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A b s t r a c t 

Many search domains are non-determinist ic. 
A l though real-t ime search methods have tra­
d i t iona l ly been studied in determinist ic do­
mains, they are well suited for searching non-
determinist ic domains since they do not have to 
plan for every contingency they can react to 
the actual outcomes of actions. In this paper, 
we introduce the min-max L R T A * a lgor i thm, a 
simple extension of Kor f 's Learning Real-Time 
A* a lgor i thm ( L R T A * ) to non-deterministic 
domains. We describe which non-determinist ic 
domains min-max L R T A * can solve, and an­
alyze its performance for these domains. We 
also give t ight bounds on its worst-case per­
formance and show how this performance de­
pends on properties of both the domains and 
the heuristic functions used to encode prior in ­
format ion about the domains. 

1 I n t r o d u c t i o n 
Real-t ime (heuristic) search methods, a term coined by 
Ko r f [Korf, 1987], interleave search w i th act ion exe­
cut ion, l im i t i ng the amount of del iberation performed 
between action executions After an action has been 
executed, the del iberation-act cycle is repeated - un­
t i l a goal state is reached. [Korf, 1993] demons),rated 
that real-t ime search methods are powerful subopt imal 
search methods that can often outperform more t rad i ­
t ional search methods in terms of tota l running t ime. For 
example, they are among the few search methods that 
can find subopt imal solut ion paths for the 24-puzzle, a 
domain w i th more than 7 x 1024 states. 

Real-t ime search methods have usually been investi­
gated in the context of t radi t ional AI search domains: 
sl iding t i le puzzles such as the 8- or 24 puzzle, blocks 
worlds, grid worlds, and others. These domains are usu­
ally assumed to be determinist ic: whenever an action 
is executed in the same state, the same successor state 
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results. Many domains, however, are non-determinist ic, 
such as many robotics, control , or scheduling domains. 
In this paper, we present a f irst step towards extend­
ing real-t ime search methods to non-determinist ic single-
agent search domains by viewing real- t ime search as a 
game where the search method selects the actions and 
nature, a f ict i t ious opponent, chooses their outcomes. 

We investigate subopt imal search, i.e. how to get the 
agent to any goal state. The path traversed by the agent 
does neither have to be op t ima l nor repeatable, which 
is a sufficient condit ion for many real-world problems. 
Real-t ime search methods appear to be well suited for 
subopt imal search in non-determinist ic state spaces. In 
contrast to t rad i t ional (off-line) search techniques, which 
must plan for every possible outcome, real-t ime search 
methods only need to choose actions for those outcomes 
that actually occur. Thus, real-t ime search methods can 
potent ial ly decrease search t ime, al though possibly at 
the expense of action execution t ime: Since they do not 
plan exhaustively for every possible outcome of an ac­
t ion , one cannot be sure how good it really is to exe­
cute the act ion. It might well be that the action has 
an outcome that makes it hard for the agent to reach 
a goal state. In this paper we begin to quant i fy the 
tradeoff between search t ime and act ion execution t ime 
by analyzing the performance of real- t ime search in non-
determinist ic domains. 

Our new technique, which we call m in -max L R T A * , 
is based on Kor f ' s Learning Real-T ime A* a lgor i thm 
( L R T A * ) [Korf, 1987; 1988; 1990]. L R T A * is a single-
agent real-t ime search a lgor i thm that can be used to f ind 
subopt imal and op t ima l solut ion paths in determinist ic 
domains. I t performs only m in ima l computat ions be­
tween action executions (we constrain it to a lookahead 
of one), choosing only which act ion to execute next, and 
basing this decision only on in fo rmat ion local to its cur­
rent state. We extend L R T A * to non-determinist ic do­
mains, describe which non-determinist ic domains it can 
solve, and analyze its performance for these domains. 
We also give t ight bounds on its worst-case performance 
and show how this performance depends on properties 
of the domains and the heuristic funct ions. Our theoret­
ical analysis, which suggests what constitutes easy and 
hard real-t ime search problems in non-determinist ic do­
mains, also applies to both determinist ic domains and 
mult i-agent domains (such as moving target search). 
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3 D e t e r m i n i s t i c D o m a i n s : L R T A * 

W e descr ibe a s imp le vers ion o f K o r f ' s L R T A * a l g o ­
r i t h m t h a t has lookahead one. I t consists o f a t e r m i n a -
t i o n check ing step ( l i ne 2 ) , an a c t i o n se lect ion step ( l i ne 
3 ) , a value u p d a t e step ( l i ne 4 ) , and an a c t i o n execu t i on 
step ( l i ne 5 ) , see F i g u r e 1. 

F i r s t , L R T A * checks w h e t h e r i t has reached a goa l 
s ta te and thus can t e r m i n a t e successful ly . I f no t , i t de-
cides on t he a c t i o n to execute nex t . I t l ooks o n l y one ac­
t i on execu t ion ahead , p i c k i n g the ac t i on t h a t leads to t he 
successor s ta te w i t h the smal les t s ta te va lue V(s), w h i c h 
a p p r o x i m a t e s the goal d is tance gd(s) ( t ies can he broken 
a r b i t r a r i l y ) . N o t e t h a t the a l g o r i t h m is greedy since i t 

2 A s s u m p t i o n s a n d N o t a t i o n 

LRTA*-type real-time search algorithms differ from tra­
ditional search algorithms, such as the A* algorithm, in 
that they always maintain a current state. This is a state 
of the search space; it can only be changed by executing 
actions. The real-time search algorithm can choose the 
action freely from the actions that are applicable in its 
current state. While chronological backtracking is such a 
search method, it can only be used in undirected, deter­
ministic state spaces. In non-deterministic state spaces, 
a real-time search algorithm might not be able to back­
track (i.e. undo action executions). 

We view real-time search in non-deterministic domains 
as a two-player game. The action that the real-time 
search algorithm selects determines the possible succes­
sor states, from which some mechanism, which we call 
nature, has to choose one We do not impose any re­
strictions on how nature makes its decisions (its strat­
egy) and, furthermore, assume that we do not know na­
ture's strategy. Although a second agent might indeed 
exist in some real-time search scenarios, our assumption 
of its existence is simply an analysis tool. 

We use the following notation: S denotes the finite set 
of states of the state space (of size n := |.S'|), .smart S 
is the start state, and G (with | is the set 
of goal states. A(s) is the finite set of actions that can 
be executed in state s i S. Executing action 
causes a (potentially non-deterministic) state transition 
into one of the states succ(s,a) (with succ{s,a) 
S). Ident i ty actions are actions a with .s-
succ(s,a), i.e. those actions that might not. result in a 
state change. We call a state space determinist ic iff the 
cardinality of succ (s, a) is one for all s 
For deterministic state spaces, we use suec(s, a) not only 
to denote the set of successor states, but also the only 
element of this set. Note that every deterministic state 
space is per definition non-deterministic as well. We call 
a state space non-determinist ic if we want to stress 
that we do not require it to be deterministic. 

a lways chooses the ac t i on t h a t appears to be best loca l ly . 
T h e a l g o r i t h m t h e n replaces t he va lue V{s) w i t h t he one-
step lookahead value m a x ( V ( s ) , 1 + V(succ(s,a))), w h i c h 
is a m o r e accura te es t ima te . F i n a l l y , L R T A * executes 
the selected ac t ion and i te ra tes . 

K o r f showed t h a t L R T A * i s cor rect for d e t e r m i n i s t i c , 
s t r o n g l y connected ( i .e . d(s,s') < for a l l $∞,s' E S) 
s ta te spaces. T h a t is, i t reaches a goa l s ta te even tua l l y 
and t e r m i n a t e s ; the sequence of executed ac t i ons is a 
s u b o p t i m a l s o l u t i o n p a t h . 

4 N o n - D e t e r m i n i s t i c 

D o m a i n s : M i n - M a x L R T A * 

T h e extens ions necessary t o make L R T A * w o r k i n 
n o n - d e t e r m i n i s t i c s ta te spaces are f a i r l y s t r a i g h t f o r w a r d . 
Since we do n o t know w h i c h s t r a tegy n a t u r e uses, we use 
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a (worst-case) m in imax approach and let the search algo­
r i t hm act as if nature tries to maximize the goal distance 
of the search a lgor i thm while the search a lgor i thm tries 
to min imize i t . If the search a lgor i thm can reach a goal 
state and terminate for such a vicious strategy of nature, 
it w i l l also reach a goal state if nature uses a different, 
and therefore less vicious, strategy. As a consequence, 
the search a lgor i thm does not depend on assumptions 
about the strategy that nature actually uses. 

The m i n - m a x L R T A * a l g o r i t h m i s shown in Fig­
ure 2. It uses t r i a x , , ' e , u „ ( , f l l V'(s') at the places in the 
action selection step (l ine 3) and value update step (line 
4) where L R T A * uses V(succ(s, a)). In determinist ic 
state spaces, m in -max L R T A * reduces to the original 
L R T A * a lgor i thm. 

5 Performance Analysis 
In this section, we analyze the performance of min-max 
L R T A * , which we measure as the tota l number of action 
executions unt i l a goal state is reached. Th is is jus t i ­
f ied, because the t ime needed to execute an action in 
the world often dominates the m in ima l amount, of com­
putat ion that min-max L R T A * performs between action 
executions. Even if this is not the case, the total num­
ber of actions that min-max L R T A * executes can st i l l be 
roughly proport ional to its tota l running t ime, because 
it performs only a bounded and in many domains essen­
t ia l ly constant amount of computat ion between action 
executions. We define its c o m p l e x i t y to be an upper 
bound on the number of action executions that holds 
for al l possible topologies of state spaces of a given size, 
start and goal states, tie breaking rules among actions 
that evaluate to the same value, and strategies of nature. 

There exist state spaces in which every real-t ime 
search a lgor i thm has inf in i te complexity This is the case 
if the search a lgor i thm can get trapped in a part of the 
state space that does not contain a goal state. Tradi t ion­
ally, researchers have therefore restricted their attent ion 
to strongly connected state spaces or, more generally, 
state spaces w i th d < ∞. We use the same assumption 
for non-determinist ic state spaces and call state spaces 
w i th this property sa fe ly e x p l o r a b l e . (To be more 
precise: The goal distances of all states that the agent 
can reach from its start state without passing through a 
goal state have to be f inite.) Moore and Afkeson's par t i -
game a lgor i thm [Moore and Atkeson, 1993], for exam­
ple, learns non-determinist ic abstractions of spatial state 
spaces that are safely explorable. 

Intu i t ively, we expect m in -max L R T A * to do well in 
safely explorable state spaces when the state spaces are 
relatively small or contain many goal states. In the latter 
case, the we expect it to perform the better, the more 
the goal states are spread out over the state space. In 
the fo l lowing, we analyze this in tu i t ion formally. 

5 . 1 C o m p l e x i t y : U p p e r B o u n d s 

In this section, we provide upper bounds on the com­
plexity of m in -max L R T A * . But f irst, we introduce some 
definit ions of properties of the state values V(s) that we 
need in order to be able to state our results. 
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In this case, the min-max L R T A * a lgor i thm must ex­
ecute a tota l of n2 — n actions. Thus, the complexity of 
n2 — n is t ight . 

Theorem 3 also states that a zero-init ialized min-max 
L R T A * a lgor i thm reaches a goal state after at most 

) action executions if the state space has no 
ident i ty actions. for safely 
explorable state spaces. Now consider again the state 
space in Figure 3, this t ime w i th the ident i ty actions 
removed. A zero-init ial ized min-max L R T A * a lgor i thm 
can traverse the fol lowing state sequence (which is equal 
to the above state sequence, but w i th repeated occur­
rences of the same state deleted): 

Since the min-max L R T A * a lgor i thm executes l / 2 r r -
l / 2 n actions in this case, the complexity of l / 2 n ^ — l / 2 n 
is t ight for state spaces that have no identi ty actions. 
Note that ident i ty actions can always be safely deleted 
f rom a state space, since their removal does not affect 
whether min-max L R T A * can solve a given search prob­
lem in the worst-case. Our results show, however, that 
their removal can at most halve the complexity of unin­
formed (i.e. zero-init ial ized) min-max LRTA* . 

The state space used in the above examples was ar t i f i ­
cially constructed. However, the complexity of 0(n2) 
is t ight even for more realistic state spaces, such as 
grid worlds. They have often been used as testbeds for 
real-t ime search methods [Pemberton and Korf, 1992; 
Ishida and Korf , 1991]. Consider the grid world shown 
in Figure 4 and assume n > 2 w i th n mod 4 = 2. A 
zero-init ial ized m in -max L R T A * a lgor i thm can traverse 
the fol lowing state sequence: 

In this case, the min-max L R T A * a lgor i thm executes 
',3n2/16 — 3/4 actions before it reaches the goal state. 
Th is also shows that the complexi ty of G(n2) is t ight for 
undirected state spaces for which the number of actions 
that can be executed in any state is bounded f rom above 
by a small constant (here: three). 

5 .3 D e c r e a s i n g t h e C o m p l e x i t y 

Th is section demonstrates how properties of the search 
domains and the heuristic functions can decrease the 
complexity o f min-max L R T A * . 

D o m a i n P r o p e r t i e s 
Since the complexity of uninformed min-max L R T A * is 
t ight at our in tu i t ion was correct: the 
smaller the state space and/or the average goal distance, 
the smaller the complexity. Consider, for instance, the 
sl iding t i le puzzles. These determinist ic domains are 
sometimes considered to be hard search problems, be­
cause they have a low goal density. The 8-puzzle, for 
example, has 181440 states ( that are reachable f rom the 
start state), but only one goal state. Our complexi ty 
results, however, imp ly that average goal distance, not 
goal density, is among the factors that determine the 
hardness of a search problem for (min-max or or iginal) 
LRTA* . A l though increasing the goal density tends to 
decrease the average goal distance, there are search prob­
lems w i th low goal density and low average goal distance. 
The 8-puzzle is an example: Figure 5 shows for every 
goal distance how many of the 181440 states have this 
part icular goal distance. I t turns out tha t the average 
goal distance of the 8-puzzle w i th the Amer ican goal 
state is only 21.5 and the largest goal distance is 30. 
Similarly, the average goal distance of the 8-puzzle w i th 
the European goal state ( that cannot be reached f rom 
the Amer ican goal state) is 22.0 and the largest goal dis­
tance is 31 . (See [Reinefeld, 1993] for extensive statistics 
on the 8-puzzle.) In both cases, the average goal dis­
tances are much smaller than the size of the state space. 
Thus, sl iding-t i le puzzles are rather well-suited search 
problems for (min-max or or ig inal) L R T A * - compared 
to many gr id worlds of the same size, for example. Th is 
does not imply, however, tha t L R T A * can solve sl id ing 
ti le puzzles w i th a huge number of ti les, since the com­
plexity of L R T A * does not only depend on the average 
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T h a t is, Theorem 2 predicts correctly that the search 
a lgor i thm needs only at most gd(s) action executions to 
reach a goal state f rom any given s € S and, thus, that 
it follows a shortest path to a goal 

It is easy to determine admissible heuristic functions 
for non-determinist ic state spaces if one can determine 
them for determinist ic state spaces. One can simply 
assume that nature decides in advance which successor 
state g(s,a) € succ(s,a) to choose every t ime the agent 
executes action a € A(s) in state s € S - all possi­
ble assumptions about which part icular actions nature 
chooses are fine. If nature really used this strategy and 
the agent found out about i t , then the state space would 
effectively become determinist ic for the agent. One can 
easily see that any admissible heuristic function for the 
goal distances in this determinist ic state space is admissi­
ble for the or ig inal , t ion-determinist i r search problem as 
wel l , regardless of the strategy that nature actually uses 
Note, however, tha t the informedness of this heuristic 
funct ion depends on how close the assumed behavior of 
nature is to its most vicious strategy. 

6 Example Domains 
In this section, we give two examples that demon­
strate how min -max L R T A * can be applied to non-
determinist ic search problems. In part icular, we discuss 
search problems w i t h coarse models (for example, ab­
stract state spaces) and moving target search. 

6 . 1 S e a r c h w i t h C o a r s e M o d e l s 
Our complexi ty results for m in -max L R T A * do not de­
pend on how nature selects successor states. Thus, they 
apply to scenarios where the search a lgor i thm is not able 
to make assumptions about nature's strategy. Assume, 
for example, tha t one can model a determinist ic world 
only w i t h low granular i ty. Then, one might not be able 
to ident i fy one's current state uniquely, and actions can 
appear to have non-determinist ic effects. Assume, for 
instance, tha t a search a lgor i thm occupies either state 1 
or state 2 in some state space, but cannot distinguish 
between these two states. Act ion a is a determinist ic ac-
t ion that results in state 3 when it is executed in state 1 

and in state 4 when it is executed in state 2. Thus, the 
execution of action a can result in either state 3 or 4, 
but the search a lgor i thm has no way of predict ing which 
of these states w i l l result and could a t t r ibu te this to na­
ture having a strategy that is unknown to the search 
a lgor i thm. 

An appl icat ion w i th these characteristics is the t r a y -
t i l t i n g p r o b l e m [Christiansen, 1992; Kadie, 1991; Erd-
man and Mason, 1988]: One puts an object into a tray 
in a given star t ing posit ion and then slides it repeatedly 
by t i l t i ng the tray unt i l it is in a given goal posit ion. 
In our version of the t ray - t i l t i ng problem, one can ob-
serve the posit ion of the object w i th an overhead camera 
before deciding on a t i l t i ng act ion. The corresponding 
state space is non-determinist ic, because one can neither 
observe the posit ion of the object precisely nor control 
the mot ion of the tray precisely. Min-max L R T A * can 
be used to control the t i l t i ng art ions directly and even­
tual ly orients the object in the desired posit ion if the 
state space is safely explorable. (We have performed ex­
periments to verify that a large number of t ray t i l t i ng 
problems are indeed safely explorable ) Our complexity 
results provide an upper bound on the number of tray 
t i l t i ng actions needed. 

6 .2 M o v i n g T a r g e t S e a r c h 

When deriving the complexity results, we assumed the 
existence of a f ict i t ious opponent "nature." But the re-
sults also apply to scenarios where there is a real oppo­
nent. In a way, apply ing single-agent real-t ime search 
methods to two-player games closes a loop, since real-
t ime search was or iginal ly inspired by t ime-constraints 
present in antagonistic two-agent domains such as game 
playing. Consider, for example, m o v i n g t a r g e t search 
- the task for a hunter is to catch an independently act­
ing prey. Both agents move on a known directed graph. 
The hunter moves f irst, then they alternate moves to 
adjacent vertices. ( I f the agents can pass their moves, 
one can model this by adding ident i ty actions to the 
graph.) Both agents can always sense the current ver­
tices of themselves and the other agent, but the hunter 
does not know where the prey wi l l move. The hunter 
catches the prey if both agents occupy the same vertex. 

In our framework, the agent is the hunter and nature 
is the prey. It is straightforward to map the moving 
target search problem to a non-determinist ic single agent 
search problem against nature (Figure 6). The hunter 
can catch the prey for sure if the derived state space is 
safely explorable. If the hunter uses min-max L R T A * 
wi th lookahead one, then we can ut i l ize our complexity 
result to derive an upper bound on the number of actions 
thai, the hunter executes before it catches the prey 

[Ishida and Korf , 1991] have also applied real-t ime 
search methods to moving target search, but uti l ize 
L R T A * for the hunter in a different way. Their M T S 
a lgor i thm learns the fol lowing strategy for the hunter 
(unt i l it catches the prey): always move to an adjacent 
vertex that is on a shortest path to the current vertex of 
the prey. They prove that the hunter eventually catches 
the prey on a strongly connected graph if it is faster 
than the prey. Note the differences between the two ap-
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8 Related Work 

proaches: Obviously, one has to make some assumptions 
to ensure that the prey can not force the hunter into a 
cycle in which the hunter cannot decrease its distance to 
the prey. Ishida and Kor f do not restrict the topology 
of the graph, but. have to assume that the hunter has 
a speed advantage over the prey. Consider for example 
the graph in Figure 6 (note that one of its edges is d i ­
rected) and assume that both agents are equally fast. 
Kor f and lshida's a lgor i thm always follows the prey at 
the same distance if the algor i thm is total ly informed and 
the prey runs around in an anti-clockwise cycle. M in -
max L R T A * , however, w i l l eventually go left unt i l the 
prey takes the one-way street and later go right unt i l 
the prey is caught, no matter which strategy the prey 
uses. 

7 Extensions 

In this paper, we have measured the complexity of min-
max LRTA* in action executions. Therefore, every ac­
tion has a cost of one associated w i th i t . However, our 
analysis can easily be generalized to arbi t rary str ict ly 
positive cost structures, including ones wi th non-uniform 
costs (in a way analogous to [Koenig and Simmons, 1992] 
where we assume deterministic, state spaces). Further­
more, various methods have been proposed that im ­
prove the performance of L R T A * , see for example [Mat-
subara and Ishida, 1994; Ishida, 1993; Knight , 1993; 
Hamidzadeh, 1992; Ishida, 1992; Russell and Wefald, 
1991; Shekhar and Du t ta , 1989] - we have applied 
and analyzed these methods in the context of min-max 
L R T A * . 

If one could make assumptions about nature's strategy 
(for example, if one knew that nature is a neutral coin 
flipper) or the state space were not safely expiorable, one 
would use a more sophisticated search strategy than a 
min imax approach. Consequently, our future publica­
tions wi l l report real-t ime search results for these cases. 

[Korf, 1988] considered determinist ic, strongly connected 
domains and showed that LRTA* reaches a goal state 
eventually. He also showed that L R T A * eventually finds 
a shortest path f rom the start state to a goal state if it 
is repeatedly reset into the start state when it reaches a 
goal state, [ishida, 1993] performed addi t ional system­
atic experiments to understand how the performance of 
LRTA* can be improved by u t i l i z ing in i t ia l knowledge in 
form of heuristic functions. [Barto ef a/., 1995] showed 
how L R T A * can be generalized to f inding paths of m in ­
imal average lengths in probabil ist ic domains. [Heger, 
1994] used an on-line min imax a lgor i thm based on Q-
learnmg [Watkins, 1989] to learn paths of m in ima l worst-
case length. Since his a lgor i thm, Q-learning, is simi lar to 
min-max L R T A * , it, benefits f rom our complexi ty analy­
sis. (For the relationship between Q-learning and L R T A * 
see [Koenig and Simmons, 1993].) Neither of the above 
researchers have analyzed the complexity of their algo­
r i thms, but most of them report empir ical results. 

[Ishida and Korf , 1991] proposed the moving target 
search algor i thm M T S , showed how to uti l ize in i t ia l 
knowledge in form of heuristic functions for M T S , and 
analyzed its complexity in determinist ic, strongly con-
nected state spaces that do not contain ident i ty actions. 
M T S reduces to LRTA* wi th lookahead one if the tar­
get, does not move. [L i t tn ian , 1994] pointed out that in 
antagonistic two-agent si tuat ions such as moving target 
search it can be advantageous to use probabilistic, strate­
gies over min imax strategies if both agents can move si­
multaneously. 

9 C o n c l u s i o n 

In this paper, we have relaxed the standard assumption 
that search domains are determinist ic and studied sub-
opt imal real-t ime search methods in non-deterministic 
domains. We viewed real-t ime search as a game where 
the search a lgor i thm selects the actions and nature, a 
f ict i t ious opponent, chooses their outcomes. In partic­
ular, we introduced the min-max L R T A * a lgor i thm, a 
simple extension of Kor f ' s L R T A * a lgor i thm to non-
deterministic domains. 

We analyzed the worst-case performance of min-max 
LRTA* theoretically. In part icular, we introduced the 
notion of a safely expiorable state space and showed that 
the complexity of uninformed min -max L R T A * in safely 
expiorable state spaces is proport ional to the product of 
the size of the state space ]S\ and the average goal dis­
tance over all states. We proved that the complexify of 
uninformed min-max L R T A * can get as large as |S'|2— \S\ 
action executions, but not larger (1/2|,S|2 — 1/2|S| ac­
t ion executions if the state space does not have ident i ty 
actions that can leave the state unchanged). We also 
showed how min-max L R T A * can take advantage of in i ­
t ia l knowledge in form of heuristic functions for the goal 
distances. 

Our complexity results hold for determinist ic domains 
as well. In part icular, determinist ic state spaces are 
not easier to solve w i th m in -max L R T A * than non-
determinist ic ones. Since min-max L R T A * reduces to 
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L R T A * in determinist ic domains, the complexity results 
also apply to the or iginal L R T A * a lgor i thm. I t follows, 
for example, tha t uninformed L R T A * can search large 
state spaces w i t h smal l average goal distances (such as 
sl iding t i le puzzles) much faster than equally large state 
spaces w i th large average goal distances. 
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