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A b s t r a c t 

We provide a general method which can be 
used in an algorithmic manner to reduce certain 
classes of 2nd-order circumscription axioms to 
logically equivalent 1st order formulas The al­
gorithm takes as input an arbitrary 2nd-order 
formula and either returns as output an equiv­
alent 1st order formula, or terminates wi th fail­
ure In addition to demonstrating the algo-
r i thm by applying it to various circumscriptive 
theories, we analyze its strength and provide 
formal subffumption results based on compan 
son wi th existing approaches 

1 I n t r o d u c t i o n and Pre l iminar ies 
In recent years, a great deal of attention has been de­
voted to logics of "commonsense" reasoning Among the 
candidates proposed, circumscription [Lifschitz, 1994], 
has been perceived as an elegant mathematical tech 
nique for modeling nonmonotonic reasoning, but diffi­
cult to apply in practice Practical application of cir­
cumscription is made difficult due to two problems The 
first concerns the difficulty in finding the proper circum-
scriptive policy for particular domains of interest The 
second concerns the 2nd-order nature of circumscription 
axioms and the difficulty in finding proper substitutions 
of predicate expressions for predicate variables so the 
axioms can be used for making inferences There have 
been a number of proposals for dealing wi th the second 
problem ranging from compiling circumscriptive theories 
into logic programs [Gelfond and Lifschitz, 1989], to de­
veloping specialized inference methods for such theories 
[Ginsberg, 1989, Przymusinski, 199i] 

A third alternative is to focus on the more general 
problem of finding methods for reducing 2nd-order for­
mulas to logically equivalent lst-order formulas, where 
possible Although some progress has been made using 
this approach, the class of 2nd-order circumscription for­
mulas shown to be reducible is not as large as one might 
desire, the reduction methods proposed are somewhat 
isolated relative to each other and, most importantly, 
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the existing reduction theorems generally lack algorith­
mic procedures for doing the reductions 

In this article, we provide a general method which 
can be used in an algorithmic manner to reduce certain 
classes of 2nd-order circumscription axioms to logically 
equivalent lst-order formulas The algori thm takes as 
input an arbitrary 2nd-order formula and either returns 
as output an equivalent lst-order formula, or terminates 
w i th failure Of course, failure does not imply that there 
is no l6t-order equivalent for the input, only that the 
algorithm can not find one The class of 2nd-order for­
mulas, and analogously the class of circumscriptive theo­
ries which can be reduced, provably subsumes those cov­
ered by existing results The algorithm can be applied 
successfully to circumscriptive theories which may in­
clude mixed quantifiers (some involving Skolemization), 
variable constants, n-ary tuples of minimized and varied 
predicates, separable, separated and in some cases, non-
separated formulas, and formulas wi th n-ary predicate 
variables, among others In addition to demonstrating 
the algorithm by applying it to some of these theories, 
we analyze its strength and provide formal subsumption 
results based on comparison wi th existing approaches 

Due to page l imitations and the technical complexity 
of both circumscription and the algorithm we propose.we 
wi l l be forced to remain brief w i th preliminaries Conse­
quently, we assume famil iar i ty w i th the various types of 
circumscription and existing reduction results In gen­
eral, we wi l l refer to the original articles for the relevant 
theorems and results In addit ion, we provide only an 
informal description of the algori thm, but one that is 
adequate and sufficiently detailed for following the ex­
amples provided For a detailed description of the al 
gonthm and proofs of the subsumption results, we refer 
the reader to the technical report [Doherty et al, 1994] 

1 1 N o t a t i o n 
An n-ary predicate expression is any expression of the 
form Ax A(x) , where x is a tuple of n individual vari­
ables and A{S) is any formula of first- or second-order 
classical logic If U is an n-ary predicate expression of 
the form Xx A("S) and a is a tuple of n terms, then 
U{a) stands for A{3) As usual, a predicate constant 
P is identified wi th the predicate expression Xx P(x~) 
Similarly, a predicate variable $ is identified wi th the 
predicate expression Ax * ( 5 ) 
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The equivalence (8) was found particularly useful by 
Ackermann [1935, 1954] We extend the method by 
adding the equivalence (9) It makes the technique work 
in the case of clauses containing more than one posi­
tive (or negative) occurrence of the eliminated predicate 

This substantially generalizes the Ackermann technique 
The equivalence (10) is a second-order formulation of 
the Skolem reduction (see [Beathem, 1983]) It allows 
us to perform Skolemization (1 e elimination of existen­
t ial quantifiers) and unskolemization (1 e elimination 
of Skolem functions) in such a way that equivalence is 
preserved We call this equivalence second-order Skolem-
\zatton. 

2 T h e E l i m i n a t i o n A l g o r i t h m 
In this section we discuss the elimination algorithm Its 
complete formulation can be found in [Doherty et al, 
1904] The algorithm was originally formulated, in a 
weaker form, m [Szalas, 1993] in the context of modal 
logics It is based on Ackermann's techniques developed 
m connection wi th the elimination problem The elimi­
nation algorithm is based on the following lemma, proved 
by Ackermann in 1934 [Ackermann, 1935] The proof can 
also be found m [Szalas, 1993] 
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algorithm can also be used for formulas of the form 
since the latter formula is equivalent to Thus, 
by repeating the algorithm one can deal wi th formulas 
containing many arbitrary second-order quantifiers 

The el imination algorithm consults of four phases 
(1) preprocessing; (2) preparation for the Ackerxnann 
lemma, (3) application of the Ackermann lemma, and 
(4) simplification These phases are described below It 
is always assumed that (1) whenever the goal specific for 
a current phase is reached, then the remaining steps of 
the phase are slapped, (2) every time the equivalence (4) 
of Proposition 2 1 is applicable, it should be applied 

(1) Preprocess ing The purpose of this phase is to 
transform the formula into a form that sepa-
rates positive and negative occurrences of the quan­
tified predicate variable ø The form we want to 
obtain isa2 

where, for each n, A,(ø) is positive w r t 
ø and B,(ø) is negative w r t ø The steps of this 
phase are the following (i) Eliminate the connec­
tives D and = using the usual definitions Remove 
redundant quantifiers Rename individual variables 
unt i l all quantified variables are different and no 
variable is both bound and free Using the usual 
equivalences, move the negation connective to the 
right unt i l al l its occurrences Immediately precede 
atomic formulas (11) Move universal quantifiers to 
the right and existential quantifiers to the left, ap-
plying as long as possible the equivalences (1) - (4) 
from Proposition 1 1 (11) In the matr ix of the for­
mula obtained so far, distribute all top-level con­
junctions over the disjunctions that occur among 
their conjuncts, applying the equivalences (6) - (7) 
from Proposition 1 1 (iv) If the resulting formula 
is not in the form (5), then report the failure of the 
algorithm Otherwise replace (5) by its equivalent 
given by 

Try to find Equation (6)'s first-order equivalent by 
applying the next phases in the algorithm to each 
disjunct in (6) separately If the first-order equiva-
lents of each disjunct are successfully obtained then 
return their disjunction, preceded by the prefix 3x, 
as the output of the algorithm 

(2) P r e p a r a t i o n for the A c k e r m a n n l e m m a . The 
goal of this phase is to transform a formula of the 
form 3 ø ( A ( ø ) B ( ø ) ) , where A(ø) (reap B ( ø ) ) 
is positive (reap negative) w r t ø, into one of 
the forms (2) or (3) given in Lemma 2 1 Both 
forms can always be obtained and both transfor­
mations should be performed because none, one or 

3 I t should be emphasised that not every formula u re-
ducible into this form 

8 To increase the strength of the algor i thm, it is essential 
to move as many existential ly quantif ied variables as possible 
into the prefix of (5) 

both forms may require Skolemization Unskolem-
lzation, which occurs m the next phase, could fail m 
one form, but not the other In addit ion, one form 
may be substantially smaller than the other The 
steps of this phase are based on equivalences (6) -
(10) from Proposition 1 1 

(3) A p p l i c a t i o n o f t he A c k e r m a n n L e m m a . The 
goal of this phase is to eliminate the second-order 
quantification over ø, by applying the Ackermann 
lemma, and then to unskolemue the function vari­
ables possibly introduced This latter step employs 
the equivalence (10) from Proposition 1 1 

(4) S i m p l i f i c a t i o n Generally, application of Acker­
mann's Lemma in step (3) often involves the use 
of equivalence (8) in Proposition 1 1 m the left to 
r ight direction If sO, the same equivalence, or its 
generalization (11), may often be used after appli­
cation of the Lemma in the right to left direction, 
substantially shortening the resulting formula 

2 2 D i s c u s s i o n o f t h e A l g o r i t h m 
Assume we have a second-order formula A of the form 

(7) 
where, pref and pref are sequences of first-order quan­
tifiers, B and C are quantifier-free formulas in conjunc­
tive normal forms, B is positive w r t ø, and C is neg­
ative w r t ø Then, the following proposition holds 

P r o p o s i t i o n 2 2 Let A be an input formula of the form 
(7) Then, as a result, the algorithm returns a first-
order formula provided that unskolemization (if neces-
Bary) succeeds ■ 

Observe that Skolem functions are introduced in the 
second step of the algorithm whenever existential quan­
tifiers are to be eliminated These can appear in the 
input formula or may be introduced via application of 
the equivalence (9) of Proposition 11 In the follow­
ing proposition, we formulate conditions under which no 
Skolem functions are introduced and the algorithm ter­
minates successfully 

P r o p o s i t i o n 2 3 If one of the following conditions 
holds (1) B is universal and each conjunct of B con­
tains at most one occurrence of ø, or (2) C is universal 
and each conjunct of C contains at most one occurrence 
of ø, then the algorithm always returns a first-order 
formula as output ■ 

If the input formula cannot be transformed into the 
form (7) then the algori thm fails 

3 On the S t reng th o f t he A l g o r i t h m 
In this section we consider existing reduction results 
and their subsumption by oux algori thm A compila­
t ion of many of the existing reduction results can be 
found in [Lifschitz, 1994], in addition to other relevant re­
sults in earlier papers [Kolaitis and Papadimitnou, 1988, 
Lifschitz, 1985, 1988, Rabinov, 1989] In [Doherty 
et al. , 1994], we prove that the algorithm subsumes, 
and la even stronger than the results given In [Ko-
laitis and Papadimitnou, 1988, Lifschitz, 1985, 1988, 



The SCAN algorithm was Introduced by Gabbay and 
Ohlbach [1992] It is difficult to compare SCAN with our 
algorithm since no syntactic characterization of formulas 
accepted by SCAN is known We conjecture that both 
approaches are successful for the same class of formulas 
However, the additional advantage of our algorithm is 
that it always terminates, while SCAN may loop For 
example, the formula 

when given as input to our algorithm does terminate, 
while for SCAN it does not 

Addit ional strengths and weaknesses are considered m 
the next section 

3 1 C o m p a r i s o n o f A p p r o a c h e s 
In comparing the different approaches and results con­
cerning the reduction of circumscriptive theories, we wil l 
refer to Figure 1 below, which provides a pictorial view of 
the subsumption relation between the various theorems 
and types of theories reduced DLS refers to our algo-
r i thm, M I X E D refers to theories wi th mixed quantifiers, 
VC refers to theories which allow variable constants, and 
M O N A D refers to theories w i th only monadic sentences 
In addit ion, refer to purely universal and ex­
istential theories, respectively, while refers to those 
theories where Skolemization is necessary, and refers 
to mixed theories not requiring Skolemization The solid 

*Rabinov requires n-simpl ic i ty here 

arrows denote subsumption In addition there are two 
broken solid arrows The arrow pointing towards "Cor 
3 3 3" is broken to signify that although the DLS algo­
r i thm m its general form does not ful ly subsume Corol­
lary 3 3 3, when specialized appropriately, it does We 
discuss this m a later section The arrow point ing to­
wards SKOLEM is broken to signify that the DLS algo­
r i thm works for those theories involving Skolemization 
when the unskolemization step is successful and the al­
gorithm returns a first order formula as output Since, 
it may not be possible to unskolemize certain theories 
successfully, there is no complete subsumption of this 
class 

Pos i t i ve Resu l ts 
In addition to the results described m the previous sec­
t ion, observe that the method we propose is also stronger 
in regard to the following features 

• DLS provides us wi th a more general approach to 
existential quantification due to the possibility of 
allowing Skolemization Thus it works for combi­
nations of existential and universal quantifiers On 
the other hand, Kolait is and Papadimitnou consider 
pure existential formulas, while Lifschitz and Rabi­
nov consider pure universal theories 

• DLS does not distinguish between theories wi th 
variable constants and those without On the other 
hand both Rabinov, Kolait is and Papadimitnou, 
(and Lifschitz to some extent), restrict their theo-
ries to those without variable constants In some 
cases, Lifschitz'e results can reduce theories with 
variable constants if the theories are separable and 
no Skolemization is mvolved (See the next section 
for problems DLS has wi th separated theories) 

• DLS permits as input circumscriptive theories wi th 
arbitrary numbers of minimized and varied predi­
cates This is not the case for Rabinov's result nor 
for Lifschitz's result pertaining to separated formu­
las 

• DLS describes how to constructively transform for­
mulas into the required form 
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