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Abstract

We provide a general method which can be
used in an algorithmic manner to reduce certain
classes of 2nd-order circumscription axioms to
logically equivalent 1st order formulas The al-
gorithm takes as input an arbitrary 2nd-order
formula and either returns as output an equiv-
alent 1st order formula, or terminates with fail-
ure In addition to demonstrating the algo-
rithm by applying it to various circumscriptive
theories, we analyze its strength and provide
formal subffumption results based on compan
son with existing approaches

1 Introduction and Preliminaries

In recent years, a great deal of attention has been de-
voted to logics of "commonsense" reasoning Among the
candidates proposed, circumscription [Lifschitz, 1994],
has been perceived as an elegant mathematical tech
nigue for modeling nonmonotonic reasoning, but diffi-
cult to apply in practice Practical application of cir-
cumscription is made difficult due to two problems The
first concerns the difficulty in finding the proper circum-
scriptive policy for particular domains of interest The
second concerns the 2nd-order nature of circumscription
axioms and the difficulty in finding proper substitutions
of predicate expressions for predicate variables so the
axioms can be used for making inferences There have
been a number of proposals for dealing with the second
problem ranging from compiling circumscriptive theories
into logic programs [Gelfond and Lifschitz, 1989], to de-
veloping specialized inference methods for such theories
[Ginsberg, 1989, Przymusinski, 199i]

A third alternative is to focus on the more general
problem of finding methods for reducing 2nd-order for-
mulas to logically equivalent Ist-order formulas, where
possible Although some progress has been made using
this approach, the class of 2nd-order circumscription for-
mulas shown to be reducible is not as large as one might
desire, the reduction methods proposed are somewhat
isolated relative to each other and, most importantly,
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the existing reduction theorems generally lack algorith-
mic procedures for doing the reductions

In this article, we provide a general method which
can be used in an algorithmic manner to reduce certain
classes of 2nd-order circumscription axioms to logically
equivalent Ist-order formulas The algorithm takes as
input an arbitrary 2nd-order formula and either returns
as output an equivalent Ist-order formula, or terminates
with failure Of course, failure does not imply that there
is no I6t-order equivalent for the input, only that the
algorithm can not find one The class of 2nd-order for-
mulas, and analogously the class of circumscriptive theo-
ries which can be reduced, provably subsumes those cov-
ered by existing results The algorithm can be applied
successfully to circumscriptive theories which may in-
clude mixed quantifiers (some involving Skolemization),
variable constants, n-ary tuples of minimized and varied
predicates, separable, separated and in some cases, non-
separated formulas, and formulas with n-ary predicate
variables, among others In addition to demonstrating
the algorithm by applying it to some of these theories,
we analyze its strength and provide formal subsumption
results based on comparison with existing approaches

Due to page limitations and the technical complexity
of both circumscription and the algorithm we propose.we
will be forced to remain briefwith preliminaries Conse-
quently, we assume familiarity with the various types of
circumscription and existing reduction results In gen-
eral, we will refer to the original articles for the relevant
theorems and results In addition, we provide only an
informal description of the algorithm, but one that is
adequate and sufficiently detailed for following the ex-
amples provided For a detailed description of the al
gonthm and proofs of the subsumption results, we refer
the reader to the technical report [Doherty et al, 1994]

11 Notation

An n-ary predicate expression is any expression of the
form Ax A(x), where x is a tuple of n individual vari-
ables and A{S) is any formula of first- or second-order
classical logic If U is an n-ary predicate expression of
the form Xx A("S) and a is a tuple of n terms, then
Ufa) stands for A{3) As usual, a predicate constant
P is identified with the predicate expression Xx P(x~)
Similarly, a predicate variable $ is identified with the
predicate expression Ax *(5)



Truth values true and false are denoted by T and L,
respectively

If U and V are predicate expressions of the same
anty, then U < V stands for ¥ U(Z) > V(z) If
U=(, ,UdendV = (Wi, ,V,) ere sumlartu
ples of predicate expressions, 1e  U; and V; are of the
same arty, 1 <1 < n, thegv’iv is an abbreviation for
A U<V WewnteU =V ior (U KV)A(V < D),
and U < Vior (USV)AS(V D)

IFAwseaformula & ={(oy, ,on)andd=(&, ,6,)
are tuples of any expressions, then A(7 — §) stands for
the formula obtained from 4 by simultaneously replecing
each occurrence of o, by 6, (1 <1 <=} For any tuple
X = (21, 2n) of individual variables and eny tuple
I = (t;, 1) of terms, we wnite £ = { to denote the
formula 7; = HA Az, =1, We wntei # ¢ as an
abbreviation for —~{Z = )

12 Defimtions

Defilmition 1 1 (Second-Order Circumascription)
Let P be a tuple of digtinct predieate constants, S be
a tuple of distinct function and/or predicate constants
dwisjount from P, and let T(P,5) be & sentence The
second-order circumscription of P in T(P, §) with van-
able 5§, written Circsa(T, P, 3), is the sentence

TP.5)AVET - [T(F.T)AT < P 1)

where & and ¥ are tuples of vanables sumilar to P and
S, respectively B

13 Useful Tautologies

Below we provide a hist of some useful tautologies that
are used throughout the paper

Proposition 1 1 The following pairs of formulas nre
equivalent (Here Q stands for any quantifier and A,
B, € are formulas such that € does not conteun free
occwrrences of the vanable z In clauses (8), (9) and
(11), £,t;, ,f, are n-tuples of terms and it 18 asaumed
that neither C nor any term from £,#;,, ,{; contalns
vanables from £ In clause (10), f 18 a function vanable
which does not occur mn 4 )

(1) Qz(A(z))AC and Qz(A(z)AC)

(2) CAQz{A(z)) and Qz(CAA(z))

(3) Qz(A(x)VC and Qz{A(z)VC)

(4) CvQz(A(z)) and Qz(CVA(z))

(6) QzQyA and QyQzd

(6) AA(BVC) and (AAB)V(AAC)

(7) (AVvBIAC and (AAC)V{BAC)

(8) A and VE(A(f — 2)VE#T)
(0) A(h)v VA{,) and 3EEZ =15V VI={,)

A — 2))

(10) VEIyA(E ) and 3fVIA(Z,y+— f(2), )
(11) A )}A  AA(R,) and VE(E#DiA AR F#L,)

VAGH —~£))

The equivalence (8) was found particularly useful by
Ackermann [1935, 1954] We extend the method by
adding the equivalence (9) It makes the technique work
in the case of clauses containing more than one posi-
tive (or negative) occurrence of the eliminated predicate

This substantially generalizes the Ackermann technique
The equivalence (10) is a second-order formulation of
the Skolem reduction (see [Beathem, 1983]) It allows
us to perform Skolemization (1 e elimination of existen-
tial quantifiers) and unskolemization (1 e elimination
of Skolem functions) in such a way that equivalence is
preserved We call this equivalence second-order Skolem-
\zatton.

2 The Elimination Algorithm

In this section we discuss the elimination algorithm Its
complete formulation can be found in [Doherty et al,
1904] The algorithm was originally formulated, in a
weaker form, m [Szalas, 1993] in the context of modal
logics It is based on Ackermann's techniques developed
m connection with the elimination problem The elimi-
nation algorithm is based on the following lemma, proved
by Ackermann in 1934 [Ackermann, 1935] The proofcan
also be found m [Szalas, 1993]

Lemma 2 1 (Ackermann Lemma)} Let ® be n pred
wcate vanable and A($), B(%) be formulas without
second-order quantification Let B(®) be positive wrt
% and let A contan no occurrences of ¢ at all Then the
following equivalences hold

IBVE(B(Z)VA(T, Z)AB(® — -®) = B(d — A(%,2))

(2)

ISVE[-R(Z)vA(2,2)|AB(F) = B(® — A(%,2)) (3)
where 1n the righthend formulas the arguments Z of A are
each time substituted by the respective actual arguments

of & (repaming the hound variables whenever necessary)
|

The following propomtion together wrth the equiva-
lences gaven 1n Propoaition (1 1) 16 also used 1n the algo-
nthm

Proposition 2 1 Let A be a formula of the form
prefA1A  AA,), where pref 18 a prefix of first-order
quantifiers and 4,, , A4, are digjunctions of literals In
addition, let & be a predicate variable occurning 1n A and
Conj(A) those conjuncts in A where € occure Assume
that for any conjunct 1n Conz{A), & occurs either pos-
tively, or both postively and negatively (or analogously,
negatively, or both negatively and positively) Then

3BA = pref(A., A AAL) (4)
where 1, .3 € {1, ,q} and A4,, ,A4, are all
the conjuncts that do not contein occurrences of ¢ (the
empty conjunction 1s regarded as bemng equvalent to T)

Proof See [Szalas, 1993] B

21 Outline of the Elimination Algorithm

We are now ready to outline the elimination algonihm
The elgonthm takes & formula of the form 3% A, where
A 18 a first-order formula, ag an 1nput and returns its
first-order equivalent or reports falure! Of course, the

!The fmlure of the algonthm does not mean that the
second-order formule at hand cannot be reduced to its firsi-
order equvalent The problem we are dealing with 18 not even
partially decidable, for first order definability of the formulas
we conalder 18 not an arnthmetical notion (ese, for nstance,
[Benthem, 1984])

DOHERTY, LUKASZEWICZ,AND SZALAS 1503



algorithm can also be used for formulas of the form V&4,
since the latter formula is equivalent to =I¥-A Thus,
by repeating the algorithm one can deal with formulas
containing many arbitrary second-order quantifiers

The elimination algorithm consults of four phases
(1) preprocessing; (2) preparation for the Ackerxnann
lemma, (3) application of the Ackermann lemma, and
(4) simplification These phases are described below It
is always assumed that (1) whenever the goal specific for
a current phase is reached, then the remaining steps of
the phase are slapped, (2) every time the equivalence (4)
of Proposition 2 1 is applicable, it should be applied

(1) Preprocessing The purpose of this phase is to
transform the formula 3@ A into a form that sepa-
rates positive and negative occurrences of the quan-
tified predicate variable @ The form we want to
obtainis®

LI [(A(BDABL (B V(An(R)ABR(2))], (B)

where, foreach 1 <31 € n, A(g) is positive wrt
¢ and B,(g) is negativewrt @ The steps of this
phase are the following (i) Eliminate the connec-
tives D and = using the usual definitions Remove
redundant quantifiers Rename individual variables
until all quantified variables are different and no
variable is both bound and free Using the usual
equivalences, move the negation connective to the
right until all its occurrences Immediately precede
atomic formulas (11) Move universal quantifiers to
the right and existential quantifiers to the left, ap-
plying as long as possible the equivalences (1) - (4)
from Proposition 1 1 (11) In the matrix of the for-
mula obtained so far, distribute all top-level con-
junctions over the disjunctions that occur among
their conjuncts, applying the equivalences (6) - (7)
from Proposition 1 1 (iv) If the resulting formula
is not in the form (5), then report the failure of the
algorithm Otherwise replace (5) by its equivalent
given by

(3B (A (B)AB(E))V VIS (A,.(Q)AB,,(@))()
8)

Try to find Equation (6)'s first-order equivalent by
applying the next phases in the algorithm to each
disjunct in (6) separately If the first-order equiva-
lents of each disjunct are successfully obtained then
return their disjunction, preceded by the prefix 3x,
as the output of the algorithm

(2

~

Preparation for the Ackermann lemma. The
goal of this phase is to transform a formula of the
form 3g(A(g)B(@)), where A(g) (reap B(@))
is positive (reap negative) wrt @, into one of
the forms (2) or (3) given in Lemma 21 Both
forms can always be obtained and both transfor-
mations should be performed because none, one or

It should be emphasised that not every formula u re-
ducible into this form

8 To increase the strength of the algorithm, it is essential
to move as many existentially quantified variables as possible
into the prefix of (5)

HAM VP AT WD AR o

both forms may require Skolemization Unskolem-
Ization, which occurs m the next phase, could fail m
one form, but not the other In addition, one form
may be substantially smaller than the other The
steps of this phase are based on equivalences (6) -
(10) from Proposition 1 1

(3) Application of the Ackermann Lemma. The
goal of this phase is to eliminate the second-order
quantification over g, by applying the Ackermann
lemma, and then to unskolemue the function vari-
ables possibly introduced This latter step employs
the equivalence (10) from Proposition 1 1

(4) Simplification Generally, application of Acker-
mann's Lemma in step (3) often involves the use
of equivalence (8) in Proposition 11 m the left to
right direction If sO, the same equivalence, or its
generalization (11), may often be used after appli-
cation of the Lemma in the right to left direction,
substantially shortening the resulting formula

22 Discussion of the Algorithm
Assume we have a second-order formula A of the form

3% [(prefB)A(pref'C)], (7)

where, pref and pref are sequences of first-order quan-
tifiers, B and C are quantifier-free formulas in conjunc-
tive normal forms, B is positive wrt @, and C is neg-
ative wrt @ Then, the following proposition holds

Proposition 2 2 Let A be an input formula of the form
(7) Then, as a result, the algorithm returns a first-
order formula provided that unskolemization (if neces-
Bary) succeeds =m

Observe that Skolem functions are introduced in the
second step of the algorithm whenever existential quan-
tifiers are to be eliminated These can appear in the
input formula or may be introduced via application of
the equivalence (9) of Proposition 11 In the follow-
ing proposition, we formulate conditions under which no
Skolem functions are introduced and the algorithm ter-
minates successfully

Proposition 2 3 If one of the following conditions
holds (1) B is universal and each conjunct of B con-
tains at most one occurrence of g, or (2) C is universal
and each conjunct of C contains at most one occurrence
of @, then the algorithm always returns a first-order
formula as output m

If the input formula cannot be transformed into the
form (7) then the algorithm fails

3 On the Strength of the Algorithm

In this section we consider existing reduction results
and their subsumption by oux algorithm A compila-
tion of many of the existing reduction results can be
found in [Lifschitz, 1994], in addition to other relevant re-
sults in earlier papers [Kolaitis and Papadimitnou, 1988,
Lifschitz, 1985, 1988, Rabinov, 1989] In [Doherty
et al. , 1994], we prove that the algorithm subsumes,
and la even stronger than the results given In [Ko-
laitis and Papadimitnou, 1988, Lifschitz, 1985, 1988,



Rabinov, 1980] We start with Rabimov's [1989} result
which subsumes earlier results by Lifschitz regarding sep-
arability In fact, the following theorem 18 stronger than
the result of Habinov

Let D,(P) denote N;(P) A M,(P) such that the pred-
icate constant P 18 posmiive in M, and negative mn N,
D.(P)} is smd to be p-mmple f M,(P) bas the form
{7/, < P, where [/, 18 a predicate expreasion not con-
tamming P D;(P) is said to be n ssmple if N,(P) has
the form P < U, where U, 18 & predicate expression not
contanmng P

Theorem 3 1 I T{P) 18 of the form

No(P) A\ D.(P)

where each D;(P) 18 either p-simple or contains no pos-
1tive occurrences of P4 and No(P) 18 negative wrt P,
then the algonthm ebmnates the second-order quanti-
fiers from Cwrego (T, P,()) B

The following thecrem shows that the algerithm elum
inetes second-order quantification in the case of existen-
tial tlheone.a considered m [Kolaitis and Papedimitriou,
1988

Theorem 3 2 If T 15 & first-order emstential sentence,
then the algonthm eliminates second-order quantifica-
tion from Ciwrcso(T,P,()) B

Theorem 3 3 If T 18 & first-order monadic sentence,
then the algonthm ehmnates second-order quantifica-
tion from Cireso(T,P,5) B

The SCAN algorithm was Introduced by Gabbay and
Ohlbach [1992] It is difficult to compare SCAN with our
algorithm since no syntactic characterization of formulas
accepted by SCAN is known We conjecture that both
approaches are successful for the same class of formulas
However, the additional advantage of our algorithm is
that it always terminates, while SCAN may loop For
example, the formula

V®[(Yz®(z)DIyd(y)AQ(z))DVr-E(z)]

when given as input to our algorithm does terminate,
while for SCAN it does not

Additional strengths and weaknesses are considered m
the next section

31

In comparing the different approaches and results con-
cerning the reduction of circumscriptive theories, we will
refer to Figure 1 below, which provides a pictorial view of
the subsumption relation between the various theorems
and types of theories reduced DLS refers to our algo-
rithm, MIXED refers to theories with mixed quantifiers,
VC refers to theories which allow variable constants, and
MONAD refers to theories with only monadic sentences
In addition, ¥ and 3 refer to purely universal and ex-
istential theories, respectively, while ¥3 refers to those
theories where Skolemization is necessary, and refers
to mixed theories not requiring Skolemization The solid

Comparison of Approaches

*Rabinov requires n-simplicity here

arrows denote subsumption In addition there are two
broken solid arrows The arrow pointing towards "Cor
3 3 3" is broken to signify that although the DLS algo-
rithm m its general form does not fully subsume Corol-
lary 3 3 3, when specialized appropriately, it does We
discuss this m a later section The arrow pointing to-
wards SKOLEM is broken to signify that the DLS algo-
rithm works for those theories involving Skolemization
when the unskolemization step is successful and the al-
gorithm returns a first order formula as output Since,
it may not be possible to unskolemize certain theories
successfully, there is no complete subsumption of this
class

! ’

5] [l (]
|

eora]

Th 33(DLS] [DLS] [DLS] Th$i[DLS] 1

V ‘L Th 3 3[DL5]

Th 3 1[DLS]

1
Th 1{KolPap 1088
Th 2 1{Rab 1989] (KolPag 19881 , sxoLEM

{P[N] almpls) ! Th 1 Prop 31 [LY 10R5]
]
V (Separable)
Th 1[Lif 1985] Cor 3 3 J[LIf 1904]
(Separable) {Ssparated}

Figure 1 Subsumption Results

Positive Results

In addition to the results described m the previous sec-
tion, observe that the method we propose is also stronger
in regard to the following features

* DLS provides us with a more general approach to
existential quantification due to the possibility of
allowing Skolemization Thus it works for combi-
nations of existential and universal quantifiers On
the other hand, Kolaitis and Papadimitnou consider
pure existential formulas, while Lifschitz and Rabi-
nov consider pure universal theories

« DLS does not distinguish between theories with
variable constants and those without On the other
hand both Rabinov, Kolaitis and Papadimitnou,
(and Lifschitz to some extent), restrict their theo-
ries to those without variable constants In some
cases, Lifschitz'e results can reduce theories with
variable constants if the theories are separable and
no Skolemization is mvolved (See the next section
for problems DLS has with separated theories)

* DLS permits as input circumscriptive theories with
arbitrary numbers of minimized and varied predi-
cates This is not the case for Rabinov's result nor
for Lifschitz's result pertaining to separated formu-
las

* DLS describes how to constructively transform for-
mulas into the required form
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Negative Results
Note that 1o the end of Section 2 2 we characterized the
class of formulas for which the algorithm fails Let us
now discuss en additional source of weaknesses of the
algonthm and a possible way of overcomung these weak-
nesses

Observe that the ehmination algonithm we deal wath
18 independent of any particular theory Om the other
hand, 1t 18 well known that second-order quentifiers can
gometimes be ebminated when additional information 1s
gven

Oune good Ulustrative example onginates from the area
of modal logics Namely, McKinsey's &xom 18 not equv
alent to any fixst order formula. Accordingly, our al-
gonthm fals (see [Szalas, 1993]) However, when one
assumes that the accesmbility relation 15 transitive, the
elmination 15 possible, since McKinsey together with
transitivity 1s first-order definable (see [Benthem, 1984))

The game situation may occur when one computes cir-
cumscniption  Consider the following theorem from [Laf-
schutz, 1994] (labeled “Cor 333" iz Fig 1)

Theorem 3 4 If T(P) 18 a first-order gentence sepa-
reted wrt F then

Cireso(T{P), P,()) 18 equvalent to & first-order sen-
tence W

It permuts one to deal wth any sequences of first-
order quantifiers provided that the formula 15 separated
The proof given by Lifschitz is based on a clever move
which applies knowledge about the first-order theory one
works wath  Observe that 1u Theorem 3 4 the sentence
T(P) 18 assumed to be separated, 1 ¢ 1t Is of the form
T (P)ATa(P), where T1(P) 18 positive wrt P and
T;(P) 15 negative wrt P Thus Cwrego(TI AT, P,())
18 equivalent Lo

Ti{(P)ATHPIA-3E ~ [Ty(B)AT(#)A% < P

Since T3(P) 15 negative wrt P, T5(P) together wmith
% < P mply T3(®) Thus when T2({P) I8 taken mnto con-
aideration, one subatantially simplifies the second order
circumscription nto the followang second-order formula

Ti(PYAT3(P)A-3% - [T1(¥)Ad < P)

The last formule I8 reducible to a first-grder sentence
(and is, in fact, in the scope of our algorithm)

The above examples show that the general algorithm
we presented can (and should be) tuned to the particular
situation 1t 18 apphed to Smnce arrcumsacnption 18 always
defined over some first-order theory, moves simlar to the
method used by Lifsehitz above, should be mcorporated
wnto the algorthm 1f this 18 done for the case of sep-
arated theories by shghtly modifying the preprocessing
phase, then the specialized version of our algonithm sub-
sumes all previcus results concerning the reduction of
circumscnptive theones

4 Complexity of Reduction

Observe that the ehmination algonthm we consider, ter
minates and 15 easily mechamzable Let us now estimate
lte complexity

1506 NONMONOTONIC  REASONING

First observe that dunng phase (3} of the algonthm,
the form of the formula to be transformed is®

3BVE[R(F)VA(Z, Z)AB(E — -F) (8)
and then 1ts form 18
B(& — A2, 1)} (9

after apphcation of the Ackermann lemma

Thus, if the length of (8) 18 n, then the length of (9)
18 less than n® Observe, however, that this worst case
occurs when & bag O(n) occurrences in (8) In practical
examples, however, the length of (9) 13 usyally O(r) (and
often less than the length of (8))

The worst case analysis of steps (1) and (2) shows
that the size of the transformed formula can increase
exponentially (due to possible iransformations between
disjunctive and conjunctive normal forms) Ths, how-
ever, 18 agein & rare phenomenon — pee examples below,
in partrcular Section b 2 concerming & Kolaitis and Pa-
padim;triou example

5 Applyung the Algorithm to some
Examples

The best way to understand how the algonthm works
18 to apply it to examples Due to space lamitntions,
we only apply the slgorithm to two examples A full
catalogue of worked examples may be found in [Doherty
et al, 1094] We take a number of hiberties in applying
the algorithm 8o az not to drown in details For example,
step (2) 1n the previous section states that both forms
of Ackermann's Lemma should be considered In the
examples, we choose one form and apply the algonthm
This maves considerable space Also, the simplhfication
phase 18 omutted unless it can be apphed

61 The Birthday Example
Example 5 1 (Birthday Example)
This example ¢contains both existentially quantified and
umversal formulas In addition, it ¢conteins both unary
and binary predicates Let T'(4b, G) be the theory
[Az3y(B(m)AF(z, y)A~G(z, 1))]A
Vz¥y(B(y)AF(z,y)A~Ab(z,¥) D G(z,¥))]), (10)
where B, F and (G are abbreviations for Birthday,
Friend and GweaGh ft, respectively Here Ab(z,y) has
the following intwative mterpretation “z behaves nbnor-
melly wrt ¢ 1o the situation when ¥ has & birthday
and z 15 a fnend of ¢y” The circumscniption of I'(4d, G)
with 4b mimimized and & vared i
Circso(T{Ab,G), 4Ab, G) =
T(Ab, G)AVEYF[T(D, ¥)A[P < Ab) D [4b < B]],(11)
where
T'(®,¥) = [3z3y(B{y)AF (z, y)A~T(z,v))]
AVEVY(B(y)AF(z, y)A~8(z,y) D ¥(z,y))] (12)
¥ < Ab = VzVy[®(z,y) D Ab(z,p)] (13)
Ab £ & = YzVy|Ab(z,v) D B(z,v)) (14)

5The second form conmdered 1n lemma 2 1 18 symmetnc
to the first one



In the following, we will reduce

VEVE[T(2, ¥)A[® < Ad] D [Ab < 8] (15)
in (11) Negeting (15), we obtan
IPIF T8, PIA[E < AbjA-[Ab < &)) (18)

We remove ¥ first

Preprocessing Replacing I'($, ¥), & < Ab and Ab <
¥ by their equivalents grven by (12)-(14), ehminating
=, renaming 1ndividual vanables and moving exstential
quantifiers over individual variables to the left, we obtan
3z3y3qIr3eI¥[B(y)AF(z, )A~¥(z, )
AVuYz(~B(z)vV-F(u, 2)v®(u, z)v¥(x,z))
AYaYt(~®(a, t)v AB(s, E))A Ad{g, rIn~B(g,7)] (1T)
Preperation for the Ackermann lemma (17} 18
tm the form smtable {for appheetion of the Ackermann
lemma To see this, we rewrite 1t as
3z3y3qIr2@IAWVUV2|(¥(u, z)V-B(z)V-Fu, 2)
Ve(u, 2))A~¥(z, y)AB(VAF(z, )N
Vavi(~$(s, t)vAb(s, 1)) AAb{g, r)A-B(q,r)] (18)
Application of the Ackermann lemuma Applying
the Ackermann lemma to (18), we obtamn
3z3y3¢Ir3IR~B(y)V-F(z,y)V¥(z, y))ABYIAF(z,y)
AVaVe(—~B(s, 1)V Ab(a, 1))AAb(q, r)A-D(q,7r)] (19)

We now remove € 1n (19)

Preprocessing (19) 18 mn the form which 15 the goal of
thus phase

Prepearation for the Ackermann lemma
Proposition 1 1 (8), we replace (19) by

3z3yIg3IrIEVevw([(B(v, w)Vy # zvw # yv-B(y)
V-F(z,y))AVavt{~8(s,t)VAb(a,1))
A-#(g, r)NB(Y)AF(z, y)AAb(g, 7)] (20)

Application of the Ackermann lemma Applymg
the Ackermann lemme to (20), we obtam

Iz3y3gIrvavii(s # zvi £ yv-BpIV-F(z, )

VAb(s,2))A(g # zVr # yv-B(y)v-F(z,y))
AB(yIAF(z,y)AAb(g, 7))

Simplification We replace (21) by

3z3y3gIr[(~ByIV-F(z, y)VAb(z, ¥))A(g £ zVr # ¥
v=B(y)V-Fx, y))AB(y)AF(z,y)AAb(g, )] (22)

Negating (22}, we obtan

Yavy¥avr((Bn)AF(z, y)A-Ab(z, y))V{g = zAr =y
AB(y)AF (z,9))V-~B(y)V-F(z,y)v-4b(g,r)] (23)

(23) 15 logacally equivalent to

VeV e¥r[~{B(y)AF(z, »))V(BW)AF(z,¥))
A(=Ab(z, ¥)V(g = TAr = )))V-4b(g, 7)),

Using

(21)

(24)

which 158 equivalent to
Yzvyvevr[~(B(y)AF (z,y))
VoAb(z, y)V(g = AT = y)v-A4b(g,r)] (25)

The first-order formula {25) 1 logically equivalent to the
second-order formula (15) Consequently,
Cireso(T(Ab, G), Ab,G) =
T(A4b, GYAYzYYNg¥r [ ~(B(y)AF(z, 1))

V=Ab(z, y)V(g = AT = yIv-Ab(g, 7)) (26)
A more mformative sentence, equivalent to (25), 18
Yy ovr[Ab{z, y)AAb(g, r)AB(Y)
AF(z,y) 2 (g=zAr =y)] (27)

(27), together with the theory I'(4b, G), states that there
18 exactly one par of individuals, r and y, such that ¥
hes a birthday, z 15 & fnend of y and z does not qive &
gittoy

52 An Existeptial Example
[Kolatis and Papadumitriou, 1988)] state

We notice that computing a first-order sen-
tence equivalent to the eircumscnption of P 1n
an existential frst-order formula ¢(P) seems to
mncrease the size of ¥(P) exponentially, & phe-
nomenon not observed 1n the other known cases
of first-order circumscription studied 10 [Laf85]
It would be mnteresting to determune whether
this is inherent to exmstential firat-order formu-
lag, or a particular creation of our proof

Example 5 2 (Existential Example) In hght of the
quote above, we take the example used by Kolaitis and
Papadimitrion and compare the resulting first-order for-
mula with that generated by our algonthm Kolaitis
and Papedimitnou apply therr reduction techmque to
the theory

3z, 3z2[R{z1, 23 )AP( 21 )AP(z3)] (28)

and circumscribe P without varying predicates The
first order equivalent they obtein 18

3z; (R(xy, 2 )AP(a A (VY (Py) = y = o))V
(321373 (R{z1, 22)AP(z1 )AP(22)A (21 # T2)A(VY{P(y)
= (y=a1Vy = 22)) ARz, 21 )A-R(z2,23))] (29)

We spply our reduction elgorthm to the same theory
and compare the results
Let T'(P) be the theory

3z,323[R(z1, Za)AP(21)AP(z5)] (30)

The aircomseniption of ['(P) wnth P mimimized without
variable predicates 18

Circso(T(P), P, ()} =

T(P)AVE[I'(B)A[® < P] O [P < 8], (31)

where
[(®) = 3z,3z3(R(21, 22)A 2 (2 )AD(22)]  (32)
< P= vzd(z)D Piz) (33)
P<®= Yz P(z)D ¥(z) (34)
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In the following, we will reduce

VO[T (RIN[E < P) 2> |P < 8]} (35)
mn (31) Neguting (35), we obtmn
3[T(2)A[® < PIA-[P < 2] (36)

Prepraoceaming Replacing I'($), 8 < Pand P < # by
therr equivalents given by (32)—(34), eliminating O and
renamung indivadual variables, we obtan
38(3z; Jza (Riz1, 72) AB(z1 ) AB(z3 ))A
vy(~8(y)VP(¥))A3z(P(z)A-%(z))] (37)
We next move 3z33%33z to the left, obtauning
31’1322323@[}2(21,33 )1‘\@(21 )/\Q(Ez)/\
Vy(~#(WIVL(Y)AP(2)A~%(z)] (38)
Preparation for the Ackermann lemma Applying
Proposition 1 1 (8) and some standard equivalences, we
replace (38) by
3z, 32, 32238V¢[($(0) V(g # T1Aq # T2))

AN B(z1,22) AV (~R(Y)VPYIAP(2)A~8(2)] (39)
Appllcation of the Actkermann lemmn The Acker-
mann lemmma cap now be applied to (39) resulting 1n
3z1 3z33z| Rz, Z2)AVU{(y # Z1AY # T2 )VP(¥)A

P(z)f\.z £ Nz # 25] (40)
Sumplification Applymg Proposition 1 1(11) to (39)
results
3z13293z[R(z1, Za)AP(z1)AP(23)
AP(z)Az # 217z # z4] (41)
Negeting (41), we obtain
VI]_VSB:VZ["‘R(z],Eg )V'!P(.":l)V'!P(.":g)
V-P(z)Vz = z1Vz = z3} (42)
The first order formula (42) 15 logacally equivelent to the
second-order formula {35) Consequently,
Cireso(T, P} = T{(P)AVL VzaVz [~ R(z1, £a)
VoP(z2,)V-P{z)v-P(z)Vz = 2:Vz = 2q] (43)
Comparing (43) with (29), 1t 18 easily observed that
not only 18 there a difference 1 the size of the formules,

but the output appears to make more sense relative to
the mummzation policy

8 Conclusion

In thus paper, we have presented a general slgonthm
which transforms second-order formulas into logically
equivalent first-order formulas for a large class of second-
order formulas The algonthm has been shown to have
& number of atiractive properties, including s poten-
tially wide area for practical application To support
this claim, we have provided a detailed description of
the algorithms applhication to the reduction of clrcum-
scription axoms In addition, we have shown that the
algorithm, 1n 1ts general form, provably subsumes nearly
all exasting results concermng the reduction of elrcum-
scription emoms In contrast to previous results, the
algorthm 18 more constructive m the sense that it pro-
vides a step-by-step method for transforming a formula
and 18 guaranteed to termnate
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