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Abstract

Many search domains are non-deterministic.
Although real-time search methods have tra-
ditionally been studied in deterministic do-
mains, they are well suited for searching non-
deterministic domains since they do not have to
plan for every contingency they can react to
the actual outcomes of actions. In this paper,
we introduce the min-max LRTA* algorithm, a
simple extension of Korf's Learning Real-Time
A* algorithm (LRTA*) to non-deterministic
domains. We describe which non-deterministic
domains min-max LRTA®* can solve, and an-
alyze its performance for these domains. We
also give tight bounds on its worst-case per-
formance and show how this performance de-
pends on properties of both the domains and
the heuristic functions used to encode prior in-
formation about the domains.

1 Introduction

Real-time (heuristic) search methods, a term coined by
Korf [Korf, 1987], interleave search with action exe-
cution, limiting the amount of deliberation performed
between action executions After an action has been
executed, the deliberation-act cycle is repeated - un-
til a goal state is reached. [Korf, 1993] demons),rated
that real-time search methods are powerful suboptimal
search methods that can often outperform more tradi-
tional search methods in terms of total running time. For
example, they are among the few search methods that
can find suboptimal solution paths for the 24-puzzle, a
domain with more than 7 x 10?* states.

Real-time search methods have usually been investi-
gated in the context of traditional Al search domains:
sliding tile puzzles such as the 8- or 24 puzzle, blocks
worlds, grid worlds, and others. These domains are usu-
ally assumed to be deterministic: whenever an action
is executed in the same state, the same successor state
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results. Many domains, however, are non-deterministic,
such as many robotics, control, or scheduling domains.
In this paper, we present a first step towards extend-
ing real-time search methods to non-deterministic single-
agent search domains by viewing real-time search as a
game where the search method selects the actions and
nature, a fictitious opponent, chooses their outcomes.

We investigate suboptimal search, i.e. how to get the
agent to any goal state. The path traversed by the agent
does neither have to be optimal nor repeatable, which
is a sufficient condition for many real-world problems.
Real-time search methods appear to be well suited for
suboptimal search in non-deterministic state spaces. In
contrast to traditional (off-line) search techniques, which
must plan for every possible outcome, real-time search
methods only need to choose actions for those outcomes
that actually occur. Thus, real-time search methods can
potentially decrease search time, although possibly at
the expense of action execution time: Since they do not
plan exhaustively for every possible outcome of an ac-
tion, one cannot be sure how good it really is to exe-
cute the action. It might well be that the action has
an outcome that makes it hard for the agent to reach
a goal state. In this paper we begin to quantify the
tradeoff between search time and action execution time
by analyzing the performance of real-time search in non-
deterministic domains.

Our new technique, which we call min-max LRTA*,
is based on Korf's Learning Real-Time A* algorithm
(LRTA*) [Korf, 1987; 1988; 1990]. LRTA™ is a single-
agent real-time search algorithm that can be used to find
suboptimal and optimal solution paths in deterministic
domains. It performs only minimal computations be-
tween action executions (we constrain it to a lookahead
of one), choosing only which action to execute next, and
basing this decision only on information local to its cur-
rent state. We extend LRTA™ to non-deterministic do-
mains, describe which non-deterministic domains it can
solve, and analyze its performance for these domains.
We also give tight bounds on its worst-case performance
and show how this performance depends on properties
of the domains and the heuristic functions. Our theoret-
ical analysis, which suggests what constitutes easy and
hard real-time search problems in non-deterministic do-
mains, also applies to both deterministic domains and
multi-agent domains (such as moving target search).



2 Assumptions and Notation

LRTA*-type real-time search algorithms differ from tra-
ditional search algorithms, such as the A* algorithm, in
that they always maintain a current state. This is a state
of the search space; it can only be changed by executing
actions. The real-time search algorithm can choose the
action freely from the actions that are applicable in its
current state. While chronological backtracking is such a
search method, it can only be used in undirected, deter-
ministic state spaces. In non-deterministic state spaces,
a real-time search algorithm might not be able to back-
track (i.e. undo action executions).

We view real-time search in non-deterministic domains
as a two-player game. The action that the real-time
search algorithm selects determines the possible succes-
sor states, from which some mechanism, which we call
nature, has to choose one We do not impose any re-
strictions on how nature makes its decisions (its strat-
egy) and, furthermore, assume that we do not know na-
ture's strategy. Although a second agent might indeed
exist in some real-time search scenarios, our assumption
of its existence is simply an analysis tool.

We use the following notation: S denotes the finite set
of states of the state space (of size n := |.S'|), .smart € S
is the start state, and G (with ) # G C 5] is the set
of goal states. A(s) is the finite set of actions that can
be executed in state sic S. Executing action a4 € A{s)
causes a (potentially non-deterministic) state transition
into one of the states succ(s,a) (with ¢ # succfs,a) C
S). ldentity actions are actions a € A(s) with s €
succ(s,a), i.e. those actions that might not. result in a
state change. We call a state space deterministic iff the
cardinality of succ (s, a) is one for all s € § and a € A(s)
For deterministic state spaces, we use suec(s, a) not only
to denote the set of successor states, but also the only
element of this set. Note that every deterministic state
space is per definition non-deterministic as well. We call
a state space non-deterministic if we want to stress
that we do not require it to be deterministic.

The distance d(s,s') € [0,00] between 5 € S and

s € 5 is measured in action executions and defined Lo
be the (unique) solution of the following set of equations

(for all 5,' € S)

dfs, ') = { ¢

T+ MiNagajs) MR/ gauce(s.a) G s s")

He=24g'
otherwis

In other words: the scarch algorithm can reach s’ from
s with at most d(s,s') action exccutions (regardless of
nature’s straiegy) given that the search algorithro knows
the state space and acts optimally. The goal distance
gd(s) of s € 5 is defined to be gd(s) := min, e d(s, 5').
If gd(5) = oo then there exists a strategy for nature that
prevents the search algorithm from reaching any goal
state from state s (although naturc might choose not to
follow this strategy). Note that gd(s) < n —11if gd(s) 1s
finite (otherwise nature could cause the search algorithm
to loop indefinitely). We define the diameter (depth) of
the state space with respect to G as d := max,¢g gd(s).
For deterministic state spaces, the definitions of d(s, s’)
and gd(s) simplify to the standard definitions of distance
and goal distance, respectively.

Initially, V(8) = f(s) for all s € S, where f is a heuristic
function for the goal distance. The search algorithm starts
in state fqpar:.

1. s := the current state

2. If s € (7, then stop successfully.

3. e = argmin, g 4,V {succ(s, e)),

4. Set V(s) = max{V (s), ! + V(snce(s,a)}).

5. Fxecute action a. (As a consequence, the new current
state becomes suce(s, a).)

6. Gatol.

Figure 1: Determinmistic domains: LRTA*

Initially, Vi(s) = f(a) for all ¢ € &, where § is a henristic
function for the goal distance. The search algonthm starts
in shate 2,.are.

1. s :=the current state.

2 1f s &€ (7, then stop successiully.

3. @ = argmin,c 4, MaX, gaucr(s.a) V(s

4, Set Vie) = max(V(s),1 + maxX g eoneciaar V(8)).

5. Execute action a. (As a consequence, nature selects the
new current state from suee(s, ) according to ils strat-
egy.)

6. Goto 1.

Fignre 2: Non-deterministic domains: min-max LRTA*

3 Deterministic Domains: LRTA®*

We describe a simple version of Korf's LRTA* algo-
rithm that has lookahead one. It consists of a termina-
tion checking step (line 2), an action selection step (line
3), a value update step (line 4), and an action execution
step (line 5), see Figure 1.

First, LRTA* checks whether it has reached a goal
state and thus can terminate successfully. If not, it de-
cides on the action to execute next. It looks only one ac-
tion execution ahead, picking the action that leads to the
successor state with the smallest state value V(s), which
approximates the goal distance gd(s) (ties can he broken
arbitrarily). Note that the algorithm is greedy since it

always chooses the action that appears to be best locally.
The algorithm then replaces the value V{s) with the one-

step lookahead value max(V(s), 71 + V(succ(s,a)), which
is a more accurate estimate. Finally, LRTA* executes
the selected action and iterates.

Korf showed that LRTA* is correct for deterministic,
strongly connected (i.e. d(s,s) < for all $=,8" E S)
state spaces. That is, it reaches a goal state eventually

and terminates; the sequence of executed actions is a
suboptimal solution path.
4 Non-Deterministic
Domains: Min-Max LRTA*
The extensions necessary to make LRTA* work in

non-deterministic state spaces are fairly straightforward.
Since we do not know which strategy nature uses, we use
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a (worst-case) minimax approach and let the search algo-
rithm act as if nature tries to maximize the goal distance
of the search algorithm while the search algorithm tries
to minimize it. If the search algorithm can reach a goal
state and terminate for such a vicious strategy of nature,
it will also reach a goal state if nature uses a different,
and therefore less vicious, strategy. As a consequence,
the search algorithm does not depend on assumptions
about the strategy that nature actually uses.

The min-max LRTA* algorithm is shown in Fig-
ure 2. |t uses triax,,'s,u.(, m V'(s') at the places in the
action selection step (line 3) and value update step (line
4) where LRTA™* wuses V(succ(s, a)). In deterministic
state spaces, min-max LRTA* reduces to the original
LRTA* algorithm.

5 Performance Analysis

In this section, we analyze the performance of min-max
LRTA*, which we measure as the total number of action
executions until a goal state is reached. This is justi-
fied, because the time needed to execute an action in
the world often dominates the minimal amount, of com-
putation that min-max LRTA* performs between action
executions. Even if this is not the case, the total num-
ber of actions that min-max LRTA™* executes can still be
roughly proportional to its total running time, because
it performs only a bounded and in many domains essen-
tially constant amount of computation between action
executions. We define its complexity to be an upper
bound on the number of action executions that holds
for all possible topologies of state spaces of a given size,
start and goal states, tie breaking rules among actions
that evaluate to the same value, and strategies of nature.

There exist state spaces in which every real-time
search algorithm has infinite complexity This is the case
if the search algorithm can get trapped in a part of the
state space that does not contain a goal state. Tradition-
ally, researchers have therefore restricted their attention
to strongly connected state spaces or, more generally,
state spaces with d < «. We use the same assumption
for non-deterministic state spaces and call state spaces
with this property safely explorable. (To be more
precise: The goal distances of all states that the agent
can reach from its start state without passing through a
goal state have to be finite.) Moore and Afkeson's parti-
game algorithm [Moore and Atkeson, 1993], for exam-
ple, learns non-deterministic abstractions of spatial state
spaces that are safely explorable.

Intuitively, we expect min-max LRTA* to do well in
safely explorable state spaces when the state spaces are
relatively small or contain many goal states. In the latter
case, the we expect it to perform the better, the more
the goal states are spread out over the state space. In
the following, we analyze this intuition formally.

5.1 Complexity: Upper Bounds

In this section, we provide upper bounds on the com-
plexity of min-max LRTA*. But first, we introduce some
definitions of properties of the state values V(s) that we
need in order to be able to state our results.
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Definition 1 The stale values of man-maz LRTAY* are
consistent ff, for all s € 7, V(s) = 0, end, for all
s € S\G, 0 € V(s) € 14+Mmingegs) MAXergsuce(s,a) ¥V (5).

Definition 2 The staie values of man-mar LRTA* are
admissible ], for all s € §, 0 < V{s) < gd(s).

In deterministic state spaces, these definitions reduce
to the standard definitions as used for traditional heuris-
tic scarch algorithms, such as the A* algorithin [Pearl,
1985]. In particular, consistency (or, equivalently, mono-
tonicity} means that the triangle inequality holds and
admissibility ncans that the state values ol min-max
LRTA¥ never overestimate the goal distances. Note that
rero-1nitialized values are consistent, and consistent val-
ues are adnussible.

We can prove the following theorem. (For all of the
following proofs, we provide ontlines only.)

Theorem 1 Inial siale values that are consisient (or
admssible) remain conswstent (or admissible) after cvery
action cxecution of mm-mar LETA* and arc monoloni-
cally non-decrcasing.

Proof sketch: The theorem can casily be proven by
mduction. (For admissible imtial state values i deter-
ministic state spaces, tlie theorem follows from {Ishida
and Korl, 1991].] ]

This theorem enables us to simplify the value up-
date step of nun-max LRTA* if its initial state
values arc consistent. According to the theo
rem, ihe wvalues remain consistent, This mieans
according 1o the definition of consistent state val-
ues that Vis) < 1« mingec )y maXegauce(s,a) V(5')
for & & (. It follows that max(V(s),l +
MaXs i caueris,a) V(‘SF]) = 1 + “lﬂ'xs’e.vurr(.v‘a)Lr(*"';) for
a = argill, e 4, ) MaXsrgsuce(s,ny V(8') and s € ¢, and
the value update step can be simplified to 1V(s) :=
14+ MaXerg suee(s.a) ¥ (8) without changing the values as-
signed to 1(s).

How docs min-max LRTA* work? Assume consistent
state values and call PG = {s € 5§ : V(s) =0} D
the set of potential goal states. For example, if min-max
LRTA* is zero-intlialized, then P(7 is always the set of
stales which the search algorithm has not yet visited at
lcast once We can casily prove by induction that (for
alls € S)

0 <

r : ot

Vis) < s}g})n(' d(s, ")

The aclion selection step of min-max LRTA* can be in-
terpreted as  using Vis) to  approximale
mingre pi d(s,5"). This means that it tries (sometines
unsuccessfully) ta direct the scarch algorithm from its
current state to the closest potential goal state with as
few aclion exceutions as possible. Thus, it always exe-
cutes the action that appears to be best according to its
local view of the state space.

How eflicient is min-max LRTA*? A time superscript
of ¢ in the following complexity result refers Lo the val-
ues of the variables immediately before min-max LRIA*
executes the (f + 1)st action, e.g. gt=)0 — Setqry and
VU=0(g4) = f(s). Also, the theorem refers to identity



actions. These are actions whose execution wight not
result in a siate change. S,q := {s € 5 : T8 €
suce(s,a)} C S is the set of states in which identity ac-
tions can he executed.

Thecorem 2 For all { = 0,1,2, ... (untd termination)
and ¢ min-mazr LRTA?* algorithm with an admssible
heuristic function [ i holds that

I < Z (Vi) = VU] — V) = VO H oo (1)
ag s

and

loop' <

z (V') —~ VO(s)], (-

2E N g

L
—

where loop! = [{t € {0,.. .t =1} s = s"+4)] (the
number of wdentity actions erecuicd before U that drd nol
change the slale).

Proof sketeh {by induction): Fort = 0, the incquabities
reduce to 1 < 0 and {oop' < 0, which is true. Now
assume that the incqualities hiold at time § and consider
how the variables change from time ¢ 1o ? + 1. The only
state value that changes is V(&) 1L increases according
to Theorem 1 by VIH[s") — V(") > 0, and so does
Toees (V(8) = Vs We distanguish (wo cases:

1 s # st e the LUS of Inequality (1), f, -
creases by one and the LHS of Inequality (2), {oop,
does not change Since VHI(s") — V(s > 1 4
MaXstcsurefs’,al) ‘-'rt(.‘a"] - l't(h‘f) 2 1 + I”(.‘ir+1) -
Vist)y = 1+ V(1) = V(™). the RIS of In-
equality (1) increases by at least one. The RUS
of Inequaliily (2) does not decrease. Thus, the twao
inequalities continue to hold at tune ¢ + 1.

2. ' = st ie. both the LHS of Inequality (1), {,
and the LUS of lnequality (2), loep, increase by onc.
Since Vi1 (s') = Vit (411 and {oop mereases by
aone, the RHS of Inequality (1) inecrcases by one
as well. Since 81 € S,g and ViTUs") - 17(s') =
1+ MaXsrgryeeiat,at) Vt(sf) - Vs('sf) Z 1+ L’t('gt) -
Vis') = 1, the RIS of Incquality (2) imcreases by
al least one. Thus, the two inequalities continue to
hold at time { +1. =

Theorem 3 A mm-mar LRTA* algoriihm wth an ad-
massible hewristie function reackes a goal state and ler-
manates after al most 237 .o yd(s) action erecutions
(regardless of nature's strategy). If the siale space has no
wdentity actions, a mun-mar LRTA* algorithm reaches o
goal state and {erminales affer af mosl 3, ¢ gd(s) ac-
tron cxecutions (regardless of nature’s strategy).

Proof sketch:

H ‘1‘1352 Z [V'(s) - VD(H)] — (Vi(s') = V(")) + loop'
aES
Thgg zz [Vi(s) = VO] = (Vi) =V (™)
s€S

2€F\{sY}

2 3 [Vis) = V)] + 2V (87) = VOs®) - VY

st

Figure 3: A worst-case example (n > 1)

Ada
é 2 Z [qt![s}—()]—f-'.!gd(so)— N—0
eSS [V
= 2) yd(s)
RE M

If the state space has no identity actions, then loopt =
0 for all ¢ and the sccand part of the theorem follows
sinitlarly. =

As a consequence, min-max LRTAY 15 guaranteed {o
reach a goal state eventually (i.e. it is correct) if the state
space is safely explorable (d < oo}, Ln this case, the algo-
rithm reaches a goal state afler al most O(nd) action ex-
eculions, because 23 ¢ s gd(s) < 2nd. O(nd) < O(n?),
since d < n—11f d < oo, Note that the goal distances of
all states nfluence the complexity of min-max LRTA*,
not only the goal distance of the start state,

5.2 Complexity: Lower Bounds

In this section, we prove, by example, that the upper
bounds from the last section are tight for uninformed
(i.c. zero-imtialized) suin-max LRTA* algorithms. For
cach example, rather than explaining what occurs, we
provide pseudo-code that prints Lthe seqnence of slates
that Lhe algorithim could traverse. (The scope of the
for-staiements is shown by indentation.) It is easy to
determine from inspection of the code how many actions
the algorithm executes.

All of onr exainple state spaces are deternumsiic, This
shows that the bounds remain tight for this important,
stibeclass of non-deterministic state spaces: deterministic
state spaces arc not easicr to solve with min-max LRTA*
than non-deternunistic ones, Since min-max LRTA* re-
duces to the original LRTA* algorithm in deterministic
domains, the bounds are tight for the original LRTA¥
algorithm as well, see also [Koenig, 1992,

Theorem 3 states thal a zero-initialized min-max
LRTA* algorithm reaches a goal slaie afler at most
23 ,cs9d(s) action executions. 23 esgd(s) <
25 "1 = a2 — n for safely explorable state spaces.
Now cousider the state space in Figure 3 with the iden-
tity actions included. The following program shows onc
possible sequence that a zero-initialiged min-max LRTA*
algorithm can traverse (in this case, ties arc broken by
remaining in one’s current state if possible and otherwise
always choosing the state with the lowest label):

for i = 1 to n-1
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bilsre il

Figure 4: A rectangular grid world

for j :=1+to i
print i
for j := 1 downto 1
print j
print n

In this case, the min-max LRTA™* algorithm must ex-
ecute a total of n? — n actions. Thus, the complexity of
n? — n is tight.

Theorem 3 also states that a zero-initialized min-max
LRTA* algorithm reaches a goal state after at most
Zaesgd(s) action executions if the state space has no
identity actions. )~ .¢gd(s) < 1/2n* — 1/2n for safely
explorable state spaces. Now consider again the state
space in Figure 3, this time with the identity actions
removed. A zero-initialized min-max LRTA* algorithm
can traverse the following state sequence (which is equal
to the above state sequence, but with repeated occur-
rences of the same state deleted):

for i := 1 to n-1
for j := i downto 1
print j
print n

Since the min-max LRTA* algorithm executes |/2rr-
[/2n actions in this case, the complexity of I/2n* —1/2n
is tight for state spaces that have no identity actions.
Note that identity actions can always be safely deleted
from a state space, since their removal does not affect
whether min-max LRTA* can solve a given search prob-
lem in the worst-case. Our results show, however, that
their removal can at most halve the complexity of unin-
formed (i.e. zero-initialized) min-max LRTA*.

The state space used in the above examples was artifi-
cially constructed. However, the complexity of 0(n?
is tight even for more realistic state spaces, such as
grid worlds. They have often been used as testbeds for
real-time search methods [Pemberton and Korf, 1992;
Ishida and Korf, 1991]. Consider the grid world shown
in Figure 4 and assume n > 2 with nmod4 = 2. A
zero-initialized min-max LRTA* algorithm can traverse
the following state sequence:

for 1 := n-3 downto n/2 step 2
for j := 1 to i atep 2
print j
for j := i+1 downto 2 step 2
print j
for i := 1 to n-1 step 2
print i
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Figure 5: Goal distances of the 8-puzzle

In this case, the min-max LRTA* algorithm executes
'3n%/16 — 3/4 actions before it reaches the goal state.
This also shows that the complexity of G(n?) is tight for
undirected state spaces for which the number of actions
that can be executed in any state is bounded from above
by a small constant (here: three).

5.3 Decreasing the Complexity

This section demonstrates how properties of the search
domains and the heuristic functions can decrease the
complexity of min-max LRTA*.

Domain Properties

Since the complexity of uninformed min-max LRTA* is
tight at 23", gd(s), our intuition was correct: the
smaller the state space and/or the average goal distance,
the smaller the complexity. Consider, for instance, the
sliding tile puzzles. These deterministic domains are
sometimes considered to be hard search problems, be-
cause they have a low goal density. The 8-puzzle, for
example, has 181440 states (that are reachable from the
start state), but only one goal state. Our complexity
results, however, imply that average goal distance, not
goal density, is among the factors that determine the
hardness of a search problem for (min-max or original)
LRTA*. Although increasing the goal density tends to
decrease the average goal distance, there are search prob-
lems with low goal density and low average goal distance.
The 8-puzzle is an example: Figure 5 shows for every
goal distance how many of the 181440 states have this
particular goal distance. It turns out that the average
goal distance of the 8-puzzle with the American goal
state is only 21.5 and the largest goal distance is 30.
Similarly, the average goal distance of the 8-puzzle with
the European goal state (that cannot be reached from
the American goal state) is 22.0 and the largest goal dis-
tance is 31. (See [Reinefeld, 1993] for extensive statistics
on the 8-puzzle.) In both cases, the average goal dis-
tances are much smaller than the size of the state space.
Thus, sliding-tile puzzles are rather well-suited search
problems for (min-max or original) LRTA* - compared
to many grid worlds of the same size, for example. This
does not imply, however, that LRTA* can solve sliding
tile puzzles with a huge number of tiles, since the com-
plexity of LRTA* does not only depend on the average



goal distance, but also on the number of states, which
grows as a factorial in the number of tiles.

Properties of the Heuristic Functions

Prior knowledge in form of more informed, admissible
heuristic functions decreases the complexity of min-max
LLRTA*. For example, in the totally informed case one
initializes V9(s) := f(s) with f{s) = gd(s) for all s € &
and Theorem 2 predicts

1 g Y [Vie) - gd(a)] - (VV(s') - gd(s)) + loop’

LT =9y
L 2 Y T Vi) - ds)] - (Vis') - 0d(s)
aES
Admn. o
< 2 [gd(s) ~ gd(s)] - (0 — gd{s"))
2ES
< gd(s)

That is, Theorem 2 predicts correctly that the search
algorithm needs only at most gd(s) action executions to
reach a goal state from any given s € S and, thus, that
it follows a shortest path to a goal

It is easy to determine admissible heuristic functions
for non-deterministic state spaces if one can determine
them for deterministic state spaces. One can simply
assume that nature decides in advance which successor
state g(s,a) € succ(s,a) to choose every time the agent
executes action a € A(s) in state s € S - all possi-
ble assumptions about which particular actions nature
chooses are fine. If nature really used this strategy and
the agent found out about it, then the state space would
effectively become deterministic for the agent. One can
easily see that any admissible heuristic function for the
goal distances in this deterministic state space is admissi-
ble for the original, tion-deterministir search problem as
well, regardless of the strategy that nature actually uses
Note, however, that the informedness of this heuristic
function depends on how close the assumed behavior of
nature is to its most vicious strategy.

6 Example Domains

In this section, we give two examples that demon-
strate how min-max LRTA* can be applied to non-
deterministic search problems. In particular, we discuss
search problems with coarse models (for example, ab-
stract state spaces) and moving target search.

6.1 Search with Coarse Models

Our complexity results for min-max LRTA* do not de-
pend on how nature selects successor states. Thus, they
apply to scenarios where the search algorithm is not able
to make assumptions about nature's strategy. Assume,
for example, that one can model a deterministic world
only with low granularity. Then, one might not be able
to identify one's current state uniquely, and actions can
appear to have non-deterministic effects. Assume, for
instance, that a search algorithm occupies either state 1
or state 2 in some state space, but cannot distinguish
between these two states. Action a is a deterministic ac-
tion that results in state 3 when it is executed in state 1

and in state 4 when it is executed in state 2. Thus, the
execution of action a can result in either state 3 or 4,
but the search algorithm has no way of predicting which
of these states will result and could attribute this to na-
ture having a strategy that is unknown to the search
algorithm.

An application with these characteristics is the tray-
tilting problem [Christiansen, 1992; Kadie, 1991; Erd-
man and Mason, 1988]: One puts an object into a tray
in a given starting position and then slides it repeatedly
by tilting the tray until it is in a given goal position.
In our version of the tray-tilting problem, one can ob-
serve the position of the object with an overhead camera
before deciding on a tilting action. The corresponding
state space is non-deterministic, because one can neither
observe the position of the object precisely nor control
the motion of the tray precisely. Min-max LRTA* can
be used to control the tilting artions directly and even-
tually orients the object in the desired position if the
state space is safely explorable. (We have performed ex-
periments to verify that a large number of tray tilting
problems are indeed safely explorable ) Our complexity
results provide an upper bound on the number of tray
tilting actions needed.

6.2 Moving Target Search

When deriving the complexity results, we assumed the
existence of a fictitious opponent "nature." But the re-
sults also apply to scenarios where there is a real oppo-
nent. In a way, applying single-agent real-time search
methods to two-player games closes a loop, since real-
time search was originally inspired by time-constraints
present in antagonistic two-agent domains such as game
playing. Consider, for example, moving target search
- the task for a hunter is to catch an independently act-
ing prey. Both agents move on a known directed graph.
The hunter moves first, then they alternate moves to
adjacent vertices. (If the agents can pass their moves,
one can model this by adding identity actions to the
graph.) Both agents can always sense the current ver-
tices of themselves and the other agent, but the hunter
does not know where the prey will move. The hunter
catches the prey if both agents occupy the same vertex.

In our framework, the agent is the hunter and nature
is the prey. It is straightforward to map the moving
target search problem to a non-deterministic single agent
search problem against nature (Figure 6). The hunter
can catch the prey for sure if the derived state space is
safely explorable. If the hunter uses min-max LRTA*
with lookahead one, then we can utilize our complexity
result to derive an upper bound on the number of actions
thai, the hunter executes before it catches the prey

[Ishida and Korf, 1991] have also applied real-time
search methods to moving target search, but utilize
LRTA* for the hunter in a different way. Their MTS
algorithm learns the following strategy for the hunter
(until it catches the prey): always move to an adjacent
vertex that is on a shortest path to the current vertex of
the prey. They prove that the hunter eventually catches
the prey on a strongly connected graph if it is faster
than the prey. Note the differences between the two ap-
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Figure 6: A simple mioving target search problem

proaches: Obviously, one has to make some assumptions
to ensure that the prey can not force the hunter into a
cycle in which the hunter cannot decrease its distance to
the prey. Ishida and Korf do not restrict the topology
of the graph, but. have to assume that the hunter has
a speed advantage over the prey. Consider for example
the graph in Figure 6 (note that one of its edges is di-
rected) and assume that both agents are equally fast.
Korf and Ishida's algorithm always follows the prey at
the same distance if the algorithm is totally informed and
the prey runs around in an anti-clockwise cycle. Min-
max LRTA*, however, will eventually go left until the
prey takes the one-way street and later go right until
the prey is caught, no matter which strategy the prey
uses.

7 Extensions

In this paper, we have measured the complexity of min-
max LRTA®* in action executions. Therefore, every ac-
tion has a cost of one associated with it. However, our
analysis can easily be generalized to arbitrary strictly
positive cost structures, including ones with non-uniform
costs (in a way analogous to [Koenig and Simmons, 1992]
where we assume deterministic, state spaces). Further-
more, various methods have been proposed that im-
prove the performance of LRTA*, see for example [Mat-
subara and lIshida, 1994; Ishida, 1993; Knight, 1993;
Hamidzadeh, 1992; Ishida, 1992; Russell and Wefald,
1991; Shekhar and Dutta, 1989] - we have applied
and analyzed these methods in the context of min-max
LRTA*.

If one could make assumptions about nature's strategy
(for example, if one knew that nature is a neutral coin
flipper) or the state space were not safely expiorable, one
would use a more sophisticated search strategy than a
minimax approach. Consequently, our future publica-
tions will report real-time search results for these cases.
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8 Related Work

[Korf, 1988] considered deterministic, strongly connected
domains and showed that LRTA* reaches a goal state
eventually. He also showed that LRTA* eventually finds
a shortest path from the start state to a goal state if it
is repeatedly reset into the start state when it reaches a
goal state, [ishida, 1993] performed additional system-
atic experiments to understand how the performance of
LRTA* can be improved by utilizing initial knowledge in
form of heuristic functions. [Barto ef a/., 1995] showed
how LRTA* can be generalized to finding paths of min-
imal average lengths in probabilistic domains. [Heger,
1994] used an on-line minimax algorithm based on Q-
learnmg [Watkins, 1989] to learn paths of minimal worst-
case length. Since his algorithm, Q-learning, is similar to
min-max LRTA*, it, benefits from our complexity analy-
sis. (For the relationship between Q-learning and LRTA*
see [Koenig and Simmons, 1993].) Neither of the above
researchers have analyzed the complexity of their algo-
rithms, but most of them report empirical results.

[Ishida and Korf, 1991] proposed the moving target
search algorithm MTS, showed how to utilize initial
knowledge in form of heuristic functions for MTS, and
analyzed its complexity in deterministic, strongly con-
nected state spaces that do not contain identity actions.
MTS reduces to LRTA* with lookahead one if the tar-
get, does not move. [Littnian, 1994] pointed out that in
antagonistic two-agent situations such as moving target
search it can be advantageous to use probabilistic, strate-
gies over minimax strategies if both agents can move si-
multaneously.

9 Conclusion

In this paper, we have relaxed the standard assumption
that search domains are deterministic and studied sub-
optimal real-time search methods in non-deterministic
domains. We viewed real-time search as a game where
the search algorithm selects the actions and nature, a
fictitious opponent, chooses their outcomes. In partic-
ular, we introduced the min-max LRTA* algorithm, a
simple extension of Korf's LRTA* algorithm to non-
deterministic domains.

We analyzed the worst-case performance of min-max
LRTA* theoretically. In particular, we introduced the
notion of a safely expiorable state space and showed that
the complexity of uninformed min-max LRTA* in safely
expiorable state spaces is proportional to the product of
the size of the state space JS\ and the average goal dis-
tance over all states. We proved that the complexify of
uninformed min-max LRTA* can get as large as |S'|>— \S\
action executions, but not larger (1/2|,S|> — 1/2|S| ac-
tion executions if the state space does not have identity
actions that can leave the state unchanged). We also
showed how min-max LRTA* can take advantage of ini-
tial knowledge in form of heuristic functions for the goal
distances.

Our complexity results hold for deterministic domains
as well. In particular, deterministic state spaces are
not easier to solve with min-max LRTA* than non-
deterministic ones. Since min-max LRTA®* reduces to



LRTA* in deterministic domains, the complexity results
also apply to the original LRTA* algorithm. It follows,
for example, that uninformed LRTA* can search large
state spaces with small average goal distances (such as
sliding tile puzzles) much faster than equally large state
spaces with large average goal distances.
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