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Abstract 
Current specialized planners for query process­
ing are designed to work in local, rel iable, and 
predictable environments. However, a number 
of problems arise in gathering in fo rmat ion f rom 
large networks of d is t r ibuted in fo rmat ion . In 
this environment, the same in format ion may re­
side in mul t ip le places, actions can be executed 
in parallel to explo i t d is t r ibuted resources, new 
goals come into the system dur ing execut ion, 
actions may fai l due to problems w i t h remote 
databases or net-works, and sensing may need 
to be interleaved w i t h p lanning in order to for­
mulate efficient queries. We have developed a 
planner called Sage that, addresses the issues 
that arise in this envi ronment. Th is system in­
tegrates previous work on p lanning, execut ion, 
replanning, and sensing and extends this work 
to support simultaneous and interleaved plan­
ning and execution. Sage has been applied to 
the problem of in fo rmat ion gather ing to pro-
vide a flexible and efficient system for integrat­
ing heterogeneous and dist r ibuted data. 

1 Introduction 
The task of in format ion gathering requires locat ing, re­
t r iev ing, and integrat ing in format ion f rom large numbers 
of d istr ibuted and heterogeneous in format ion sources. 
In this environment, f lexibil ity and efficiency are c r i t i ­
cal. The usual approach of generating a static plan for 
processing in fo rmat ion and then executing it is inf lexi­
ble and may be very inefficient if problems arise dur ing 
query processing. The problem is tha t there may be 
many in format ion sources f rom which to choose, actions 
may fa i l , the system has incomplete knowledge about 
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the available i n fo rmat ion , and new goals may arise at 
any t ime. 

To address these problems, we have developed a plan­
ning system that bui lds on previous work on p lanning, 
execution, sensing, and replanning. The planner, which 
we call Sage, was implemented by augment ing UCPOP 
[Penherthy and Weld , 1992; Barrett et al., 1993] w i th the 
capabil i t ies to produce paral lel execution plans [Wi lk ins , 
1984; Knoblock, 1994], interleave p lanning and execution 
[Ambros-Ingerson, 1987; Etz ioni et al,, 1994], support 
run- t ime variables for sensing [Ambros-Ingerson, 1987; 
Etz ioni ct al, 1992], perform replanning where appro-
pr iate, and plan for new goals as they arise. We have 
integrated all of these capabilities into a single, unified 
system in which p lann ing, sensing, and replanning can 
be performed dur ing execution. Th is allows the system 
to replan port ions of the plan tha t is currently being ex­
ecuted, receive and plan new tasks w i th in the context of 
the executing p lan, and interleave sensing actions w i th 
p lanning in order to improve efficiency 

Before describing the integrat ion of p lanning and exe­
cut ion, we first describe the in format ion gather ing task 
and how it can be cast as a p lanning problem in a general 
p lanning framework (Section 2). Next , we present our 
approach to t igh t ly in tegrat ing p lanning and execution 
(Section 3). Th is in tegrat ion is used to support p lanning 
for new goals, replanning for fai lure, and the interleav­
ing of sensing actions to gather addi t iona l in format ion 
for p lanning (Section 4). We compare this work to pre­
vious work in p lanning as well as in fo rmat ion gather ing 
and query processing (Section 5). F inal ly , we conclude 
w i th a discussion of the contr ibut ions of the paper (Sec­
t ion 6). 

2 Planning for Information Gathering 
I n fo rmat ion gather ing requires selecting, in tegrat ing, 
and retr iev ing data f rom d is t r ibuted and heterogeneous 
in format ion sources in order to satisfy a query. The rel­
evant data must be selected f rom numerous, possibly 
overlapping or replicated sources. In tegrat ing the infor­
ma t ion may be costly, especially when combin ing data 
f rom different sites. Retr iev ing the in fo rmat ion may be 
t ime consuming due to the d is t r ibu t ion of data and the 
contention for l im i ted resources. 

To solve this p rob lem, we have developed a planner 
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called Sage tha t bui lds on the UCPOP part ial-order plan-
ner [Barret t et ai, 1993]. UCPOP provides an expres­
sive operator language that includes conjunct ion, nega­
t i on , d is junct ion, existent ial and universal quantif iers, 
condi t ional effects, and a funct ional interface that al­
lows precondit ions to be implemented as Lisp funct ions. 
We extended this planner to support simultaneous action 
execution and to t igh t l y integrate p lanning and execu­
t ion. The execution is presented in the next section, and 
the support for simultaneous actions was previously ad­
dressed in [Knoblock, 1994] and wi l l be briefly described 
here. 

Part ia l -order planners, such as U C P O P , produce plans 
w i th actions that are unordered. However, i f two actions 
are left unordered they can be executed in either order, 
but not simultaneously. To execute actions in parallel in 
a part ia l-order planner requires that (1) actions can be 
executed simultaneously w i thou t changing the outcome 
of the ind iv idua l actions, and (2) any potent ia l resource 
conflicts must be captured in the representation of the 
operators in order to avoid conflicts dur ing execution 
We assume that the first condi t ion holds (as it does in 
the in format ion gather ing domain described below) and 
we extended the planner to support the second condi­
t ion. To support reasoning about resources, we added 
an expl ic i t resource declaration to the action language, 
which describes the resources required when executing 
an act ion. We also augmented the planner to identi fy 
and remove potent ia l resource confl icts. W i t h these ex­
tensions, any actions left unordered in the final plan can 
be executed simultaneously. 

In the remainder of this section we describe how the 
in fo rmat ion gather ing task is cast as a p lanning problem 
in Sage. Th is problem requires producing a plan for gen­
erat ing a requested set of data. Th is involves selecting 
the sources for the data, the operations for processing the 
data, the sites where the operat ions w i l l be performed, 
and the order in which to perform the operations. Since 
data can be retrieved f rom mul t ip le sources and the oper­
ations can be performed in a variety of orders, the space 
of possible plans is large. 

An in fo rmat ion gather ing goal consists of a descript ion 
of a set, of desired data as well as the location where that 
data is to be sent,. For example, Table 1 i l lustrates a goal 
which specifies that the set of data be sent to the OUT­
PUT device of the SIMS in fo rmat ion mediator [Arens e1 
a/., 1993; Knoblock ef a/., 1994]. The goal also specifies 
the data to be retrieved and is defined using the syntax 
of the query language of the Loom knowledge represen­
ta t ion system [MacCregor, 1990]. Th is par t icu lar query 
requests al l por t names of seaports tha t are sufficiently 
deep to accommodate "breakbu lk" ships. 

The in i t ia l state of a problem defines the available in­
fo rmat ion sources (e.g., databases) and the servers (e.g., 
an Oracle D B M S ) they are runn ing on. The example 
shown in Table 2 defines two servers, an Oracle database 
server runn ing on an HP works ta t ion , called h p - o r a c l e , 
and an another Oracle server runn ing on a Sun work­
s tat ion, called s u n - o r a c l e . Both servers contain iden­
t ical copies of the GEO and ASSETS databases. In ad­
d i t ion to th is i n fo rmat ion , a descript ion of the contents 

For this domain , Sage uses a set of ten general oper­
ators to plan out. the processing of a query. They in­
clude a move operator for mov ing a set of data f rom 
one in format ion source to another, a j o i n operator tha t 
combines two sets of data into a combined set of data, 
and a s e l e c t - s o u r c e operator for selecting the infor­
mat ion source for retr iev ing a set of data. The other op­
erators perform addi t ional processing of data ( s e l e c t , 
compute, and ass ignment ) or reformulate queries us­
ing background knowledge ( g e n e r a l i z e , s p e c i a l i z e , 
d e f i n i t i o n , and decompose). Each operator is instan­
t iated at p lanning t ime w i th the part icular set of data 
being manipulated as well as the database where the 
manipu la t ion is being performed. 

Consider the operator shown in Table 3, which de­
fines a jo in performed in the local system. Th is operator 
is used to achieve the goal of mak ing some in fo rmat ion 
available in the local knowledge base of the SIMS informa­
t ion mediator. It does this by par t i t i on ing the request 
into two subsets of the requested data, retr iev ing that 
in format ion into the local system, and then j o in ing the 
data together to produce the requested set of data. The 
a v a i l a b l e precondit ions are achieved by other opera­
tors and the j o i n - p a r t i t i o n precondit ion is defined by 
a funct ion that produces the relevant par t i t ions of the 
requested data. 
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Th is p lann ing domain differs f rom many of the do­
mains that previous p lanning work has focused on in 
two signif icant ways. Fi rst , there are few interactions 
between the operators. The main source of interact ion 
arises in handl ing resource conflicts when two operators 
require access to the same server. Second, it is not suf­
ficient to find any solut ion to a prob lem; the goal is to 
f ind an efficient solut ion. The f irst difference makes the 
problem somewhat easier, whi le the second difference 
makes the problem signif icant ly harder since it may re­
quire searching a large space of plans. 

In order to generate query access plans efficiently, we 
have carefully constrained the space of possible plans. 
We wrote the operators such that they generate only the 
relevant port ions of the search space. Some examples of 
this are: f i rst, the operators only reason about jo ins in 
the local system, since jo ins in the remote systems w i l l 
be handled by the remote database management system 
and the planner has no control over how or in what or­
der these are per formed. Second, the operators consider 
only jo ins across data tha t are d is t r ibuted in different 
in fo rmat ion sources. It w i l l generally be less efficient to 
pul l two sets of in fo rmat ion f r om the same in fo rmat ion 
source and perform the j o i n local ly rather than in the re­
mote source. T h i r d , since we usually do not have wr i te 
access to the remote databases, in fo rmat ion can only be 
moved f rom the remote systems to the local system or 
direct ly to the ou tpu t . However, even w i th a set of care­
fu l ly designed operators, the search space may st i l l be 
very large since the operations can be performed in dif­
ferent orders, and there may be mu l t i p le replicated and 
overlapping sources f rom which the in fo rmat ion can be 
retrieved. 

To fur ther constrain the overall search for an effi­
cient p lan, we also employ standard database est ima­
t ion techniques to wr i te an evaluat ion funct ion to guide 
the search. The planner uses the evaluation funct ion in 
a branch-and-bound search, est imat ing the cost of each 
intermediate plan and selecting the plan w i t h the low­
est overall execution cost. The cost of each operat ion is 
est imated by ma in ta in ing in fo rmat ion about the size of 
each relat ion and the number of different possible val­
ues for each a t t r i bu te of a re lat ion. Assuming a un i fo rm 
d is t r ibut ion of the data, we then est imate the amount 
of intermediate data that w i l l be retrieved and man ip ­
ulated, which is usually the dominant cost in handl ing 
mul t idatabase queries. Using the est imated cost of each 
operat ion, we can then compute an est imate for the over­

al l cost of a p lan, tak ing in to account the paral lel ism of 
some of the actions. The evaluat ion funct ion allows the 
planner to compare different par t ia l plans; those plans 
that are more expensive than the plan eventual ly se­
lected w i l l never be expanded fur ther. 

The f inal plan generated for the example query in Ta­
ble 1 is shown in Figure 1. Th is p lan shows where the 
in fo rmat ion is retr ieved f rom and how the in fo rmat ion 
is manipu la ted to produce the requested data. The sys­
tem works backward f rom the goal to produce a plan to 
retrieve the data. In this par t icu lar p lan the f inal move 
operator is used to achieve the or ig inal goal of sending 
the requested data to the ou tpu t ; i t also generates the 
subgoal of get t ing the data in to the local system. Next, 
the system considers how to get the data in to the lo­
cal system and since the in fo rmat ion is not available in 
any single in fo rmat ion source, i t selects the j o i n opera­
tor , which decomposes the or ig inal goal in to two simpler 
in fo rmat ion goals. Each of these simpler goals is then 
achieved by using the s e l e c t - s o u r c e operator to select 
a relevant source for each of the requests and translate 
the requests into subgoals tha t use the terminology of 
the selected in fo rmat ion source. These goals are in tu rn 
achieved by mov ing the in fo rmat ion f rom the remote in­
fo rmat ion sources in to the local system. When this plan 
is executed, al l of the in fo rmat ion is brought in to the 
local SIMS mediator , where the draf t of the ship can be 
compared against the depth of the seaports. Once the 
f inal set of data has been generated, it is sent to the 
ou tpu t . 

The approach of searching the space of plans to f ind 
the best one is s imi lar to what is done in other sys­
tems for producing query plans for relat ional databases 
[Selinger et a/., 1988]. These systems typ ica l ly generate 
the space of query access plans, constra in ing the space 
of plans w i t h appropr iate domain-specif ic heuristics, and 
then evaluate the plans and select the best one. An i m ­
por tant difference f rom t rad i t i ona l query p lann ing sys­
tems is tha t in those systems the source f rom which the 
in fo rmat ion is to be retrieved is fixed, whereas par t of 
the p lann ing process described here includes the selec­
t ion of an appropr iate i n fo rmat ion source. Wh i l e this 
makes the problem harder, it also provides a much more 
f lexible approach to in tegrat ing d is t r ibuted and hetero­
geneous sources of i n fo rmat ion . 

So far we have described the approach to generating 
query plans for i n fo rmat ion gather ing in a d is t r ibuted 
and heterogeneous env i ronment . In add i t ion to gener-
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at ing a p lan, the system must also execute i t . How­
ever, unl ike t rad i t iona l database environments, there are 
a number of problems and issues that arise when dealing 
w i th d is t r ibuted and autonomous in fo rmat ion sources. 
In fo rmat ion sources may be unavai lable, queries may 
fa i l , new in fo rmat ion requests may arise tha t compete 
for resources w i t h the current ly executing p lan, and ad­
d i t iona l in fo rmat ion may be required to select an ap­
propr iate p lan or formulate an efficient query. In the 
remainder of this paper we w i l l describe how planning 
and execution are t i gh t l y integrated and how this inte­
grat ion is used to address the issues tha t arise dur ing 
execution. 

3 Integrat ing Planning and Execution 
Planning and execution are t i gh t l y integrated by consid­
ering execution as an integral par t of the p lanning pro­
cess. Th is is done by t reat ing the execution of each in­
d iv idua l action as a necessary step in complet ing a plan. 
The goal of the planner becomes producing a complete 
and executed plan rather than jus t producing a complete 
plan. Just as achieving al l of the precondit ions of a plan 
is required for a complete p lan, executing each of the 
actions is also par t of the f inal result. 

Sage keeps track of the current status of every ac­
t ion in the plan by mark ing them as either unexecuted, 
executing, completed, or failed. Th is is s imi lar to how 
execution was integrated into I P E M [Ambros-Ingerson, 
1987]. The under ly ing planner, U C P O P , mainta ins a l ist 
of flaws, which is an agenda of things that need to be 
done to complete a par t icu lar p lan. These flaws include 
open conditions, which are subgoals tha t have not yet 
been achieved, and threats, which are potent ia l interac­
t ions between operators tha t must be resolved by adding 
ordering or b ind ing constraints We integrated execution 
in Sage by adding two new types of flaws: an unexecuted 
action flaw and an executing act ion flaw. Whenever a 
new operator is added to a p lan, the corresponding flaw 
ind icat ing tha t the act ion is unexecuted is also added 
to the agenda. The executing flaw is used to handle the 
fact tha t actions are not instantaneous and in some cases 
may take considerable t ime. A plan is not complete unt i l 
all unexecuted and executing f laws have been removed. 

The choice of when to execute an act ion in a plan is i m ­
por tan t , since undoing an executed act ion may be costly 
or impossible. An act ion cannot be executed un t i l every 
precondit ion of the act ion has been both planned and 
achieved by executing the preceding actions. Even after 
an action is executable, Sage delays execution as long as 
possible to avoid c o m m i t t i n g to a par t ia l l y constructed 
plan prematurely. Once an act ion has been executed, it 
is viewed as a commi tmen t to the plan in which the ac­
t i on occurs - the planner cannot consider any plans tha t 
are not refinements of the plan being executed. The idea 
is tha t the planner should f ind the best complete plan 
before any act ion is executed. Then once execution is in i ­
t ia ted, it resolves any fai led subplans or new goals before 
executing the next act ion. Th is means that the planner 
w i l l never execute an action un t i l the corresponding plan 
is selected as the best available. 

Since executing an act ion may take considerable t ime, 

the planner cannot s imply execute an action and wai t 
for the results. Instead, Sage creates a subprocess that 
executes the act ion and notifies the planner once it has 
completed. In order to keep track of the actions current ly 
being executed, the corresponding unexecuted flaw is re­
moved f rom the agenda and the executing flaw is added. 
At any one t ime there may be a number of actions that 
are all executing simultaneously. On each cycle of the 
planner, the system checks if any executing actions have 
completed. Once an action is completed, the executing 
flaw is removed f rom the agenda. If it completes success­
ful ly , the action is marked as completed. Other actions 
that depend on this action may now be executable if all 
of the other preceding actions have also been executed 
If an action fai ls, the failed por t ion of the plan is removed 
and then replanned, as described in the next section. 

Sage's top-level a lgor i thm for t igh t l y integrat ing plan­
ning and execution is summarized in Table A. The plan­
ner starts w i th an in i t ia l p lan, where the goals are the 
open condit ions. In i t i a l l y , the set of current plans con­
tains only this in i t ia l p lan. I t repeats the a lgor i thm unt i l 
it produces a plan in which every action has been exe­
cuted. The planner considers only refinements of the 
current plans. Whenever an act ion is executed, an ac­
t ion terminates, or a new goal is added, the set of current 
plans is replaced by a new set conta in ing only this new 
plan. The f irst two condit ions in this a lgor i thm ensure 
that the planner finds a plan w i t h no open condit ions 
or threats before it commi ts to a plan and in i t iates any 
actions. 

Table 4: A l g o r i t h m for p lanning and execution 

Th is a lgor i thm supports simultaneous p lanning and 
execution. Before the system ini t iates execution of any 

Remove a plan from the set of current plans and apply the 
first applicable condition: 

• If there are any threats, resolve them by adding ad­
ditional constraints to the plan. Add the possible re­
finements to the current plans, 

* If there arc any open conditions, add additional ac­
tions or ordering links to achieve them. Add the pos­
sible refinements to the current plans. (As described 
in the next section, open conditions that contain run­
time variables for sensing will be postponed.) 

• If any executing actions have completed: 

— If the action completed successfully, record the 
results and update the plan. If the plan is com­
plete, return the results. Otherwise, replace the 
current plans with this new plan. 

- If the action failed, remove the failed portion 
of the plan, update the model to avoid generat­
ing the same plan again, and replace the current 
plana with this new plan. 

• If there are any new goals to solve, add them to the 
open conditions and replace the current plans with 
this new plan. 

• If any unexecuted actions are now executable, create a 
process to execute them and replace the current plans 
with this new plan. 
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act ion, i t constructs an in i t i a l l y complete p lan. How­
ever, once execution starts, an act ion could fa i l , a new 
goal could arise, or the system may require addi t iona l in ­
fo rmat ion (sensing) to continue p lanning. In any of these 
cases, once the new open condi t ion has been added to 
the list of f laws, the system can augment the execut ing 
plan to achieve these condit ions whi le it continues exe­
cut ing any actions that have already been in i t ia ted . In 
the next section we describe these capabil i t ies in more 
detai l . 

4 Advantages of Integrat ing Planning 
and Execution 

In tegrat ing the p lanning and execution allows the system 
to plan for new goals as they arr ive, replan failed actions, 
and exploi t sensing operat ions, al l whi le the system is 
executing other actions in a p lan. 

4 . 1 P l a n n i n g f o r N e w G o a l s 

Inter leaving p lanning and execution allows the system 
to handle new goals whi le the system is in the midst of 
executing a plan that achieves some other goals. Th is 
is impo r tan t , since execution may require substant ial 
amounts of t ime and it may be impract ica l and ineffi­
cient to wai t for one task to complete before s tar t ing the 
next task. In add i t ion , i t may not be possible to treat 
the new goal as an independent task since it may com­
pete w i th the executing plan for the same resources. The 
handl ing of new goals is captured in the a lgor i thm de­
scribed in Table 4. When a new goal arises, the system 
adds this goal to the current ly executing plan and then 
refines that p lan to solve the goal. 

Consider an example where a new goal is given to the 
system while it is executing the plan in Figure 1. As­
sume that the system has already executed some of the 
actions and is in the midst of executing others, as shown 
in Figure 2. When a new goal arises to retrieve the de­
scr ipt ion of the Long Beach seaport, the planner notices 
the pending goal on the next cycle and then searches for 
appropr iate addi t ions to the current ly executing plan to 
solve this goal. Wh i le the system is generat ing this p lan, 
the action in progress (shown by the act ion in the box 

w i t h thick lines) continues to execute, since actions are 
run as separate processes. 

The result ing plan is shown in Figure 2. The advan­
tage of p lanning this new goal in the context of the exist­
ing plan is tha t shared work can be explo i ted and any po­
tent ia l resource conflicts are considered in the p lanning 
process. In this case, the goal requires access to the geo 
database, which is already in use by the other executing 
query. As a result, the system uses the geo database 
runn ing on the s u n - o r a c l e server, since the other ac­
t ion that required this resource has already completed. 
The separate top-level goals are treated as independent 
goals, so if a subplan fails it w i l l not cause unrelated 
goals to fa i l . In add i t ion , as soon as any lop-level goal 
is complete, the results are sent to the cal l ing process. 
Th is allows the planner to run cont inuously and return 
results as soon as they are obtained rather than wa i t ing 
for a plan to complete. 

4 . 2 R e p l a n n i n g F a i l e d A c t i o n s 

In tegrat ing p lanning and execution allows the system to 
graceful ly handle act ion fai lures and replanning. Since 
the planner may have expended considerable effort in 
executing a plan so far, we want to avoid th rowing out 
the entire plan and s tar t ing f rom scratch when an ac­
t ion fai ls. Instead, the planner should replan the fai led 
por t ion of the p lan, whi le ma in ta in ing as much of the 
executing plan as possible. Th i s is current ly supported 
by requi r ing the designer of a domain to define a set 
of domain-specif ic fai lure handlers. When a fa i lure oc­
curs, the fai lure handler is called w i th the act ion tha t 
failed and the type of fa i lure, and the fa i lure handler is 
expected to remove the fai led por t ion of the plan and up­
date the model to avoid the same fai lure when the fai led 
actions are replanned. Th is replanning can be performed 
whi le other unaffected actions continue to execute. A 
more complete replanning capabi l i ty could be incorpo­
rated by using the approach developed in the Systematic 
Plan Adap to r (SPA) [Hanks and Weld , 1992], which sys­
temat ica l ly searches the space of p lan modi f icat ions. 

In the in fo rmat ion gather ing doma in , the ab i l i t y to 
replan upon fai lure can be exploi ted to handle query 
failures by redirect ing a query to a different in forma-
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t ion source. An execution fai lure may occur because a 
database or network is down. In this case the fai lure 
handler would remove the actions for retr ieving the data 
f rom a specific in fo rmat ion source and would mark the 
in fo rmat ion source as unavailable to avoid generating the 
same plan. The planner would then a t tempt to replan 
the query; if another in fo rmat ion source is available it 
would generate an al ternat ive plan 

An example of a failed action that can be replanned 
is shown in Figure 3. The actions in the shaded boxes 
are the failed actions and the actions above the failed 
ones are the replanned actions. Since the replanned 
move action requires the same resource as the action cur­
rently being executed, an order ing constraint is added 
between these two actions. Th is constraint prevents the 
replanned move act ion f rom being executed un t i l this 
other action completes. 

4 . 3 S e n s i n g t o P l a n 

Integrat ing p lanning and execution allows the system 
to interleave sensing actions w i th the p lanning. Ear-
lier work on sensing in p lanning [Ambros-Ingerson, 1987; 
Etz ioni et a/., 1992] proposed the idea of incorporat ing 
run- t ime variables in the planner to al low the planner 
to reason about the sensed in fo rmat ion . Run- t ime var i ­
ables appear in the effects of operators and essentially 
serve as place holders for the value or values returned by 
the act ion at the point it is executed. These variables are 
useful because the result can be incorporated and used 
in other parts of the p lan. An issue tha t arises in the use 
of run- t ime variables is tha t un t i l desired in fo rmat ion is 
available, the p lanning may have to be postponed or a 
plan w i t h all possible contingencies w i l l have to be pro­
duced in order to deal w i t h the possible returned values. 
Sage supports run- t ime variables and delays work ing on 
any open condi t ion tha t involves such a variable. How­
ever, unl ike previous planners, Sage can begin execution 
of other actions whi le it is wa i t ing for the sensed infor­
mat ion and then continue p lanning whi le these actions 

continue to execute. 
For in fo rmat ion gather ing, there are two impor tan t 

uses of run- t ime variables. First , the run- t ime vari­
ables can be used to retrieve in fo rmat ion f rom one source 
and that, in format ion is then used to formulate queries 
to another source. Second, the run- l ime variables also 
can be used to retrieve in format ion which is then used 
in the selection of the most appropr iate in format ion 
sources. We have already implemented the first use, 
which is described below, and we investigate the second 
in [Knoblock and Levy, 1995]. 

The capabi l i ty for gathering in format ion to use in the 
formulat ion of another query can be added to the system 
by adding two more operators to the domain , shown in 
Table 5. The first operator is s imply an act ion to exe­
cute a query in the local system and b ind the result to 
" I resul t " . As in U W L , run- t ime variables are annotated 
w i th an exclamation mark . The only precondit ion of this 
operator is that the in format ion is available in the local 
system and the only effect is tha t the data is bound to 
the result. Note that the system wi l l have to generate a 
subplan and execute it in order to get the in format ion 
into the local system. 
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The second operator, called use-sensed- in fo , re­
trieves information and uses it, in the formulation of 
another query. The heart, of this operator is the 
ga the r -da ta precondition, which is a function that de­
termines whether a query can be decomposed such that 
some of the information can be retrieved and incorpo-
rated directly into another query. If so, then it decom­
poses the original query into a modified query and a 
sub-query, which wil l get executed first to return an an­
swer. The result wil l then be inserted directly into the 
modified query through the run-time binding. 

Consider the example query described in the previous 
sections. Instead of executing two parallel queries, the 
system can first gather the information on the ship draft 
and incorporate that information directly into the sec­
ond query, as shown in Figure 4. In this plan the bind­
ing for the "max-draft," is incorporated directly into the 
query against the geo database. While the two queries 
must then be done sequentially, it wi l l greatly reduce the 
amount of intermediate data that needs to be retrieved 
from the second query. Also, there wil l be no local pro­
cessing, so the result can be sent directly to the output. 

5 Related Work 
There are a variety of systems that have tightly inte­
grated planning with some combination of execution, 
sensing, and replanning. There is work on reactive plan­
ning (e.g., [Firby, 1987; Beetz and McDermott, 1992]), 
which emphasizes the ability to react to unexpected 
situations rather than assume that a plan wil l usually 
work. This view is appropriate for some domains, such 
as robot planning, but not in domains such as informa­
tion gathering where the cost of execution will usually 
be much higher than the cost of reasoning about actions. 
In a partial-order planning framework, Ambros-Ingerson 
[1987] developed an integrated planning, execution, and 
monitoring system called IPEM and introduced the idea 
of run-time variables for sensing. Olawsky and Gini 
[1990] focused on the tradeoffs and strategies in choos­
ing when to sense and when to plan. Etzioni et al.[l992] 
developed a language for representing incomplete infor­
mation and Etzioni et al.[l994] built an integrated sys­
tem for planning, execution, and sensing called XII that 
can represent and reason about locally complete infor­
mation. We have built on many of the ideas from the 
earlier work within the partial-order planning paradigm 

and extended them to support simultaneous planning 
and execution and build an integrated system for infor­
mation gathering. 

The other aspect to this work is the application of the 
planner to the problem of information gathering. The XII 
planner [Etzioni et a/., 1994], which is used in the Unix 
Softbot [Etzioni and Weld, 1994], also supports execu­
tion and sensing for information gathering. Compared 
to Sage, the Softbot reasons about the information at 
a different level of granularity. Instead of representing 
general actions for manipulating data, each operator cor­
responds to a Unix command. The advantage of their 
approach is that it provides finer-grained control and 
reasoning of the information. The disadvantage is that 
it would be impractical to efficiently reason about and 
manipulate large amounts of information. Information 
gathering is also similar to conventional query process­
ing in databases. These systems generate a query access 
plan and then execute it [jarke and Koch, 1984]. There 
is no choice of which information source is used and no 
capability for interleaving the planning and execution, 
performing sensing operations, replanning due to fail­
ures, or handling additional goals. 

6 Discussion 
This paper presented a planning system, called Sage, 
which tightly integrates planning and execution, runs 
continuously and handles new goals as they arrive, per­
forms sensing actions, and recovers from failures that 
arise, all while continuing to execute actions already in 
progress. The contributions of this work are twofold. 
First, we extended the previous work by tightly inte­
grating these components and adding the capability to 
execute actions simultaneously with the planning, re­
planning, and sensing. Second, we demonstrated that 
the resulting planner can be effectively applied to the 
problem of information gathering from distributed and 
heterogeneous information sources. 

In this work we started with a real-world planning 
application and identified the issues that had to be ad­
dressed to solve this problem. While there is a significant 
amount of previous work on planning that we could build 
on, the emphasis and assumptions in previous work do 
not closely match the problems that arise in this domain. 
For example, in terms of generating plans, the interac­
tions between actions do arise, but they are not the dom-
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in ant prob lem. Issues tha t are impo r t an t in this domain 
are f ind ing high qual i ty plans, exp lo i t ing paral lel ism in 
the plans, and p lann ing and executing simultaneously to 
support p lanning for new goals, replanning and sensing. 
In order to put al l of th is work together and tu rn i t in to 
a pract ical p lanning system, the resul t ing planner makes 
some s imp l i f y ing assumptions tha t may not hold in other 
domains. However, the basic architecture is qui te general 
and has been demonstrated in a real-world appl icat ion. 

Sage serves as the under ly ing query planner for the 
S I M S i n fo rmat ion mediator [Arens tt ai, 1993; Knoblock 
ct ai, 1994], The goal of SIMS is to provide flexible and 
efficient access to large numbers of in fo rmat ion sources. 
We have implemented the p lann ing, execut ion, replan­
n ing, and sensing as described in this paper. The current 
system has been used in the domains of logistics p lan­
ning and t r auma care and provides access to data stored 
in a variety of systems that, are d is t r ibuted at various 
sites. 
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