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Abs t rac t 

We introduce a new approach to planning in 
STRIPS-like domains based on constructing 
and analysing a compact structure we call a 
Planning Graph We describe a new planner, 
Graphplan, that uses this paradigm Graphplan 
always returns a shortest-possible partial-order 
plan, or states that no valid plan exists 
We provide empirical evidence in favor of 
this approach, showing that Graphplan outper­
forms the total-order planner, Prodigy, and the 
partial-order planner, UCPOP, on a variety of 
interesting natural and artif icial planning prob­
lems We also give empirical evidence that the 
plans produced by Graphplan are quite sensible 
Since searches made by this approach are fun­
damentally different f rom the searches of other 
common planning methods, they provide a new 
perspective on the planning problem 

1 I n t r o d u c t i o n 
In this paper we introduce a new planner, Graphplan, 
which plans in STRIPS-like domains The algorithm is 
based on a paradigm we call Planning-Graph Analysis 
(PGA) In this approach, a compact structure we call 
a Planntng Graph is explicit ly created that is then ex-
plored in a search A Planning Graph is not a graph of 
"world-states" (which of course could be huge) Rather, 
Planning Graphs are closer in spirit to the PSGs of [Et-
z ion , 1990] Planning Graphs are structures based on 
domain information, the goals and in i t ia l conditions of 
a problem, and an explicit notion of t ime Planning 

"This research is sponsored IN p u t by the Wright Labora­
tory, Aeronantical Systems Center, Air Force Materiel Com­
mand, USAF, and the Advanced Research Projects Agency 
(ARPA) under grant number F33615-93-M330 The first 
author is also supported in part by NSF National Young In­
vestigator grant CCR-9357793 and a Sloan Foundation Re­
search Fellowship The second author is supported in part by 
NSF grant CCR-9119319 Views and conclusions contained 
in this document are those of the authors and should not 
be i n t e r p r e t e d as necessar i ly r ep resen t i ng o f f i c ia l po l i c ies or 
endorsements, either expressed or implied, of Wright Labo-
ratory or the United States Government 

Planning Graph Analysis* 

M e r r i c k L Furst 
School of Computer Science 
Carnegie Mellon University 
Pittsburgh PA 15213-3891 

mxfocs cmu edu 

Graphs offer a convenient, efficient means of organiz­
ing and maintaining search information They do so 
in a way that is reminiscent of the efficient solutions 
to Single-Source Shortest-Paths and Dynamic Program­
ming problems Planning Graph Analysis appears to 
have significant practical value in solving planning prob­
lems even though the inherent complexity of STRIPS-
like planning, which is at least PSPACE-hard, IS much 
greater than the complexity of Shortest-Paths or stan­
dard Dynamic Programming problems 

Graphplan combines aspects of both total-order and 
partial-order planners On the one hand, Graphplan 
makes more commitments than tradit ional total-order 
planners On the other hand, the plans it generates are 
partially-ordered plans 

The way in which Graphplan "over-commits" is that 
when it considers an action, it considers it at a specific 
point in time For instance, it might consider placing 
the action 'move Rocket 1 f rom London to P a r i s ' in 
a plan at exactly time-step 2 It may seem puz­
zling that an extra level of commitment would lead 
to a fast planner, especially given the success enjoved 
by least-commitment planners [McAllester and Rosen-
bl i t t , 199l][Barrett and Weld, 1994][Weld, 1994] How­
ever, the extra level of commitment allows Graphplan to 
store and manipulate valuable search information This 
enables it to rapidly determine when backtracking is 
needed 

Even though Graphplan makes strong commitments, 
the plans it generates are partially-ordered plans For 
instance, in the rocket problem (Figure 1), the plan that 
Graphplan finds is of the form "In time-step 1, appropri­
ately load all the objects into the rockets, in time-step 2 
move the rockets, and in time-step 3, unload the rock­
ets " The semantics of such a plan is that the actions in 
a given t ime step may be performed in any desired order 
Conceptually this is a k ind of "parallel" plan [Knoblock, 
19941, since one could imagine executing the actions in 
three time steps jf one had as many workers as needed 
to load and unload and fly the rockets 

One valuable feature of our algorithmic that it guaran­
tees it wi l l f ind the shortest plan among those in which 
independent actions may take place at the same time 
Empirical ly and subjectively these sorts of plans seem 
particularly sensible For example, in Stuart Russell's 
"f lat-t ire wor ld" [Russell, 1992], the plan produced by 

1636 PLANNING 



Figure 1 The rdcket domain 

Graphplan opens the boot (trunk) in step 1, fetches all 
the tools and the spare tire in step 2, inflates the spare 
and loosens the nuts in step 3, and so forth unti l it finally 
closes the boot in step 12 (See Figure 4 ) 

Another significant feature of our algorithm is that 
it is not particularly sensitive to the order of the goals 
in a planning task, unhke tradit ional approaches More 
discussion of this issue is given in Section 3 2 

In Section 4 of this paper we present empirical results 
that demonstrate the effectiveness of Graphplan on a va­
riety of interesting "natural" and artificial domains 

1 1 D e f i n i t i o n s a n d N o t a t i o n 
Planning Graph Analysis applies to STRIPS-hke plan­
ning domains In these domains, operators do not cre­
ate or destroy objects and t ime may be represented dis­
cretely because the operators all act as atomic actions 

Specifically, by a planning problem, we mean 

• A STRIPS domain (a set of operators), 

• A set of objects, 
• A set of propositions (literals) called the Ini t ial Con­

dit ions, 
• A set of Problem Goals which are propositions that 

are required to be true at the end of a plan 
By an action, we mean a fully-instontiated opera­

tor For instance, the operator ' pu t ?x I n t o * y ' may 

instantiate to the specific action r p n t Object 1 i n t o 
Container2' An action taken at time t adds to the 
world all the propositions which are among its Add-
Effects and deletes all the propositions which are among 
its Delete-Effects It wil l be convenient to think of "do­
ing nothing" to a proposition in a t ime step as a special 
k ind of action we call a no-op or frame action 

2 Valid Plans and Planning Graphs 
We now define what we mean when we say a set of ac­
tions forms a valid plan In the PGA framework, a valid 
plan for a planning problem consists of a set of actions 
and specified times in which each is to be carried out 
In a valid plan several actions may be specified to occur 
at a single time step as long as none of them deletes a 
precondition or Add-Effect of another 1 In a linear plan 
these independent parallel actions could be arranged in 
any order with exactly the same outcome It is legal to 
perform an action at time 1 if its preconditions are all in 
the Ini t ial Conditions It is legal to perform an action at 
time t > 1 if the plan makes all its preconditions true at 
t ime t Because we have no-op actions that carry t ruth 
forward in time,we may define a proposition to be true 
at t i m e / only if it is an Add-Effeet of some action taken 
at time t — 1 Finally, a valid plan must make all the 
Problem Goals true at the final t ime step 

2 1 P l a n n i n g G r a p h s 
A Planning Graph is similar to a valid plan, but without 
the requirement that the actions at a given time step be 
independent 

More precisely, a Planning Graph is a directed, lev­
eled graph2 w i th two kinds of nodes and three kinds 
of edges The levels alternate between proposition lev­
els containing proposition nodes (each labeled wi th some 
proposition) and action levels containing action nodes 
(each labeled with some action) The first level of a 
Planning Graph is a proposition level and consists of 
one node for each proposition in the Ini t ia l Conditions 
The levels in a Planning Graph, from earliest to latest 
are propositions true at time 1, possible actions at time 
1, propositions possibly true at time 2, possible actions 
at t ime 2, propositions possibly true at time 3, etc 

Edges in a Planning Graph explicitly represent re-
lations between actions and propositions The action 
nodes in action-level are connected by "precondition-
edges" to their preconditions in proposition level t, by 
"add-edges" to their Add-Effects in proposition-level 
i + 1, and by "delete-edges" to their Delete-Effects in 
proposition-level i + 1 3 

knoblock [1994] describes an interesting less restrictive 
notion in which several actions may occur at the same time 
even if one deletes an add-eflect of another, BO long as those 
add-effects are not important for reaching the goals 

3A graph is called leveled if its nodes can be partitioned 
into disjoint tela L1, L2, , L„ inch that the edges only 
connect nodes in adjacent levels 

3 A length-two path from an action a at one level, through 
a proposition Q at the next level, to an action b at the follow­
ing level, is similar to a causal link a —> b in a partial-order 
planner 
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Figure 2 A planning graph for the rocket problem with 
one rociet A, two pieces of cargo A and B, a start loca-
tion L and one destination P For simplicity, the "rocket" 
parameter has been removed from the actions Delete 
edges are represented by dashed lines and no-ops are 
represented by dots 

The conditions imposed on a Planning Graph are 
much weaker than those imposed on valid plans Ac­
tions may exist at action-level i if all their preconditions 
exist at proposition-level i but there is no requirement of 
"independence " In particular, action-level i may legally 
contain all the possible actions whose preconditions all 
exist in proposition-level i A proposition may exist at 
proposition-level i + 1 if it IS an Add-Effect of some ac­
tion in action-level 1 (even if it is also a Delete-Effect 
of some other action in action-level i) Because we al­
low "no-op actions," every proposition that appears in 
proposition-level i may also appear in proposition-level 
: +1 An example of a Planning Graph is given in Figure 
2 

Since the requirements on Planning Graphs are so 
weak, it is easy to create them la Section 3 1 we de­
scribe how Graphplan constructs Planning Graphs from 
domains and problems In particular, any Planning 
Graph wi th t action-levels that Graphplan creates wi l l 
have the following property 

If a valid plan exists using t or fewer time steps, 
then that plan exists as a subgraph of the Plan­
ning Graph 

It is worth noting here that Planning Graphs are not 
overly large See Theorem 1 

2 2 E x c l u s i o n R e l a t i o n s A m o n g P l a n n i n g 
G r a p h N o d e s 

An integral part of Planning-Graph Analysis is notic­
ing and propagating certain mutual exclusion relations 
among nodes Two actions at a given action level in a 
Planning Graph are mutually exclusive if no valid plan 
could possibly contain both Similarly, two propositions 
at a given proposition level are mutually exclusive if 
no valid plan could possibly make both true Identi­
fying mutual exclusion relationships can be of enormous 
help in reducing the search for a subgraph of a Planning 
Graph that might correspond to a valid plan 

Graphplan notices and records mutual exclusion re­
lationships by propagating them through the Planning 
Graph using a few simple rules These rules do not guar­
antee to find all mutual exclusion relationships, but usu­

ally find a large number of them 4 Specifically, there are 
two ways in which actions a and 6 at a given action-level 
are marked by Graphplan to be exclusive of each other 

[Interference] If either of the actions deletes a precon­
dition or Add-Effeet of the other (This is jus t the 
standard notion of "non independence" and depends 
only on the operator definitions ) 

[Competing Needs] If there is a precondition of action 
a and a precondition of action 6 that axe marked 
as mutually exclusive of each other in the previous 
proposition level 

Two propositions p and q in a proposition-level are 
marked as exclusive if all ways of creating proposition p 
are exclusive of all ways of creating proposition q Specif­
ically, they are marked as exclusive if each action a hav­
ing an add-edge to proposition p is marked as exclusive 
of each action b having an add-edge to proposition q 

For instance, in the rocket domain wi th 'Rocke t l 
at London' in the In i t ia l Conditions, the actions 
'move Rocket 1 i r o n London to P a r i s ' and ' l o a d 
Alex i n t o Rocke t l in London' at t ime 1 are exclu­
sive because the first deletes the proposition 'Rocke t l 
at London' which is a precondition of the second The 
proposition 'Rocxe t l at London' and the proposition 
'Rocke t l at P a r i s ' are exclusive at t ime 2 because all 
ways of generating the first (there is only one a no-op) 
are exclusive of all ways of generating the second (there 
is only one by moving) The actions ' l o a d Alex I n t o 
Rocke t l in London' and ' l o a d Jason i n t o Rocke t l 
in P a r i s ' (assuming we defined the ini t ia l conditions 
to have Jason in Paris) at t ime 2 are exclusive because 
they have competing needs, namely the propositions 
'Rocke t l a t London' and "Rocke t l a t P a r i s ' 

Note that the Competing Needs notion and the exclu­
sivity between propositions are not just logical properties 
of the operators They depend on the interplay between 
operators and the Ini t ia l Conditions For instance, the 
exclusivity of 'Rocke t l at London' and 'Rocke t l at 
P a r i s ' cannot be logically concluded from the structure 
of the 'move' operator alone It is derived both from 
the structure of the operator and the fact that the rocket 
starts in only one place at the in i t ia l t ime 

A pair of propositions may be exclusive of each other 
at every level in a planning graph or they may start out 
being exclusive of each other in early levels and then 
become non-exclusive at later levels For instance, if we 
begin wi th Alex and Rocketl at London (and they are 
nowhere else at t ime 1), then ' A l e x in R o c k e t l ' and 
'Rocke t l at P a r i s ' are exclusive at t ime 2, but not at 
t ime 3 

3 D e s c r i p t i o n o f t h e a l g o r i t h m 

The high-level description of our basic algorithm is the 
following Start ing wi th a Planning Graph that only has 

*In fact, determining all mutual exclusion relationships 
can be as hard as finding a legal plan For instance, consider 
creating two new artificals goals g1 and g2 such that satisfying 
g1 require! satisfying half of the original goals and satisfying 
g2 requires satisfying the other half 
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a single proposition level containing nodes corresponding 
to In i t ia l Conditions, Graphplan runs in stages In stage 
i Graphplan takes the length i — 1 Planning Graph from 
stage i — 1 , extends it one t ime step (the next action level 
and the following proposition level), and then searches 
the extended Planning Graph for a valid plan of length 
i Graphplan's search either finds a valid plan (in which 
case it halts) or else determines that the goals are not 
all achievable by time i (m which case it goes on to the 
next stage) 

This basic algorithm could be termed "weakly com­
plete" in each iteration through the Extend/Search loop 
described above, the algorithm either discovers a plan or 
else proves that no plan having that many time steps or 
fewer is possible In Section 5 we describe how this al­
gori thm may be augmented to be complete in the usual 
sense, so that if the Problem Goals are not satisfiable 
by any valid plan then the planner does eventually halt 
with failure We wish to point out, however, that weak 
completeness can be useful For instance, a user may 
know that if the problem is solvable at al l , then it wi l l 
be solvable in , say, 15 time steps In that case, by re­
peating the Extend/Search loop unti l it has failed on a 
graph wi th 15 action levels, Graphplan is able to report 
failure in what may be significantly less time than would 
be needed to prove ful l unsolvability 

3 1 E x t e n d i n g P l a n n i n g G r a p h s 

Al l the init ial conditions are placed in the first proposi­
tion level of the graph To create a generic action level, 
we do the following For each operator and each way of 
instantiating preconditions of that operator to proposi­
tions in the previous level, insert an action node if no two 
of the preconditions are labeled as mutually exclusive 5 
AIBO insert all the no-op actions and insert the precondi­
t ion edges Then check the action nodes for exclusivity 
as described in Section 2 2 above and create an "actions-
that-I-am-exclusive-or list for each action 

To create a generic proposition level, simply look at 
all the Add-Effects of the actions in the previous level 
and place them in the next level as propositions At this 
point insert the add-edges and delete-edges (Note do 
not create a proposition if its only reason for existence is 
to be deleted by some action ) Mark two propositions as 
exclusive if all ways of generating the first are exclusive 
of all ways of generating the second 

As we demonstrate in the following theorem, the t ime 
taken by our algorithm to create this graph structure 
is polynomial in the length of the problem's description 
and the number of time steps for problems with STRIPS-
style operators 

T h e o r e m 1 Consider a planning problem with n ob 
jects, p propositions in the Initial Conditions, and m 
STRIPS operators each having a constant number of for­
mal parameters Let t be the length of the longest add-list 

5Checking for exclusions keep* Graphplan, for instance, 
from inserting the action 'unload i l e x from Rocket 1 In 
Par i * * in time 2 of the rocket-domain graph when the ini­
tial condition! specify that both Alex and the rocket begin 
in London 

of any of the operators Then, the size of a t-level plan­
ning graph created by Graphplan, and the time needed to 
create the graph, are polynomial n, m, pr I, and t 

Proof Let k be the largest number of formal parame­
ters IS any operator Since operators cannot create new 
objects, the number of different propositions that can be 
created by instantiating an operator is 0(£nk) So, the 
maximum number of nodes in any proposition-level of 
the planning graph is 0(p + mln') Since any opera-
tor can be instantiated in at most 0(nk) distinct ways, 
the maximum number of nodes in any action-level of the 
planning graph is 0 ( m n 4 ) Thus the total size of the 
planning graph is polynomial in n, m, p, /, and t, since 
k is constant 

The time needed to create a new action and proposi­
tion level of the graph can be broken down into (A) the 
time to instantiate the operators in all possible ways to 
preconditions in the previous proposition-level, (B) the 
time to determine mutual exclusion relations between 
actions, and (C) the time to determine the mutual ex­
clusion relations in the next level of propositions It is 
clear that this time is polynomial in the number of nodes 
in the current level of the graph B 

Empirically, the part of graph creation that takes the 
most time is determining exclusion relations However, 
empirically, graph creation only takes up a significant 
portion of Graphplan's running time in the simpler prob­
lems, where the total running time is not very large any­
way 

An obvious improvement to the basic algorithm de­
scribed above (which is implemented in Graphplan) is to 
avoid searching until a proposition-level has been cre­
ated in which (A) all the Problem Goals appear, and 
(B) no pair of Problem Goals has been determined to be 
mutually exclusive 

3 2 S e a r c h i n g f o r a p l a n 

Given a Planning Graph, Graphplan searches for a valid 
plan using a backward-chaining strategy Unlike most 
other planners, however, it uses a level-by-level ap-
proach, in order to best make use of the mutual exclusion 
constraints In particular, given a set of goals at time t, 
it attempts to find a set of actions mapping these goals to 
some other set of goals at time t — 1 having the property 
that if only these goals could be achieved in ( — 1 steps, 
then the original goals could be achieved in t steps If the 
goals at time t — 1 turn out to not be mutually solvable, 
Graphplan tries to find a different set of actions, yielding 
a different set of subgoals at time t — 1 and so forth, unt i l 
it either succeeds or has proven that the original set of 
goals is not solvable at t ime t 

In order to implement this strategy, Graphplan uses 
the following method (easily implemented recursively) 
to generate the subgoal sets at time 1—1 from a given 
set of goals at time t For each goal at time t, for each ac­
tion generating that goal (starting with the no-op) select 
that action if it is not exclusive of some action already 
selected Continue in this fashion wi th the next goal at 
time t and so forth If there are no actions available for 
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achieving the current goal that are not exclusive of pre-
vious selections, then back up to the previous goal Once 
finished w i th all the goals at time t, the preconditions to 
the selected actions make up the new goal set at t ime 
t — 1 Graphplan then continues this procedure at t ime 
step t - 1 

An improvement to this approach (which is imple-
mented in Graphplan and helps modestly on the tasks 
we have tried) is that after each action is considered a 
check is made to make sure that no goal ahead in the list 
has been "cut-of f" In other words, Graphplan checks to 
see if for some goal st i l l ahead in the list, all the actions 
creating it are exclusive of actions we have currently se­
lected If there is some such goal, then Graphplan knows 
it needs to back up right away 

One final aspect of Graphplan'B search is that when a 
set of (sub)goals at some time i is determined to be not 
solvable, then before popping back in the recursion it 
memoizes what it has learned, storing the goal set and 
the t ime i in a hash table Similarly, when it creates a 
set of subgoals at some time 1, before searching it first 
probes the hash table to see if the set has already been 
proved unsolvable If so, it then backs up right away 
without searching further 

The strategy of working on the subgoals in a somewhat 
breadth-first-like manner makes Graphplan fairly insensi­
tive to goal-orderings In particular, the number of sets 
examined did not depend much on the order of the goals 
in any of the domains we tried Wi th in a Planning Graph 
level, the amount of t ime needed to construct a goal set 
at the previous t ime step from the current goal set might 
vary based on the ordering Nonetheless, empirically, 
Graphplan's dependence on goal orderings seems to be 
much less than that of other planners such as Prodigy 
and UCPOP 

4 Experimental Results and Discussion 
4 1 Natural domains 
We compared Graphplan wi th two popular planners, 
Prodigy and UCPOP, on two "natural" planning prob-
lems For both problems we ran Prodigy wi th heuristics 
suggested in Stone et al [Stone tt al, 1994] and by Car-
bonell [Carbonell, personal communication] Note that 
Graphplan is wri t ten in C while the other planners are in 
compiled LISP On the other hand, we ran Graphplan on 
a (slow) DECstation 2100 and the other planners on a 
(faster) SPARC10 

In addition to running time, we also report for 
Graphplan the number of "goal-set creation steps" (the 
number of times it creates a goal set at t ime i — 1 from a 
goal set at t ime t) and the total number of recursive calls 
made (the number of times it selects an action) These 
are somewhat analogous to the back ward-chaining steps 
taken by total-order planners 

Rocke t 
We ran the planners on the rocket domain described in 
Figure 1 wi th the following setup The in i t ia l conditions 

"Graphplan currently makes no attempt to order the goals 
at a tune step in an advantageous way We are currently 
experimenting with various standard heuristics 

have 3 locations (London, Paris, JFK) , two rockets, and 
n items of cargo A l l the objects (rockets and cargo) 
begin at London and the rockets have fuel The goal is 
to get [ n / 2 ] of the objects to Paris and [n/2j of the ob­
jects to JFK The goals are ordered alternating between 
destinations 

Results of the experiment are in Figure 3 Notice that 
Graphplan significantly outperforms the other two plan­
ners on this domain Graphplan does well in this domain 
for two main reasons (1) the Planning Graph only grows 
to 3 time steps, and (2) the mutual exclusion relations 
allow a small number of commitments (unloading some­
thing f rom Rocketl in Paris and something else from 
Rocket2 in JFK) to completely force the remainder of 
the decisions In particular, Graphplan performs only 
two goal-set creation steps regardless of the number of 
goals, and the number of recursive calls is linear in the 
number of goals 

The running t ime of Graphplan is completely unaf­
fected by goal ordering for this problem 

F la t T i r e 
A "natural" problem of a different sort is Stuart Rus-
sell's "f ixing a flat t i re" domain [Russell, 1992] Unlike 
the rocket domain, a valid plan for solving this problem 
requires at least 12 t ime steps (and 19 actions) Whi le for 
the rocket domain, Graphplan would do pretty well even 
without the mutual exclusion propagation, here the mu­
tual exclusions are critical and ensure that not too many 
goal sets wi l l be examined Graphplan solves this prob-
lem in 1 1 to 1 3 seconds depending on the goal order­
ing The number of goal-set creation steps ranges bom 
a minimum of 107 to a maximum of 246, and the num­
ber of recursive calls from 609 to 1380 Neither UCPOP 
nor Prodigy found a solution wi th in 10 minutes for this 
problem in the standard goal ordering, though it is possi­
ble to f ind goal orderings where they succeed much more 
quickly Graphplan is not only fast on this domain, but 
it also produces a "sensible" plan Figure 4 shows the 
plan produced by Graphplan for this problem 

4 2 A r t i f i c i a l d o m a i n s 

The papers by [Barrett and Weld, 1994] and [Veloso and 
Blythe, 1994] define a collection of artif icial domains in­
tended to distinguish the performance characteristics of 
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various planners On all of these, Graph plan is quite com­
petitive wi th the beet performance reported 

We present in Figures 5, 6, 7, and 8 performance data 
on four of the more interesting domains A l l performance 
results in these figures for the other planners are taken 
from figures in their respective papers 

4 3 D i s c u s s i o n o f E x p e r i m e n t a l R e s u l t s 
Four major factors seem to account for most of 
Graphplan's efficiency They ate, in order of empirically-
derived importance 

M u t u a l E x c l u s i o n The propagation and extensive 
use of mutual exclusion relations effectively prunes 
a large part of the search space 

C o n s i d e r a t i o n of P a r a l l e l P l a n s In some 
cases, such as the rocket problem, the valid parallel 
plans are relatively short compared with the length 
of the corresponding totally-ordered plans In such 
cases neither the cost of Planning Graph construc­
t ion, nor the cost of search is very large 

M e m o i z i n g By fixing actions at specific places in t ime, 
Graphplan is able to record the goal seta that it 
proves to be unreachable in a certain number of time 
steps f rom the ini t ia l conditions 

Low- leve l costs By constructing a Planning Graph in 
advance of search, Graphplan avoids the costs of per­
forming instantiations during the searching phase 

It is interesting to note that in three out of four of 
these points Graphplan's commitment to putt ing specific 
actions at specific points in time plays an important role 

5 Making Graphplan Complete 
To a first approximation, Graphplan conducts something 
similar to an iteratively-deepened search In the i th stage 
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the algorithm sees if there is a valid parallel plan of 
length less than or equal to i As described so far, if 
no valid plan exists there is nothing that prevents the 
algorithm from mindlessly running forever through an 
infinite number of stages 

We now describe a simple and efficient test that can 
be added after every unsuccessful stage that makes 
Griphplan a complete planner That is, by augmenting 
Graphplan wi th the test we wi l l describe, if the input 
problem has DO solution then Graphplan wil l eventually 
halt and say "No Plan Exists n 

6 1 P l a n n i n g G r a p h s " L e v e l O f f " 
Assume a problem has no valid plan First observe that 
in the sequence of Planning Graphs created there wi l l 
eventually be a proposition level P such that all future 
proposition levels are exactly the same as P, i e, they 
contain the same set of propositions and have the same 
exclusivity relations 

The reason for this is as follows Because of the no-
op actions, if a proposition appears in some proposition 
level then it also appears in all future proposition levels 
Since only a finite set of propositions can be created by 
STRIPS-style operators (when applied to a finite set of 
ini t ial conditions) there must be some proposition level 
Q such that all future levels have exactly the same set 
of propositions as Q Also, again because of the no-op's, 
if propositions p and q appear together in some level 
and are not marked as mutual ly exclusive, then they wi l l 
not be marked as mutual ly exclusive in any future level 
Thus there must be some proposition level P after Q 
such that all future proposition levels also have exactly 
the same Bet of mutual exclusion relations as P 

In fact, it is not hard to see that once two adjacent 
levels Pn P n +i are identical, then all future levels wi l l be 
identical to Pn as well At this point, we say the graph 
has leveled off 

5 2 T h e T e s t t h a t M a k e s Graphplan 
C o m p l e t e 

Let Pn be the first proposition level at which the graph 
has leveled off If some Problem Goal does not appear 
in this level, or if two Problem Goals are marked as mu­
tually exclusive in this level, then Graphplan can imme-
diately say that no plan exists However, it may be the 
case that no plan exists but this simple test does not 
detect i t , so we need to do something slightly more so-
phisticated 

As mentioned earlier, Graphplan memoizes, or records, 
goal sets that it has considered at some level and deter­
mined to be unsolvable Let S1 be the collection of all 
such sets stored for level t after an unsuccessful stage t 
In other words, after an unsuccessful stage t, Graphplan 
has determined two things (1) any plan of / or fewer 
steps must make one of the goal sets in S1 true at time 
i, and (2) none of the goal sets in S1 are achievable m 
i steps The modification to Graphplan to make it com­
plete is now just the following 

If the graph has leveled off at some ]evel n and 
a stage 1 has passed in which \St

n~1\ = |SJ|, 
then output "No Plan Exists " 

1642 PLANNING 


