
Reasoning about Ac t ion and Change Using Di jkstra 's Semantics for 
Programming Languages: Prel iminary Report* 

W i t o l d Lukaszewicz and Ewa Madal i r i ska-Buga j 

Institute of Informatics, Warsaw University 
Banacha 2, 02-097 Warsaw, POLAND 

witlu@mimuw.edu.pl, ewama@mimuw.edu.pl 

Abs t r ac t 
We apply Di jkst ra 's semantics for programming 
languages to formal izat ion of reasoning about 
act ion and change. The basic idea is to view 
actions as formula transformers, i.e. functions 
f rom formulae in to formulae. 
The ma jo r advantage of our proposal is tha t i t 
is very simple and more effective than most of 
other approaches. Yet , it deals w i t h a broad 
class of actions, inc lud ing those w i th random 
and indirect effects. Also, both temporal pre­
d ic t ion and postdict ion reasoning tasks can be 
solved w i t hou t restr ict ing in i t ia l nor f inal states 
to completely specified. 

1 I n t r o d u c t i o n 
We apply D i jks t ra 's semantics for programming lan­
guages [D i jks t ra , 1976; D i j ks t ra and Scholten, 1990] to 
formal izat ion of reasoning about action and change. The 
basic idea is to specify effects of actions in terms of for­
mula transformers, i.e. funct ions f rom formulae into for­
mulae. More specif ically, w i t h each action A we associate 
two formula transformers, called the strongest postcondi­
tion for A and the weakest liberal precondition for A. The 
former, when appl ied to a fo rmula a, returns a formula 
representing the set of al l states that can be achieved by 
s tar t ing execution of A in some state satisfying a. The 
lat ter , when appl ied to a fo rmu la a, returns a formula 
prov id ing a descr ipt ion of al l states such that whenever 
execution of A starts in any one of them and terminates, 
the ou tpu t state satisfies a . 1 

The idea of employ ing fo rmu la transformers to spec­
i fy effects of actions is not new in the AI l i terature. 
Waldinger [1977], in the context of STRIPS system 
[Fikes and Ni lsson, 1971], introduces a notion of a re­
pression operator which corresponds closely to the weak­
est precond i t ion t ransformer. Pednault [1986; 1988; 

*This research was supported in part by the ESPRIT Ba­
sic Research Action No. 6156 - DRUMS II and by KBN grant 
3 P406 019 06. 

1 We do not use the weakest precondition transformer (wp) 
which plays a prominent role in reasoning about programs. 
The reason is that, in general, the wp transformer is slightly 
too strong for our purposes. 

1989] employes regression operators for p lan synthesis. 
In [Pednault, 1986] a not ion of progression operator, 
corresponding to Di jks t ra 's strongest postcondi t ion, is 
introduced and analysed. 

Formula transformers approach to reasoning about ac­
t ion and change has one major advantage and one major 
weakness when compared to purely logical formalisms 
such as Si tuat ion Calculus [Hayes and McCar thy , 1969; 
Lifschitz, 1988; Lifschitz and Rabinov, 1989; Gelfond et 
a/., 1991; Baker, 1991] or Features and Fluents [Sande-
wal l , 1994]. On the posit ive side, describing effects of 
actions in terms of formula transformers decreases com­
putat ional complexity. The price to pay for it is the loss 
of expressibility. 

Our proposal combines computa t iona l effectiveness 
w i th expressibil ity. A l though not so expressible as Sit­
uat ion Calculus or Feature and Fluents, the formalism 
specified here allows to deal w i t h a broad class of ac­
t ions, including those w i th random and indirect effects. 
Also, both temporal predict ion and postd ic t ion reason­
ing tasks can be solved w i thou t rest r ic t ing in i t ia l nor 
final states to completely specif ied.2 

The paper is organized as fol lows. Section 2 is a brief 
in t roduct ion to Di jkst ra 's semantics for a simple pro-
gramming language. In section 3, we out l ine a general 
procedure to define action languages using Di jkstra 's 
methodology, i l lustrate this procedure by specifying a 
simple "shoot ing" language, and int roduce a not ion of 
an action scenario. Section 4 defines the k ind of rea­
soning we shall be interested i n , and provides a simple 
method of realizing this type of inference. In section 5, 
we i l lustrate this method by considering a number of ex­
amples, wel l-known f rom the AI l i terature. Section 6 is 
devoted to actions w i th indirect effects. F inal ly , section 
7 contains discussion and ideas for fu ture work. 

For lack of space, we om i t proofs of the results pro­
vided here. The fu l l version of the paper is available 
in pub /pape rs /CR IT /D i j k s t r a / i j ca i 95 .ps by anonymous 
f tp to f tp .mimuw.edu.p l . 

2 This paper is part of a general programme of applying 
Dijkstra's approach to reasoning about action and change. 
In [Lukaszewicz and Madalinska-Bugaj, 1994], we used this 
methodology to formalize deterministic actions without indi­
rect effects. In [Lukaszewicz and Madaliriska-Bugaj, 1995], 
we combined Dijkstra's semantics wi th Reiter's default logic 
to deal with actions where abnormal effects are allowed. 

1950 TEMPORAL REASONING 



LUKASZEWICZ AND MADALINSKA-BUGAJ 1951 

5The original Dijkstra's language contains abort command 
and iterative commands as well, but they are not needed for 
our purpose. 

6 In what follows, we do not specify the wp formula tran-
formers for the considered language, because they wil l not be 
needed in the sequel. 

7 Note that when more than one of B, is true, the selection 
of a command to execute is nondeterministic. 

2 In t roduct ion to Dijkstra's semantics 
In [D i j ks t ra and Scholten, 1990] we are provided w i th a 
simple p rogramming language whose semantics is spec­
ified in terms of fo rmu la trasformers. More specifically, 
w i th each command 5 there are associated three such 
transformers, called the weakest precondition, the weak­
est liberal precondition and the strongest postcondition, 
denoted by wp.S, wlp.S and sp.S, respectively. Before 
prov id ing the meaning of these transformers, we have to 
make some remarks and introduce some terminology. 

We assume here t ha t the programming language under 
consideration contains one type of variables only, namely 
Boolean variables. Th is assumption may seem overly 
restr ict ive, but no other variables wi l l be needed for our 
purpose. 



3 Act ion languages and action scenarios 
To define an action language one proceeds in three steps. 

(1) Fi rst , we choose an assertion language to represent 
the effect of actions. The "shoot ing language" we use in 
the sequel uses two Boolean variables: a and /, standing 
for alive and loaded, respectively. To be in accord w i th 
the AI terminology, these variables w i l l be referred to as 
fluents. 

(2) The next step is to provide act ion symbols repre­
senting the actions under considerat ion. In the shoot ing 
language we have four such symbols: load (a gun) , wait, 
spin (a chamber) and shoot (a tu rkey) . The intent ion is 
that load makes the gun loaded, wait does not cause any 
changes in the wor ld , the effect of spin is tha t randomly 
the gun is loaded or not after the act ion, regardless of 
whether it was loaded before or not , and shoot makes 
the gun unloaded and the turkey dead, provided that 
the gun was loaded before. 

1952 TEMPORAL REASONING 



LUKASZEWICZ AND MADALINSKA-BUGAJ 1953 



6 Ramif icat ion problem 
The ramification problem concerns efficient representa­
tion of the indirect effects of actions. In this paper 
we l imit ourselves to the simplest class of ramifications, 
namely those introduced by domain constraint axioms. 

The domain constraint axioms describe general facts 
that are assumed to hold in any state of the dynami­
cally changing world under consideration. If α is such 
an axiom, then some fluents occurring in α may change 
their values even if these fluents are not included in the 
action's description. Consider, for instance, the Yale 
Shooting Scenario, augmented with the domain con­
straint axiom where d stands for dead. Given 
this axiom, the action shoot makes the turkey not only 
not alive, but also dead (provided, of course, that the 
gun is loaded). 

Clearly, when the domain constraint axioms are in­
volved, a scenario should not be re-
garded as representing the class of computations initially 
a and finally B under control of A1...; An, but rather 
as the class initially a, finally (3 and always under 
control of , where is the conjunction of all 
domain constraint axioms associated with the scenario. 
Unfortunately, changing the class of computations only 
is not always sufficient to properly deal with the domain 
constraint axioms. To see why, consider an illustrating 
example. 

Examp le 4 Consider the shooting language supplied 
with a new fluent w, standing for walking. Let DC be 
a domain constraint axiom given by . Let WSS 
be the scenario . 

The intended conclusion is that the turkey is not alive 
and not walking in the final state. We calculate: 

The description of the final state is inconsistent. ■ 
The inconsistency we have arrived at is due to the 

fact that the fluent w obeys the law of inertia. In our 
approach, all fluents that are not explicitly affected by an 
action retain their values when the action is performed. 
While this is a nice property from the standpoint of the 
frame problem, it leads to some difficulties when actions 
with indirect effects are involved. 

To deal with domain constraint axioms, we need a 
mechanism which, for a given action A, releases chosen 
fluents from obeying the law of inertia when the action 
A is executed. Fortunately, the release mechanism can 
be easily implemented in our formalism. Suppose that 
f 1 , . . . , / „ are fluents which are to be released during 
executing an action A. To achieve the desired effect, 
A should be replaced by A; releaee(f1);...; release(fn) 
where release(fi) is the command 

14The release pseudo-command corresponds closely to 

1954 TEMPORAL REASONING 



7 Conclusions 
We have applied Di jks t ra 's semantics for programming 
languages to formal izat ion of reasoning about action and 
change. We believe that the results reported here are 
interesting and wor th of fur ther investigation. The pre­
sented approach can be employed to represent a broad 
class of act ion scenarios, inc luding those where actions 
w i th random and indirect effects are permi t ted. In ad­
d i t i on , bo th tempora l predict ion and postdict ion tasks 
can be proper ly dealt w i t h , w i thout requir ing in i t ia l or 
f inal s i tuat ions to be completely specified. The major 
advantage of our proposal is that it is very simple and 
more effective than many other approaches directed at 
formal iz ing reasoning about action and change. 

As we remarked earlier, recent work of Sandewall 
[1994] provides a very general framework to study log­
ics of act ion and change. Obviously, the question of how 
our proposal f i ts in this f ramework should be investigated 
and w i l l be pursued in the future. It is also interesting 
to compare our approch w i t h ARo language introduced 
recently by K a r t h a and Lifschitz [1994]. 

The task of. implementat ion is another point of in­
terest. Ca lcu la t ing DSk(SC), for a given scenario SC, 
amounts to simple syntact ic manipulat ions on formulae 
and can be performed very efficiently. The only compu­
ta t iona l prob lem is to determine whether a given formula 
can be derived f rom the descript ion of the state under 
considerat ion. Th i s task can be realized by a theorem 
prover appropr iate for the logic in which the effects of 
actions are described. 

Acknowledgements 
We would l ike to thank Wladysiaw M. Tursk i , Wiodek 
Drabent and Andrze j Szalas for their comments on the 
previous dra f t of th is paper. 

References 
[Baker, 1991] A. B. Baker. Nonmonotonic reasoning in 

the f ramework of the s i tuat ion calculus. Artificial 
Intelligence, 49(5):5-23, 1991. 

[D i jks t ra , 1976] E. W. D i jks t ra . A Discipline of Pro­
gramming, Prentice Ha l l , 1976. 

[D i jks t ra and Scholten, 1990] E. W. D i jks t ra and C. S. 
Scholten. Predicate Calculus and Program Seman­
tics, Spr inger-Verlag, 1990. 

[Fikes and Nilsson, 1971] R. E. Fikes and R. E. Nilsson. 
STRIPS: A new approach to the appl icat ion of the­
orem proving to problem so lv ing" . Artificial Intel­
ligence, 2 (3-4) : 189-208, 1971. 

[Gelfond et al., 199l] M. Gel fond, V. Lifschitz and A. 
Rabinov. Wha t are the l imi ta t ions of s i tuat ion cal­
culus? In Proc. AAAI Symposium of Logical For­
malization of Commonsense Reasoning, Stanford, 
55-69, 1991. 

[Hanks and McDermot t , 1987] S. Hanks and D. McDer-
mot t . Nonmonotonic Logic and Tempora l Projec­
t ion. Artificial Intelligence, 33(3):379-412, 1987. 

[Hayes and McCarthy, 1969] J. McCar thy and P. J. 
Hayes. Some philosophical problems f rom the stand­
point of ar t i f ic ia l intell igence. In Machine Intelli­
gence 4. B. Meltzer and D. Michie (eds.), 1969, 463-
502. 

[Kartha and Lifschitz, 1994] G. N. Ka r tha and V. Lif­
schitz. Act ions w i t h indirect effects (pre l iminary 
report) . In Proc. KR-94, Bonn, Germany, Mor­
gan Kaufmann Publishers, San Francisco, 341-350, 
1994. 

[Lifschitz, 1988] V. Lifschitz. Formal theories of act ion. 
In Readings in Nonmonotonic Reasoning, M. Gins­
berg (ed.), Morgan Kaufmann Publishers, Palo 
A l t o , 35-57, 1988. 

[Lifschitz and Rabinov, 1989] V. Lifschitz and A. Rabi ­
nov. Miracles in formal theories of act ion. Artificial 
Intelligence, 38(6):225-237, 1989. 

[Lukaszewicz and Madal i r iska-Bugaj, 1994] 
W. Lukaszewicz and E. Madal i r iska-Bugaj . Program 
verification techniques as a too l for reasoning about 
action and change. In Proc. of German Al Con­
ference (KI-94)- Lecture Notes in Ar t i f i c ia l In te l l i ­
gence, 861, Springer-Verlag, 226-236, 1994. 

[Lukaszewicz and Madal i r iska-Bugaj, 1995] W. Luka­
szewicz and E. Madal i r iska-Bugaj. Reasoning about 
action and change: actions w i th abnormal effects. 
Submit ted to German A l Conference, KI -95. 

[Pednault, 1986] E. P.D. Pednault. Toward a mathemat­
ical theory of plan synthesis. Ph. D. Thesis, Dept. of 
Electrical Engineering , Stanford University, Stan­
ford, 1986. 

[Pednault, 1988] E. P. D. Pednault. Synthesizing plans 
that contain actions w i th contex-dependent effects. 
Computational Intelligence, 4:356-372, 1988. 

[Pednault, 1989] E. P. D. Pednault. A D L : Explor ing the 
middle ground between STRIPS and the s i tuat ion 
calculus. In Proc. KR-89, 324-333, 1989. 

[Sandewall, 1994] E, Sandewall. Features and Fluents: 
The Representation of Knowledge about Dynami­
cal Systems, Oxford Science Publ icat ions, Claren­
don Press, Oxford , 1994. 

[Waldinger, 1977] R. Waldinger. Achieving several goals 
simultaneusly. In Machine Intelligence 8. E. El lock 
and D. Michie (eds.), El l is Horwood, Ed inburgh, 
94-136. 

LUKASZEWICZ AND MADALINSKA-BUGAJ 1965 


