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Abs t rac t 
Device representation and reasoning w i th affec-
t ive relations occupies a middle ground between 
classical model-based diagnosis and heuristic 
expert systems. A device is modeled by spec­
i fy ing a set of diagnostically mot ivated affec­
t ive relations among its components. Reason­
ing is then performed by a set of inference 
rules that reason w i th the model to propagate 
symptoms through the components. Represen­
ta t ion and reasoning w i th affective relations ex­
tends several benefits of classical model-based 
diagnosis—the model as a uni fy ing framework 
for knowledge, methodical coverage of the do­
main , and diagnostic reasoning based on equip­
ment design and causal i ty—to a class of prob­
lems where classical model-based diagnosis can-
not be applied because the required models 
cannot be reasonably obtained or represented. 
Our work evolved f rom our redesign of a heuris­
tic expert system for moni tor ing long-distance 
telephone switching systems, and is applicable 
to highly complex self-checking systems. 

1 I n t roduc t i on 
Following their advent in the 1970's, expert systems were 
successfully applied in a number of commercial ly impor­
tant areas. However, as these systems grew in size and 
complexity, i t became clear tha t they had impor tan t l im ­
i tat ions. For example, large collections of interact ing 
rules tu rn out to be diff icult to understand or modi fy. 
These l imi tat ions can be traced to a set of now well-
known problems w i th "surface" or "f irst-generation" ex­
pert systems [Hart, 1982; Dav id et a/., 1993], for exam­
ple, unintended rule interactions, confl ict ing rules, and 
knowledge imp l ic i t in the rules. 

To address these problems, a wide variety of "second-
generation" expert systems have been proposed in the 
l i terature, encompassing both "deep" approaches (e.g., 
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knowledge level analyses [Clancey, 1985], deep compiled 
knowledge [Chandrasekaran and M i t t a l , 1982], model-
based reasoning [Davis and Hamscher, 1988], funct ional 
reasoning [Sticklen and Bond, 1991]), as well as hybr id 
approaches that integrate mul t ip le representation and 
reasoning techniques. For example, in the domain of 
device diagnosis, model-based approaches generally rep­
resent the structure and behavior of the device declara-
t ively and then reason about the device f rom first p r in ­
ciples (rather than via a collection of ad-hoc heuristics). 

Generally speaking, the commercial impact of second-
generation expert systems has not matched the impact of 
their simpler first-generation counterparts. A major fac­
tor in this relative lack of commercial impact of second-
generation approaches, especially the more sophisticated 
approaches based on model-based reasoning, is the high 
up-front cost of developing a model of complex real-world 
devices. To take an extreme but very real example, con­
sider the problem of developing a model of a modern tele­
phone switching system (or some other equally complex 
device such as a nuclear power plant or large chemical 
refinery). A telephone switch can easily have thousands 
of circuit packs, each of which is of the complexity of 
a personal computer. Clearly any behavioral or func­
t ional model of such a device wi l l have to be at quite a 
high level, Unfortunately, there do not seem to be any 
good high level languages for even giv ing a behavioral 
or funct ional description of these complex devices. One 
might expect to be able to use some mathemat ica l model, 
queuing theory for example, but we are not aware of any 
evidence that such an approach would be useful. It is 
clear tha t such an approach would be almost completely 
disjoint f rom the approaches that domain experts take 
to moni tor ing and diagnosing these types of devices. 

To understand the approach that domain experts take, 
i t is essential to understand that modern complex de­
vices are largely self-checking.1 T h a t is, they generally 
moni tor their own operation and produce alarms tha t 
indicate the nature of most failures. Th is type of self-
checking is, of course, essential precisely because humans 
cannot keep an adequate model of such complex devices 

'We use the term "self-checking" to refer to built-in ca­
pabilities ranging from verification tests that signal when a 
device is malfunctioning to limited diagnosis that identifies 
suspects from evidence localized in time and space. 
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in their head. To produce commercial ly impor tan t moni ­
tor ing and diagnostic systems in these domains it suffices 
to automate the largely mechanical process that domain 
experts use to understand the alarms produced by these 
complex self-checking devices. 

Unfortunately most exist ing work on first- and second-
generation expert systems provides relatively l i t t le help 
in this endeavor. First-generation approaches tend to 
break down due to their well-understood l imi tat ions. 
Second-generation model-based approaches are not di­
rectly applicable because of the lack any real model of 
these complex devices. 

This paper presents an approach based on affective 
relations. Affective relations define a highly abstract 
non-behavioral representation for model ing devices. An 
affective relat ion is so named because one component af­
fects another in some diagnostical ly impor tan t way. The 
affective relat ion model is not used to simulate device 
behavior ( in fact it is much too weak for tha t ) . Instead 
the model is a way to organize knowledge about the do­
main in a coherent way; ad-hoc heuristics are replaced 
by a small set of general principles for moni tor ing and 
diagnosis f rom affective relat ion models. Unlike t rad i ­
t ional device models, affective relations are easy to ac­
quire f rom front- l ine experts such as operators and main­
tenance technicians because they represent precisely the 
kind of knowledge that is needed to diagnose routine 
problems, par t icu lar ly in complex self-checking devices. 

We i l lustrate our approach by presenting a rat ional re­
construction of an exist ing rule-based moni tor ing and di­
agnosis system for the 4ESS®telephone switching system 
(the 4ESS handles most A T & T domestic long-distance 
calls). By compar ing the older rule-based design w i th 
the design based on affective relations, we demonstrate 
how the use of affective relations (l ike t rad i t ional model-
based approaches) provides generality, clar i ty and con­
ciseness that allows for increased inferential power and 
reduced maintenance costs. 

The larger impor t of our work is the identi f icat ion of 
a middle ground between surface approaches and t rad i ­
t ional model-based approaches. Our experience shows 
that a model of the affective relations between the com­
ponents of a device is a part icular ly useful level of 
representation because it brings many of the benefits 
of model-based reasoning to domains where fu l l device 
models cannot be bu i l t . 

2 Affective Relations 
Affective relations models are applicable to domains sat­
isfying two basic cr i ter ion: 

1. Devices can be natura l ly broken down into compo­
nent devices such that the components generally in ­
teract v ia known pathways. 

2. These pathways can be characterized by a small set 
of affective relationships between components. 

Abstract ly , reasoning w i t h affective relations proceeds 
by examin ing the ou tpu t of the device to determine the 
state of key components, and then propagat ing this i n ­
format ion through the affective relations to deduce the 
state of other components. Act ions are then performed 

based on the nature of the alarm messages f rom the de­
vice and the states of the components. To make this 
more concrete the rest of this section presents an exam­
ple of an affective relat ion model. 

2.1 D e v i c e R e p r e s e n t a t i o n 
The key elements of our device model are 1) a set of 
basic classes (e.g., Device), 2) a set of diagnostically mo­
t ivated affective relations re lat ing device components, 3) 
a set of relations relat ing other classes in the model , and 
4) a set of properties and general relationships specifying 
the semantics of the relations, i.e., the knowledge that is 
impl ic i t in any expl ic i t ly specified knowledge. See Fig­
ure 1 for a knowledge level [Newell, 1982] description of 
a port ion of the device model2 . (See [ A T T , 1995] for a 
symbol level description of a much larger por t ion of the 
device model.) 

Affective relations l ink components to other com­
ponents in diagnostically useful ways. For exam­
ple, i r amed ia te -pa r t -o i means that a direct subcom­
ponent/component relationship exists between two de­
vices. P a r t - o f reflects direct as well as transi t ively 
closed subcomponent/component relations, while its in­
verse subpa r t reflects direct and transit ive compo­
nent/subcomponent relations. Depends-on means that 
the correct funct ioning of a device depends on the cor­
rect funct ioning of another device; dependent represents 
the inverse relation between the two devices. Standby 
means that if one device fails, its standby partner w i l l 
take over automat ical ly ; it also means that reliable op­
eration is jeopardized if one device fails. 

Other relations l ink devices to other classes in the 
model. S e l f - a l a r m means that a device is signaling 
an a larm. However, a problem w i th one device may 
not necessarily cause that device to itself signal an 
a larm; instead, the problem may affect a second de­
vice, causing it to signal an a larm. P a r t - a l a r m and 
dependen t -a l a rm l ink devices to alarms signaled by 
other devices. P a r t - a l a r m relates a device to an a larm 
on another device when the a larming device is a s u b p a r t 
of the device; dependen t -a l a rm relates devices to alarms 
based on depends-on. Devices are either f u n c t i o n a l or 
not. If a device depends on another device that is not 
funct ional , the dependent device is also not funct ional . 
If a device is in s i m p l e x mode, it means that none of 
the device's standbys are funct ional . 

To i l lustrate the use of these relations, we examine in 
some detai l a d ig i ta l to l l switching system known as a 
4ESS switch. A por t ion of the basic class hierarchy is 
shown in Figure 2.3 The class Device is broken down 
into a series of 4ESS-specific subclasses. Each major 
type of component of the 4ESS (down to the level of 
field-replaceable units) adds a class to the general device 
ontology shown in Figure 1. 

Figure 3 shows how some of the key port ions of the 
model of the 4ESS switch are instant iated using the gen­
eral and domain-specific port ions of the ontology shown 

2We use typewriter font for r e l a t i o n s and sans serif for 
classes (and their members). 

3To eliminate jargon, hardware component names have 
been replaced with ABC, etc. 
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in Figures 1 and 2, respectively. The actual 4ESS switch 
and its components are each defined as members of one of 
the device classes, e.g., Device(4ESS) defines the switch 
4ESS to be an instance of type Device. Note that the 
model is isomorphic to the device: for each type of com­
ponent in the device there is a class in the model and 
for each component in the device there is one instance 
in the model. Affective relations are asserted between 
device instantiations, e.g., immediate-part-of (Clock 0, 
4ESS). Recall that the properties of and the general rela­
tionships between the affective relations (Figure 1) spec­
ify the knowledge that is implicit in an explicitly defined 
model such as Figure 3. Thus, because of the first general 
relationship in Figure 1, immediate-part-ox (Clock 0, 
4ESS) entails p a r t - o f (Clock 0, 4ESS), which in turn en­
tails the inverse relation subpart (4ESS, Clock 0). Sim­
ilar inferences can be drawn from the other immediate-
par t -o f assertions. Then, transitivity entails further 
subpart and p a r t - o f relations. The depends-on asser­
tions entail a set of inverse dependant relations. Because 
standby is defined to be symmetric, standby (A-CNTL 
0, A-CNTL1) entails standby (A-CNTL 1, A-CNTL0), 
and similarly for the other standby assertions. 

Figure 4 pictorially represents the model. Each box 
represents a device. The immediate nesting of boxes 
depict immediate-part-oi relations. The labeled arrows 
depict some of the other explicit (e.g., standby (A-CNTL 

0, A-CNTL1)) and implicit (e.g., standby (A-CNTL 1, A-
CNTL0)) affective relations linking devices. 

Note that affective relations among components are 
not traditional relations of structure or behavior or 
function except in some very abstract sense. Unlike 
typical behavioral models, the relations do not define 
or constrain the input/output behavior of components. 
Rather, affective relations express aspects of the design 
at a level of abstraction that expert human troubleshoot-
ers use to link symptoms to suspects. This wil l be illus­
trated below. Furthermore, the use of the model for 
diagnostic reasoning not only motivates but also l imits 
what must be explicitly represented in the model. We do 
not need to represent every type of component or every 
relationship between components, but only those which 
participate in an expert's causal analysis of alarms. 

2.2 D i a g n o s t i c R e a s o n i n g f r o m t h e M o d e l 
Our use of an explicit model of the components of a mon­
itored device and affective relations between components 
brings many of the benefits of traditional model-based 
reasoning to domains, such as 4ESS alarm monitoring, 
where conventional models are too costly to acquire. For 
example, one benefit is that the approach allows us to 
replace heuristic rules of first-generation expert systems 
with diagnostic rules that reason from the device model 
using general principles expressed in terms of the affec­
tive relations. In this section we informally contrast our 
approach to diagnostic reasoning in the 4ESS domain 
with a previously developed heuristic approach. 

In our domain, diagnostic reasoning involves real-time 
monitoring of alarms and other informational messages 
from the 4ESS switches, e.g., to correlate alarm messages 
coming from the various components, ignore transient 
alarms, recognize chronic problems, run diagnostics, and 
signal problems requiring human attention. The moni­
toring system takes input in the form of alarm messages 
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and produces ou tpu t in the fo rm of warning and action 
messages to field technicians. An expert system was orig­
inal ly developed for mon i to r ing of the 4ESS switches in 
1990. The system was designed as a conventional rule-
based system using an OPS5-compatible language. It 
contained several hundred heuristics gleaned f rom many 
interviews w i t h domain experts. Three example heuris­
tics are shown below. 

1. If F-level alarms are occurr ing concurrently for more 
than one component in a peripheral device, add the 
number of alarms together and threshold on the 
sum. 

2. If a type-ABC component is in normal mode, per­
fo rm thresholding of alarms, but i f i t is in simplex 
mode, ignore thresholding and alert on any F-level 
alarms. 

3. If F-level alarms are occurr ing on different type-
ABC and QRS components, but al l alarms are on 
the same controller number, then suspect the clock. 

Device representation and reasoning w i th affective re­
lations allows us to replace such heuristics w i t h diagnos-
tic rules that reason f rom our device model using first 
principles. For example, one such general principle is: 

• Concurrent alarms on mul t ip le components of a 
larger device indicate a problem at the device level. 

We capture this pr inciple by using p a r t - a l a r m to l ink 

alarms on components to any larger devices the compo­
nents are part of. We then threshold on the number of 
such l inks ( looking for a device l inked to a large num­
ber of alarms on different subparts). Th is subsumes the 
first heuristic rule above and is clearly both simpler and 
more general. For example, the new rule covers al l types 
of alarms and all levels of nesting in the p a r t - o f hierar­
chy. Of course this reformulat ion is only possible because 
of the expl ici t representation of the i m m e d i a t e - p a r t - o f , 
p a r t - o f , and s u b p a r t relations between components.4 

We can also take advantage of the expl ici t encoding of 
s tandby . In the normal s i tuat ion where a component is 
active and its standby is ready, alarms undergo thresh­
olding before an alert is issued. However, if the standby 
is out of service then any a larm should generate an i m ­
mediate alert. By mak ing s tandby expl ici t in our model , 
and defining simplex in terms of this affective relat ion, 
the second heuristic rule above can be replaced w i t h the 
fol lowing more general principle: 

• If a device's standby is not funct ional , then alert on 
any a larm. 

Aga in , note that the new rule covers all devices that 
have a standby, not just ABCs, and s imi lar ly covers al l 
types of alarms. 

4Thresholds go up as one travels up the p a r t - o i hierarchy, 
e.g., many alarms on many components are necessary before 
concluding that there is a problem with the 4ESS. 
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Final ly , a dependency-based rule of mon i to r ing allows 
us to recognize the fai lure of a device f rom alarms on 
the device's dependents. For example, if Clock 0 in F ig­
ure 4 is fa i l ing, this may be indicated by alarms on the 
dependent components CNTL 0 in ABC 6 and CNTL 0 
in QRS 0. By mak ing depends-on expl ic i t in our model , 
the th i rd heuristic rule above (whose rat ionale for imp l i ­
cat ing the clock is par t icu lar ly obscure) can be replaced 
w i th the fo l lowing more general pr inciple: 

• Concurrent alarms on mul t ip le dependents of a de­
vice indicate a problem w i t h tha t device. 

Th is rule clarifies tha t diagnostic reasoning traces up a 
dependency chain to ident i fy a common point of fai lure. 
Depends-on can also be exploited to propagate state in ­
fo rmat ion , as was shown in the four th general relat ion­
ship of Figure 1. 

2 . 3 A D e t a i l e d E x a m p l e 

The basic act iv i ty in the 4ESS expert system is the anal­
ysis of alarms. A l a r m messages f rom the switch, in con­
junc t ion w i t h the semantics of the model , tr igger the 
dynamic creation of the relevant port ions of the device 
model. From this model general purpose diagnostic rules 
determine the root cause of the a la rm. 

At s tar tup, the model of the 4ESS only contains a 
smal l set of core device types, associated instant iat ions, 
and i m m e d i a t e - p a r t - o f relations between the instant i ­
ations. Th is is because in a complex device such as the 
4ESS, we have found it to be prohib i t ive ly di f f icult to 
bu i ld up a complete device configurat ion in advance. In 
general, device types as well as the number and arrange­
ment of actual components vary among switching instal­
lat ions. Most devices and affective relations are thus dy­
namical ly created, in response to both the computat ion 
of the entai lments of the model , as well as to the rule-
based processing of the alarms. For example, return ing 
to the model of Figures 3 and 4, only 4ESS, Clock 0, 
Clock 1, and the two i m m e d i a t e - p a r t - o f relations relat­
ing the 4ESS and the clocks are in i t ia l l y asserted in the 
model . 

An example of an a larm message f rom the switch is 
shown in the top por t ion of Figure 5.5 The message as­
signs a unique identif ier to the a la rm, specifies the alarm 
type, and states that the alarm is occurr ing on the spec­
ified subunit of the specified un i t of the 4ESS. Tha t is, 
uni ts l ink devices to the 4ESS as a component, whi le 
subunits l ink devices to uni ts. 

Processing of the a larm causes the device model to be 
updated as shown in the middle of Figure 5. In tu i t ive ly , 
a representation of the a larm is created and added to the 
model , the devices mentioned in the message are either 
found in the model or created and added to the model , 
and the a larm jus t created is related to the lowest level 
device mentioned in the a larm. In part icular, the f i rst 
assertion in the figure creates an instant ia t ion a larml and 
declares it to be a member of the class Alarm. (A larms 
also have an internal structure which is not shown, e.g., 
a larml has a slot " i d " f i l led by "22257", etc.) The un i t 

5We have simplified the alarm, to enhance the clarity of 
this section. 

and subunit devices referred to in the alarm message wil l 
also be added to the model, along with the corresponding 
configurational relations between the 4ESS and the unit, 
and between the unit and the subunit. Thus, device ABC 
6 is instantiated, declared to be a member of the class 
ABC, and linked to the device 4ESS (already instantiated 
at startup) via immediate-part-of. Similar processing 
occurs for A-CNTL 0. Finally, a s e l l - a l a r m assertion 
is added which relates A-CNTL 0, the device component 
that actually signaled the alarm, to alarml. 

As at startup, the semantics of the model in conjunc­
tion with the immediate-part-of assertions wi l l cause 
implicit p a r t - o f and subpart relations to be explicitly 
added to the model, as shown in the bottom of Fig­
ure 5. These assertions, in conjunction with the second 
general relationship in Figure 1, wil l in turn cause the 
assertions pa r t - a l a rm (ABC 6, alarml) and pa r t - a l a rm 
(4ESS, alarml) to be added to the model. Thus, the 
alarm is propagated to other devices to which it is rele­
vant, by adding a pa r t - a l a rm relation from any devices 
the alarming device is a component of, and the alarm. 
In this case it adds this relation between the two com­
ponents which have A-CNTL 0 as a subpart (4ESS and 
ABC 6), and A-CNTL 0's alarm (alarml). This captures 
the fact that a failure in 4ESS or in ABC 6 could have 
caused the alarm. At this point the computation of the 
implicit portions of the model is complete; init ial pro­
cessing of the alarm has resulted in dynamic construc­
tion of a portion of the model shown in Figures 3 and 4, 
and incorporation of the alarm into the model.6 

Although not illustrated here, other relations in the 
model (e.g., depends-on, standby) can also be dynamically 
created. This is done by supplementing the general relation­
ships shown in Figure 1 with domain specific relationships, 
e.g., for all devices of type controller, the device depends-
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Once our model is created, diagnostic rules of infer­
ence determine the root cause of the alarms by reason­
ing f rom the model . In part icular, creation of the rela­
tions s e l l - a l a r m , p a r t - a l a r m , and dependen t -a l a rm 
between devices and alarms trigger the diagnostic rules. 
For example, the fo l lowing rule formalizes the first ex­
ample f rom Section 2 2 7 : 

The rule is an example of a thresholding rule that de­
termines when a non-alarming component is not func­
t ional , based on thresholding of the p a r t - a l a r m rela­
tions in which it is involved. The domain specific relation 
p a r t - t h r e s h o l d holds if there are a sufficient number 
of a larming devices that are components of the device 
x. When a threshold is met and a device asserted to 
be non-funct ional , a warning message can be sent to a 
technician. 

Assume p a r t - t h r e s h o l d is defined to be true when a 
device has at least two a larming components. The rule 
would thus not be satisfied for any device after the first 
a larm. If the switch then generated an alarm on another 
component of ABC 6, say s e l f - a l a r m (SPC 0, alarm2), 
p a r t - a l a r m (ABC 6, alarm2) would be among the newly 
entailed relations, and p a r t - t h r e s h o l d (ABC 6, true) 
would now be satisfied. This would entai l f u n c t i o n a l 
(ABC 6, false), and an operator could be sent a warning 
message. Aga in , this example i l lustrates how our ap­
proach supports reasoning f rom the device model using 
general principles involv ing affective relations. 

2 .4 S t a t u s a n d I m p l e m e n t a t i o n 
Our implemented reconstruction of the or iginal heuris­
tic 4ESS a larm moni to r includes a fa ir ly simple ontology 
such as that shown in this paper, along w i th a small 
number of diagnostic rules about the 4ESS switch. Th is 
has already allowed us to achieve approximately 10% of 
the funct ional i ty of the or ig inal expert system. Further­
more, our implementat ion uses a much more principled 
and organized knowledge base w i t h fewer rules. We are 
currently extending the funct ional i ty of our prototype, 
and i t appears that our methodology w i l l extend to the 
entire 4ESS moni to r ing problem. 

The device model as well as the diagnostic rules of 
inference are implemented using R++ [Crawford et ai, 
1994; A T T , 1995], an extension to C++ that supports 
forward chaining direct ly on C++ objects. The expl ici t 
encoding of the 4ESS device model is represented in a 
declarative, object-oriented manner using C++ objects 
corresponding to the physical devices and to the other 
basic classes in the ontology, and inter-object pointers 
corresponding to the affective and other relations be­
tween the classes. The entai lments of the model , as 
well as the diagnostic rules of inference, are both rep­
resented using the rule construct of R++. R++ rules are 

on the clock device having the same number. Thus, when 
an alarm causes a controller to be created, the appropriate 
depends-on assertion from the controller to a clock is entailed. 

In reality, a warning is sent and further evidence obtained 
before inferring non-functional. 

i f - then rules that are associated w i t h C++ classes and 
that are inherited according to the C++ class hierarchy. 
Because the R++ rules are t igh t l y integrated w i th the 
C++ object-oriented class mechanisms - which are used 
to define the expl ici t por t ion of the device model - it is 
natura l to wr i te rules that operate on the model . Fur­
thermore, because the condit ion of an R++ rule must 
traverse inter-object pointers, rules in fact must be wr i t ­
ten using relations (such as affective relations) that are 
expl ic i t ly defined between classes. Final ly , the associ­
at ion of rules w i th classes allows subclasses to inheri t 
rules as well as at t r ibutes f rom superclasses. Th is allows 
us to wr i te rules for one type of device and have them 
inheri t to all instances of that type. 

3 Related Work 
Work by Abu-Hanna et al . [Abu-Hanna et al., 1991] ar­
gues that funct ional models are generally easier to obta in 
than behavioral models; fur thermore, by representing 
design intent, funct ional models help identi fy relevant 
suspected causes of a symptom and are thus at t ract ive 
for the suspect generation task. The need to represent 
diagnostically useful models at a level tha t is easy to ob­
tain is also a conclusion drawn in our work. However, our 
affective relations do not encode purpose or intent (ex­
cept perhaps at a very high level), and are thus at even 
a more abstract level of representation than the func­
t ional models of Abu-Hanna et al . Abbo t t ' s work on 
operative diagnosis [Abbot t , 1990] is also s imi lar to ours 
in that her model includes a directed graph of "paths 
of propagat ion" to relate symptoms to suspects. Ab­
bot t 's paths indicate only tha t one component may af­
fect another, so they are the most abstract k ind of affec­
t ive relat ion. Our 4ESS switch mon i to r ing example uses 
more detailed relations because they were readily avail­
able f rom 4ESS technicians, enabling more focused d i ­
agnosis. Work f rom the uncertain reasoning communi ty 
on Bayesian networks [Heckerman and Wel lman, 1995] -
annotated directed graphs that encode probabi l ist ic re­
lationships - can also be viewed as a model ing language 
for representing a k ind of affective relat ion (often viewed 
as cause/effect). Because our work inputs in format ion 
about a device, organizes and processes this in format ion 
under an exist ing taxonomy of knowledge about related 
devices, and uses an exist ing taxonomy of knowledge to 
control the generation of a diagnosis, our work also fits 
w i th in Clancey's general framework of heuristic classifi­
cation [Clancey, 1985]. 

A l though it has not been the focus of this paper, 
our work also seeks to br ing some of the benefits of 
object-oriented model ing to bear on the task of bu i ld­
ing expert systems. The object-oriented basis of R++ 
has proven cr i t ical to our success in implement ing our 
approach as it provides for both a taxonomy of classes 
to directly represent abstractions in the domain and a 
t ight integrat ion of rules w i th these abstractions, thus 
al lowing us to wr i te rules to do diagnosis w i th in the 
model. There are several other at tempts to integrate 
object-oriented and rule-based reasoning [Alber t , 1994; 
Ha l , 1993; Miranker et al, 1993] that could be used to 
provide some of the same benefits as R++ does. 
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4 Conclusions 
Device representation and reasoning w i t h affective re­
lations provides a middle ground between model-based 
reasoning and heuristic expert systems, for mon i to r ing 
and diagnosing complex devices that are largely self-
checking. Wh i le model-based diagnosis would seem to 
be well suited for such tasks, in practice the models of 
t rad i t iona l approaches axe often too dif f icult to obta in 
(e.g., due to system complexi ty, inadequate documen­
ta t ion , lack of an appropriate representation language). 
Th is has often led developers to rely on heuristic expert 
systems, which themselves have many wel l-known l im i ta ­
t ions. By prov id ing an abstract level of device model ing 
based on a set of diagnostic al ly mot ivated and easy to 
acquire affective relations, our work brings the advances 
of model-based reasoning to domains in which the de­
velopment of t rad i t iona l models is di f f icul t . These ad­
vances include: (1) a un i fy ing framework for knowledge 
and diagnosis based on general principles, (2) a useful 
too l for focusing knowledge capture (our models seem 
to correspond well w i t h an expert 's knowledge and can 
be visual ly displayed (as in Figure 4)) , and (3) a more 
methodical coverage of the domain. Our work at the 
symbol level also brings to expert systems the benefits of 
relatively recent advances in object-oriented knowledge-
representation — pr inc ipal ly the use of objects to orga­
nize knowledge, and a t ight integrat ion of objects w i t h i n 
the rule-based paradigm. 

For the longer t e rm , a further objective of our work is 
the development of a shared ontology simi lar to tha t of 
Figure 1, but which can be used to moni tor and diagnose 
many different kinds of devices. A key question is the 
extent to which general principles of causality and d i ­
agnosis apply across different kinds of devices, e.g., how 
far should symptoms be propagated up the p a r t - o f h i ­
erarchy? We would also l ike to model systems tha t are 
not necessarily self-checking, as the basic point of our 
approach should s t i l l apply (i.e., when designing a rep­
resentation, don ' t reason at a finer level than required). 

A dr iv ing force behind our work has been to develop 
a pragmat ic solut ion, one tha t balances the fact tha t 
developers of commercial systems have only l im i ted re-
sources to invest, but tha t they also have a desire to 
obtain the benefits found in " ideal" approaches. In the 
end the essential cont r ibut ion of device representation 
and reasoning w i t h affective relations is the identif ica­
t ion of a par t icu lar ly useful level of abstract ion for mod­
eling complex devices - represent the affective relat ion­
ships between components that are used by experts when 
reasoning about the device. Th is level of abstract ion is 
high enough tha t large and complex devices can be rep­
resented but s t i l l detailed enough to al low effective mon­
i to r ing . The use of such models brings the advantages 
of model-based reasoning to domains previously handled 
only w i t h heuristic methods. 
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