all formulae con-
structable in the usual way from members of V', truth-
constants 7 and F', sentential connectives (-, D, A,V,=)
and quantifiers (V,3).° In what follows, the term “for-
mula’ refers always to a formula of some fixed asser-
tion language. A formula o is said to be a Boolean ez-
pression if it contains no quantifiers. If 3 is a formula,
ay,...,%n are Boolean expressions and x,,...,2, are
variables, then we write 8[x; — a;,...,Tn — a;,) to de-
note the formula which obtains from 3 by simultaneously
replacing all free occurrences of x1,...,2, by ay,..., oy,
respectively.

The value of a formula a € L(V) 1n a stele o, written
| & |}«, is an element from {0, 1} specified by the usual
rules for classigal propositional logic, together with:

(1) |V llo=1 iff {|a||,»=1, foreache’ identical
to o except on the variable z.

(ii) || 3z.a Jlo=1 iff || a |l»»= 1, for some &
identical to o except on the variable r.4

!

A state o is said to safisfy a formula a iff || a |lo=1 .
If o satisfies a, then o is called a model of . When we
say that o satisfies o, we always implicitly assume that
¢ provides an interpretation for all Boolean variables
occurring in a.

The formula transformers mentioned above are to be
understood as follows. For each command § and each
formula a: (1) wp.S(«) is the formula whose models are
precisely the states such that execution of S begun in
any one of them is guaranteed to terminate in a stale
satisfying o. (2) wip.S(a) is the formula whose models
are precisely the states such that whenever execution of
S starts in any one of them and terminates, the out-
put state satisfies . (3) sp.8(a)} is the formula whose
models are precisely the states such that each of them

*Note that quantifiers can be applied to Boolean variables
only.

{Note that quantified formulae can be reduced into equiva-
lent Boolean expressions. Namely, formulae of the form ¥z.o
can be replaced by a[z ~— T] A afz — F|, whereas formu-
lae of the form Ir.a by a[z — T|V e[z ~— F). Accordingly,
assertion languages we consider here are in fact propositional.

can be reached by starting execution of § in some state
satisfying a.

In what follows, for each formula transformer X &€
{wp, wip, sp}, we shall write X(S, a) instead of X.5(a).

2.1 List of commands

The considered language consists of skip command, as-
signment to simple variables, alternative command and
sequeniial composition of commands®. Semantics of
these commands is specified as follows.®

1. The skip command. This is the “empty” com-
mand in that its execution does not change the compu-
tation stale. The semantics of skip is given by

wip(skip, o) = sp(skip, o) = a.

2. The assignmeni command. This command is of
the form z := e, where z is a (Boolean) variable and e is a
(Boolean) expression. The weakest liberal precondition
of this cornmand is given by

wlp(z = e, a) =afzx —el.
The strongest postcondition for assignment coramand is
more complex. In general, 1t is given by

sp(z=c,a)=Fy((zSefzr —y)) Aa[z —¢]). (1)
If £ does not occur in e, (1) can be simplified. In this
case sp(r 1= e,) can be replaced by
(z=e)rndr.a
or equivalently
(z =e) Afafz —~ T)V a[z — F)]). (2)
In the sequel we shall often deal with assignment com-

mands, z := e, where ¢ is T or F. In this case,
sp(x ‘= e,) can be reduced to

zA{alz —T|Vajz—F]) ifeisT
{-xf\(a[z:hif']Va[th]) iteis (3

3. The sequential composition command. This com-
mand is of the form S5;;S52, where 5; and S; are any
commands. Its semanties is given by

wip(51; 82, a} = wip(S;, wlp(Sz, a))
sp(S1; Sz, a) = sp(Sz, 5p(S1, @)).
4. The allernative command. This command is of
the form
if Bp—5) -] Ba—-8, fi (4)
where Bj,..., B, are Boolean expressions and
Sy,...,8, are any commands. In the sequel, we refer
to (4) as IF. The command is executed as follows. If
none of B; is true, then the execution aborts. Other-
wise, one command S; with true B, 1s randomiy selected
and executed.” The semantics of IF is given by

wip(If,a) = Al_{(Bi D wip(S,,a))
sp(IF, o) = V., (sp(5;, B; A a)).

*The original Dijkstra's language contains abort command
and iterative commands as well, but they are not needed for
our purpose.

®In what follows, we do not specify the wp formula tran-
formers for the considered language, because they will not be
needed in the sequel.

"Note that when more than one of B, is true, the selection
of a command to execute is nondeterministic.

LUKASZEWICZ AND MADALINSKA-BUGAJ 1951

2.2 Main results

Dijkstra and Scholten [1990] consider various classes of
computations. The class we are primarily interested in
here is called by these authors initially a and finally 8
under control of S, where o and # are formulae and S is
s command. This class, which will be denoted by [5]3,
represents the set of all computations under control of
S that start in a state satisfying a and terminate in &
state satisfying 3.

Suppose that ¢ € [S]§. Obviously, since S terminates
in a state satisfying 5 and wip(S,—8) represents the
set of all states such that S begun in any of them ei-
ther terminates in a state satisfying —8 or loops forever,
it must be the case that the initial state of c satisfies
a A =wip(S,—f). Similarly, since S starts in a state sat-
isfying o and sp(S, o) represents the set of all states such
that any of them can be reached by starting execution of
S in some state satisfying a, we conclude that the final
state of ¢ satisfies BA sp(S, o). An interesting question is
whether the formulae a A -wip(S5, —8) and 2 A sp(5, o)
provide a complete description of the initial and final
states of the computations from the class [S]§. That the
answer is posijtive follows from the following result which
can be found in [Dijkstra and Scholten, 1990].

Theorem 1 The formula aA-wlp(S,-f8) (resp. 8 A
sp(S, a)) holds in a state o iff there exists a computation
c from [§]§ such that & is the initial (resp. final) state
of c. B

Consider now the class of computations C= (S]],
where S is the sequence 5y;5%;...;8,. Let ST¢(3),
0 € i < n, be the set of all states satisfying the fol-
lowing condition: for each ¢ € ST¢(i), there exists a
computation ¢ € C such that ¢ is reached by c after
executing Sy, ...; 5. In what follows, the members of
STe (i) will be referred to as :-states of €. Clearly, 0-
states are Initial states and n-states are final states. The
following theorem provides a complete charactenzation
of i-states.

Theorem 2 The formula sp(S;;...;8;,a) A
~wdp(Si41;...;8n,=5) holds in a state ¢ iff there ex-
ists a computation from the class C= [5};5;...; Sa]§

such that 0 € ST¢(i), 0<i<nt m

There is another class of computations that we shall
be interested in. This class, denoted by [S1;. . .; Sp]5(7),
represents the set of all computations under control of
S1;...;Sn that start in a state satisfying «, terminate
in a state satisfying # and, in addition, any state of any
computation from this class that can be reached after
executing S;;...;5; (0 < i € n) satisfies 4. The class
{515 ... 5a]5(7) will be referred to as initially o, finaily
B and always v under control of $1;...;5,.°

The next theorem provides a complete characteriza-
tion of s-states of the introduced class of computations.

*We assume here that ap(5:;...; S5, a) is a if i = 0 and
wlp{Sig1;...: 80, @)is Bif i =m.
®Note that if v is T, then the class [Sy;..

.3 Sn)5 () reduces
to the class [S);...;Sal3.

1952 TEMPORAL REASONING

Theorem 3 The formula sp”(S);...;S8,a A ¥) A
—wlp?(Si41;--.; 50, =(FA7¥)) holds in a state ¢ iff there
exisie a computation from the class C= [Sy;...;85,]5(7)
such that o € ST-(i). Here sp” and wip” are specified
by the following recursive definitions (6 is any formula).

sp7(51,6) = v Asp(S1,6) (5)
sp'(51;...15:,6) =

v A 8p(S;, 8p7(S1; . .. Si-1, 6)) (6)
wip?(Sn,8) =~y V wip(S,, 6) (7)
w!p"(.S‘.-H;...;.S'n,é) =

-~y V wlp(Si41, w!p”(S.-+2; et S, 6)) (8)

3 Action languages and action scenarios

To define an action language one proceeds in three steps.

(1) First, we choose an assertion language to represent
the effect of actions. The "shooting language" we use in
the sequel uses two Boolean variables: a and /, standing
for alive and loaded, respectively. To be in accord with
the Al terminology, these variables will be referred to as
fluents.

(2) The next step is to provide action symbols repre-
senting the actions under consideration. In the shooting
language we have four such symbols: Joad (a gun), walit,
spin (a chamber) and shoot (a turkey). The intention is
that load makes the gun loaded, wait does not cause any
changes in the world, the effect of spin is that randomly
the gun is loaded or not after the action, regardless of
whether it was loaded before or not, and shoot makes
the gun unloaded and the turkey dead, provided that
the gun was loaded before.

(3) The final step is to define Dijkstra-style seman-
tics for the choosen actions. To perform this step for
the shooting language, it suffices to note that the con-
sidered actions can be easily translated into the pro-
gramming language specified in the previous section.
More specifically, load corresponds to the assignment
command ! = T, wail is just the skip command,
whereas spin and shoot are translated into alternative
commands if | — a:= F;l:=F] - — sk'g fi and
if T = {:=T}T —1{:=F fi, respectively.!’ Given
the above translations, the chosen actions can be pro-
vided with Dijkstra-style semantics. Performing routine
calculations one easily obtains:

¢ wip(load, a) = a[l — T;

e sp(load,a) =1 A (all — TV a[l — F));

o wip(wait, a) = sp(wail, a) = a;

e wip(spin,a) = afll ~« T)Ac[l — F);

¢ sp(spin,a) = o[l — T)V o[l — FJ;

e wip(shoot,a) = ({ D aja— F,l — F))A (-l D a);

e sp(shoot,a) = (—ma A~IAafea—T,1-T))V
(—an-lAala — F, 1 —T)WV(-iAa).

°Obviously, not every action can be translated into Dijk-
stra’s programming language. However, most of the actions
that can be found in the Al Literature enjoy this property.

The objects we shall be primarily interested in are
action scenarios. These are expressions of the form

[o] Ay ... An (8] (9)

where o and 3 are formulae and A,,..., A, are actions.
The scenario has the following intuitive interpretation:
o was observed to hold in the initial state, then the ac-
tions A1, ..., An were sequentially performed, and then
B was observed to hold in the final state. Formally, the
gcenario (9) is to be viewed as representing the class of
computations initially & and finally 8 under control of
A1; .y An.

Example 1 (Yale Shooting Scenario) Below is
Hank and McDermot’s Yale Shooting Scenario [1987).

[a A i)load; wait; shoot[T]

4 Reasoning about scenarios

We shall be interested in the following reasoning task:
“Given a scenario [a] A;;...; A, [A], a formula 4 and an
integer k& such that 0 < k < n, determine whether v is
assured to hold after performing the actions A,,..., Ag”.
Viewing a scenario as representing a class of computa-
tions, the above reasoning task can be stated more for-
mally: “Given a scenario [a] A1;...; A, [6], a formula
4 and an integer k such that 0 < & < n, determine
whether v is true in all k-states of the class of computa-
tions [A);...; Ag)3.

In what follows, the symbol I stands for the provabil-
ity relation of classical propositional logic.

Let SC= [a] A;y;...; As [B] be a scenario and let 0 <
k < n. The description of the k'"-state of SC, written
DS (SC), is the formula given by

a A -wip(A;...;An,00) ifk=20
B Asp(Ay;...; An @) fk=n
sp(Ayq;...; Ag, o)/

—~wlp(Ag+1; - - -; An,) otherwise

The next result follows immediately from Theorem 2.

Theorem 4 Let SC= [a] A1;...; An [B] be a scenario.
A formula v is assured to hold after performing the ac-
tions Ay;...; A (0 <k <n)if D5 (SC)F v &

Remark 1 All actions considered in this paper are
guaranteed to terminate. If 4,;...; Ax is any sequence
of such actions, then wip(A,;...; As, F) = F. Accord-
ingly, if SC is a scenario of the form [a] A;;...; As [T],
then DSp(SC) = o and, for 0 < k < n, D5 (SC)=
sp(Ay;...; Ax, a). We shall often make use of this fact
in the sequel.

5 Examples

Example 1 (continued) The Yale Shooting Scenario
(Y SS, for short) is an example of the temporal predic-
tion. The intended conclusion is that after performing
the actions the turkey is dead and the gun is unloaded.

We calculate DS3(Y S§) 1!

DSs(Y 5S) = sp(load; wait; shoot,a A =)

sp(shoot, sp(wait, sp(load, a A -1)))

ap(shoot, sp(wait, I A((a AT) V (a A F))))
sp(shoot, sp(wait,l A a))

sp(shoot, ! A a)

(ma ASIAT AT)IV(=a A-IAT A F)V(=IALAQ)
—~a A -l

Since D53(Y 58) F —a A —i, we conclude that in the
final state the turkey is dead and the gun is unloaded. B

Example 2 (Russian Turkey Scenario)
The Russian Turkey Scenario (RT'S, for short) is an ex-
ample of the temporal prediction, where actions with
random effects are allowed.!? The world of the sce-
nario is the same as for the Yale Shooting Scenario,
but wait is replaced by spin. The scenario is given by
[a A] load; spin; shoot [T]. The intended conclusion is
that nothing can be said whether the turkey is alive or
not in the final state. We calculate
DSa(RTS) = sp(load; spin; shoot, a A)

= sp(shoot, sp(spin, sp(load, a A =)

= sp(shoot, sp(spin, IA ((a AT)V (aAF})))

= sp(shoot, sp(spin, i A a))

= sp(shoot, (I Aa)[l — TVV (I Aa)[! — F])

= sp(shoot, a)

=(—aAAAT)V(~aA~IAFYV(-lAa)
Since [)S3(RTS) i/ a and DSa(RTS) ¥ —a, no conclu-
sion can be derived with respect to whether a or —a holds
in the final state. B

Example 3 (Stanford Murder Mystery) Con-

sider the following problem (SMAM).!3 The turkey is

alive in the initial state, and after the actions shoot

and wail are successively performed, it is dead. The

story can be represented by the following scenario:

[a] shoot; wait {—a]. The question we are interested in

is when the turkey died and whether the gun was orig-

inally loaded (the temporal postdiction). The intended

conclusion is that the gun was loaded in the initial state

and the turkey died during the shooting. We calculate
DSo(SM M) a A ~wlp(shoot; wait, a)

a A ~wlp(shoot, wip(wait, a))

a A ~wlp(shoot, a)

aA-((! D F)A(RIDa))

a Al

Since DS{SM M)l |, we immediately conclude that the
gun was loaded in the initial state.
Now, we calculate DS, (SMAM).
DSI(SM M) = sp(shoot, a) A ~wip(wait,a)
= ((-a AIAT)V(~aA=IAF)V(~lAg))A-a
= g A,
Since DS (SM M)l —a, we infer that the turkey was
dead after performing the action shoot. ®

muiiwn

HESE

' Note the use of the symbeols “=" and “=” during the
calculation. We write X =Y if Y is obtained from X by em-
ploying the semantics of wilp or sp, whereas X = Y indicates
that X and Y are logically equivalent.

12This example iz from [Sandewall, 1994].

13This example is from [Baker, 1991].

LUKASZEWICZ AND MADALINSKA-BUGAJ 1953

6 Ramification problem

The ramification problem concerns efficient representa-
tion of the indirect effects of actions. In this paper
we limit ourselves to the simplest class of ramifications,
namely those introduced by domain constraint axioms.

The domain constraint axioms describe general facts
that are assumed to hold in any state of the dynami-
cally changing world under consideration. If a is such
an axiom, then some fluents occurring in a may change
their values even if these fluents are not included in the
action's description. Consider, for instance, the Yale
Shooting Scenario, augmented with the domain con-
straint axiom a = —d, where d stands for dead. Given
this axiom, the action shoot makes the turkey not only
not alive, but also dead (provided, of course, that the
gun is loaded).

Clearly, when the domain constraint axioms are in-
volved, a scenario [a] A;;...; Aq [8] should not be re-
garded as representing the class of computations initially
a and finally B under control of A’.. A, but rather
as the class initially a, finally (3 and always % under
control of Ay;...; An, where v is the conjunction of all
domain constraint axioms associated with the scenario.
Unfortunately, changing the class of computations only
is not always sufficient to properly deal with the domain
constraint axioms. To see why, consider an illustrating
example.

Example 4 Consider the shooting language supplied
with a new fluent w, standing for walking. Let DC be
a domain constraint axiom given by w D a. Let WSS
be the scenario [w A 1] shaot [T1.

The intended conclusion is that the turkey is not alive
and not walking in the final state. We calculate:

DSWWSS) = spP€(shoot,w Al A DC)
= sp(shoot,w Al A (w D a))A(w D a)
=((raAAAWATA(wOITHYV{(raA-~lAwAT
AMw D FIV(-lAwaAlA(wDa))A(wDa)
=((raAdAw)V(~aAlAwA-w))A(w D a)
=(raA~lAuw)A(wDa)

The description of the final state is inconsistent. m

The inconsistency we have arrived at is due to the
fact that the fluent w obeys the law of inertia. In our
approach, all fluents that are not explicitly affected by an
action retain their values when the action is performed.
While this is a nice property from the standpoint of the
frame problem, it leads to some difficulties when actions
with indirect effects are involved.

To deal with domain constraint axioms, we need a
mechanism which, for a given action A, releases chosen
fluents from obeying the law of inertia when the action
A is executed. Fortunately, the release mechanism can
be easily implemented in our formalism. Suppose that
fi,...,/, are fluents which are to be released during
executing an action A. To achieve the desired effect,
A should be replaced by A; releaee(f;);...; release(f,)
where release(fi) is the command

if T— fi=T) T— fi:=F i

“The release pseudo-command corresponds closely to

1954 TEMPORAL REASONING

Example 4 (new solution) To properly deal with
WSS scenario, the fluent w should be released when the
action shoot is performed. Thus, we replace shoot by
shoot* given by shoot;release(w). The description of
the initial state 18 w Al A DC. We calculate:

DS\(WSS5) A DC = sp(shoot*, (w A} A DCYA DC
= sp(shoot; release(w), (w A l) A DC) A DC
= sp(release(w),"a A-lAW)A(w D a)
=-aA-IlA(wDa).

Since DS (Y SS) ADC F —a A —w, we conclude that the
turkey is not alive and not walking in the final state. &

We now provide a general method to reason about action
scenarios with domain constraint axioms. We assume
here that the number of these axioms is finite, so that
they can be always regarded as a single formula.

Let SC = [a] A;;...;An (B8] be an action sce-
nario and suppose that DC 1s the conjunction of all
domain constraint axioms assiociated with SC. As-
sume further that the fluents f1,..., f™* are to be re-
leased from the law of inertia when the action A; is
executed. We write A* to denote the sequential com-
position A;;release(fl);... release(f™). The descrip-
tion of the k*h-state of SC with respect to DC, written
DSPC(SC), is the formula given by

a A -~wlpPC (AL, ... AL, ~(BADC)) ifk=0
spDCgA‘;;...;A;,a)A

—uwlpPc(s AR (BADC)) HO<k<n
BAspPC(AL .. AL @) fk=n

where sp?€ and wipPC are defined by the equations (5)
- (8), with v replaced by DC and S; (0 < i < n) replaced
by A

Theorem 3 immediately implies:

Theorem 5 lLet SC = [a] A;1;...;An [B] be an
action scenario, DC' be the conjunction of domain con-
strain axioms and suppose that A? (0 < i < n) is spec-
ified as before. A formula 4 is assured to hold after
performing the actions Ay;...; Ay if DSPC(SC . B

Example 5 Consider a variant of the Yale Shooting
Scenario. There are four fluents: @, {, d and u, standing
for alive, loaded, damaged (gun) and usable (gun), re-
spectively. The actions are: load, and shoot. Finally, we
have a domain constraint axiom DC given by IA—d = u.
The meaning of the actions is as before with one proviso:
to successfully perform the action shoot, the gun must
be usable. The translation of the new version of shoot is
if u—a:=F;l:=F{-u— skip fi and its semantics
is given by

e wip(shoot,a) = (u D afa — F,l +— F])A(-u D a)

» sp(shoot,a) = sp(shoot,a) = ~a A~ A 3a,l(uA

a)V-uha.

Because the fluent u is indirectly affected by load and
shoot, it must be released when any of these actions is
performed.

Sandewall’s [1994] occlusion device. See also [Kartha and

Lifschitz, 1994].

Let VY SS be the scenario [—d] load; shoot [T]. The
intended conclusion is that the turkey is not alive and
the gun is unloaded, unusable and not damaged in the
final state.

Since the fluent u is released during performing the ac-
tions load and shoot, we define load” = load, release(u)
and shoot® = shoot;release(u). Performing straight-
forward calculations, one gets

DSPE(VYSSy = —an=~IA-uA-—d. (10)

In view of (10), we immediately conclude that the turkey
is not alive and the gun is unloaded, unusable and not
damaged in the final state. &

7 Conclusions

We have applied Dijkstra's semantics for programming
languages to formalization of reasoning about action and
change. We believe that the results reported here are
interesting and worth of further investigation. The pre-
sented approach can be employed to represent a broad
class of action scenarios, including those where actions
with random and indirect effects are permitted. In ad-
dition, both temporal prediction and postdiction tasks
can be properly dealt with, without requiring initial or
final situations to be completely specified. The major
advantage of our proposal is that it is very simple and
more effective than many other approaches directed at
formalizing reasoning about action and change.

As we remarked earlier, recent work of Sandewall
[1994] provides a very general framework to study log-
ics of action and change. Obviously, the question of how
our proposal fits in this framework should be investigated
and will be pursued in the future. It is also interesting
to compare our approch with ARo language introduced
recently by Kartha and Lifschitz [1994].

The task of. implementation is another point of in-
terest. Calculating DSk(SC), for a given scenario SC,
amounts to simple syntactic manipulations on formulae
and can be performed very efficiently. The only compu-
tational problem is to determine whether a given formula
can be derived from the description of the state under
consideration. This task can be realized by a theorem
prover appropriate for the logic in which the effects of
actions are described.

Acknowledgements

We would like to thank Wladysiaw M. Turski, Wiodek
Drabent and Andrzej Szalas for their comments on the
previous draft of this paper.

References

[Baker, 1991] A. B. Baker. Nonmonotonic reasoning in
the framework of the situation calculus. Artificial
Intelligence, 49(5):5-23, 1991.

[Dijkstra, 1976] E. W. Dijkstra. A Discipline of Pro-
gramming, Prentice Hall, 1976.

[Dijkstra and Scholten, 1990] E. W. Dijkstra and C. S.
Scholten. Predicate Calculus and Program Seman-
tics, Springer-Verlag, 1990.

[Fikes and Nilsson, 1971] R. E. Fikes and R. E. Nilsson.
STRIPS: A new approach to the application of the-
orem proving to problem solving". Artificial Intel-
ligence, 2(3-4):189-208, 1971.

[Gelfond et al, 1991] M. Gelfond, V. Lifschitz and A.
Rabinov. What are the limitations of situation cal-
culus? In Proc. AAAl Symposium of Logical For-
malization of Commonsense Reasoning, Stanford,
55-69, 1991.

[Hanks and McDermott, 1987] S. Hanks and D. McDer-
mott. Nonmonotonic Logic and Temporal Projec-
tion. Artificial Intelligence, 33(3):379-412, 1987.

[Hayes and McCarthy, 1969] J. McCarthy and P. J.
Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelli-
gence 4. B. Meltzer and D. Michie (eds.), 1969, 463-
502.

[Kartha and Lifschitz, 1994] G. N. Kartha and V. Lif-

schitz. Actions with indirect effects (preliminary
report). In Proc. KR-94, Bonn, Germany, Mor-
gan Kaufmann Publishers, San Francisco, 341-350,
1994.

[Lifschitz, 1988] V. Lifschitz. Formal theories of action.
In Readings in Nonmonotonic Reasoning, M. Gins-
berg (ed.), Morgan Kaufmann Publishers, Palo
Alto, 35-57, 1988.

[Lifschitz and Rabinov, 1989] V. Lifschitz and A. Rabi-
nov. Miracles in formal theories of action. Artificial
Intelligence, 38(6):225-237, 1989.

[Lukaszewicz and Madaliriska-Bugaj, 1994]
W. Lukaszewicz and E. Madaliriska-Bugaj. Program
verification techniques as a tool for reasoning about
action and change. In Proc. of German Al Con-
ference (KI-94)- Lecture Notes in Artificial Intelli-
gence, 861, Springer-Verlag, 226-236, 1994.

[Lukaszewicz and Madaliriska-Bugaj, 1995] W. Luka-
szewicz and E. Madaliriska-Bugaj. Reasoning about
action and change: actions with abnormal effects.
Submitted to German Al Conference, KI-95.

[Pednault, 1986] E. P.D. Pednault. Toward a mathemat-
ical theory of plan synthesis. Ph. D. Thesis, Dept. of
Electrical Engineering , Stanford University, Stan-
ford, 1986.

[Pednault, 1988] E. P. D. Pednault. Synthesizing plans
that contain actions with contex-dependent effects.
Computational Intelligence, 4:356-372, 1988.

[Pednault, 1989] E. P. D. Pednault. ADL: Exploring the
middle ground between STRIPS and the situation
calculus. In Proc. KR-89, 324-333, 1989.

[Sandewall, 1994] E, Sandewall. Features and Fluents:
The Representation of Knowledge about Dynami-
cal Systems, Oxford Science Publications, Claren-
don Press, Oxford, 1994.

[Waldinger, 1977] R. Waldinger. Achieving several goals
simultaneusly. In Machine Intelligence 8. E. Ellock
and D. Michie (eds.), Ellis Horwood, Edinburgh,
94-136.

LUKASZEWICZ AND MADALINSKA-BUGAJ 1965

