Syntactic Conditional Closures for Defeasible Reasoning

James P Delgrande

School of Computing Science,

Simon Fraser University,
Burnaby, B C ,
Canada V5A 1S6
email jim@cs sfu ca

Abstract

An approach to nonmonotonic inference based
on a closure operation on a conditional knowl-
edge base is presented The central idea is that,
given a theory of default conditionals, an ex-
tension to the theory le defined that satisfies
certain intuitive restrictions Two notions for
forming an extension are given, corresponding
to the incorporation of irrelevant properties in
conditionals and of transitivity among condi
tionals, in this approach these notions coincide
Several equivalent definitions for an extension
are developed general nonconstructive defini-
tions, and a general "pseudo-iterative" defini-
tion Reasoning with irrelevant properties is
correctly handled, as is specificity, reasoning
within exceptional circumstances, and inheri-
tance reasoning Tina approach is intented to
ultimately serve as the proof-theoretic analogue
to an extant semantic development based on
preference orderings among possible worlds

1 Introduction

A continuing problem in Artificial Intelligence is dealing
with general, generic sentences that admit exceptions
For example, suppose we are given that birds fly birds
have wings, penguins are birds, and penguins don't fly
We can write this in a propositional gloss1 as

B=F B=W, P=3 B, P ~F (1)

In nonmonotonic reasoning with such statements there
are several principles that one would want to hold Ac
cording to the principle of specificity, a more specific de-
fault should apply over a less specific default Thus given
that P is true, we would want to conclude ->F by default,
since being a penguin is a more specific notion than that
of being a bird Second, one should obtain transitivity
of default conditionals, or inheritance of properties by
default So, given that P is true, one would also want to
conclude by default that W was true, and so penguins

'"That IS to say we will eventually have to deal with first-
order issues but do not do so here For this paper B => F
can be given the reading "if x-is-a-bird then normally x-flies"
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have wings by virtue of being birds Third, irrelevant
properties should be properly handled and so, all other
things being equal, we would want to conclude that a
green bird flies Fourth, one should be able to reason in
the presence of exceptions, and so given that B, ~>F was
true one would still conclude that W was true

It has proven difficult to specify an approach that
achieves all of these properties Earlier systems (such
as Circumscription and Default Logic) provide accounts
of general mechanisms for nonmonotonic inference that
generally handle inheritance and relevance well, but do
not deal with specificity Rather it is up to the user
to hand-code specificity information For example in
the naive representation of the above example in Default
Logic, if P is true we obtain a set of default conclusions
in which ->F is true and another bet in which F is true

Rpcently much attention has been paid to conditional
systems of default inferencing The starting point here
is not so much to provide a general mechanism for non-
monotonic inference, as it is to provide a theory of some
phenomenon, based on intuitions concerning, for exam-
ple, possibility exceptionalness, or nonmonotonic con-
sequence operators The initial systems were, on the
whole, quite weak, subsequent work has focussed on
means to extend the system's basic inferences As dis-
cussed in the next section, while these systems generally
handle specificity well, none satisfactorily handles all of
inheritance, relevance, and reasoning in exceptional cir-
cumstances

This paper explores approaches to syntactically clos-
ing off a conditional knowledge base The idea is to for-
malise directly notions corresponding to the incorpora-
tion of irrelevant properties and, separately, to the inher-
itance of properties Essentially then "proof-theoretic"
approaches to default reasoning are investigated, based
on intuitions regarding desirable properties for a non-
monotonic reasoning system | begin with a specific
conditional logic capable of expressing relations among
defaults So, given our initial example, we can derive the
fact that birds are normally not penguins (\ e B = ->P)
This logic however does not address the problems of ir-
relevant properties or inheritance Thus we cannot con-
clude that a green bird flies, nor that a penguin has
wings by "transitivity" We address this by defining an
extension of a theory, or a plausible "extended" default
theory In the first place, an extension includes condi-



tionals incorporating irrelevant properties In the sec-
ond place, an extension includes conditionals obtained
from (default) transitivities among conditionals, and so
accounts for inheritance

The appropriateness of the approach is argued in a
number of ways First, the approach formalises plausi-
ble, familiar intuitions concerning properties of default
inference Second, various canonical and non-canonical
examples are shown to be appropriately handled here
Third, it proves to be the case that incorporating ir-
relevant properties corresponds exactly to incorporat-
ing transitivity of conditionals Hence the same (non-
monotonic) phenomenon underlies these seemingly dis-
tinct notions The approach then is of independent in-
terest, nonetheless, it is intended ultimately to serve as
a proof-theoretic analogue to an extant semantic ap-
proach, based on preference orderings among possible
worlds The next section discusses related work In Sec-
tion 3 the logic of defaults on which the present approach
is based is presented Section 4 gives the formal details
of the approach This is followed by a discussion and
a concluding section Proofs of theorems and further
details are found in [Delgrande, 1995]

2 Background

Related Work Many of the earlier systems of default
reasoning deal with mechanisms for effecting nonmono-
tonic reasoning  Autoepistemic Logic [Moore, 1985],
Circumscription [McCarthy, 1980], Default Logic [Re-
iter, 1980], and, for our purposes. Theorist [Poole, 1988]
are examples of such approaches In this group, issues
of specificity are not addressed within the system, al-
though other properties such as inheritance, are ade
quately handled Various modifications have been pro-
posed to handle specificity in these systems but these
modifications are build on top of the system Without a
formal theory, it is not clear if such modifications are ap-
propriate or in any sense complete Since defaults per se
are not part of the formal system one also cannot reason
about defaults Thus, one could not conclude from our
initial example that birds are normally not penguins
Recently, much attention has been paid to conditional
systems of default inferencing Such systems address
specific forms of nonmonotonic inference, or deal with
specific defeasible conditionals based, for example, on
notions of preference or exceptionalness There has been
a remarkable convergence or agreement on what con-
stitutes a core set of inferences that ought to be com-
mon to all nonmonotonic systems Systems such as ent-
entailment [Pearl, 1988] (or 0-entailment or p-entailment
[Adams, 1975]), possibihstic logic [Dubois and Prade
1994], preferential entailment [Kraus et al, 1990], and
CTA [Boutiher, 1992], among others, essentially allow
the same inferences, and may be taken as specifying a
conservative core [Pearl, 1989] that ought to be com-
mon to all nonmonotonic inference systems These ap-
proaches deal satisfactorily with specificity However,
not unexpectedly, they are much too weak In particu-
lar, relevance and inheritance of properties are not han-
dled Hence, even though a bird may be assumed to
fly by default, a green bird cannot be assumed to fly by

default (since there may be models of a theory where a
green bird does not fly)

Equally surprising, there has also been a strong con-
vergence on a means of strengthening these systems Ap-
proaches including System Z and 1-entailment [Pearl,
1990], CO' [Boutilier. 1992], possibilistic entailment
[Benferhat et al, 1992], and rational closure [kraus et
al, 1990] all assume, in a semantic sense, that a world
is as unexceptional as possible Thus essentially, since
there is no reason to suppose that greenness has any
bearing on flight, one assumes that greenness has no ef-
fect on flight While this assumption seems reasonable
enough, its realisation in these systems is not unprob-
lematic, as described below In brief these approaches
fail to allow full inheritance of properties, as well they
allow unwanted specificity relations In the next sub-
section, System Z is described as a represent ative of
these approaches These approaches have been extended
in various wavs, including [Goldszmidt and Pearl, 199]
Goldszmidt et al, 1990, Benferhat et al, 1993] Howevtr
these extensions allow the unwanted specificities found
in the original approaches)

Of other work, [Delgrande, 1988] gives an iterative
strengthening of defaults using meta-theoretic assump-
tions However, since it provides an iterative procedure
for strengthening it is difficult to formally characterise
the set of default inferences This approach is strictly
subsumed by the first approach described here [Geffner
and Pearl, 1992] presents another strengthening of the
above-mentioned systems called conditional entailment
There are two difficulties with this approach first, it is
quite complex in its formulation and, second, it does not
sanction full inheritance of default properties

System Z This subsection describes Svstem Z as o
representative of the set of systems mentioned above for
forrming the closure of a conditional knowledge base As
well as being simple to describe, Systern Z has the advan
tage that 1ts description does not rely on prior knowledge
of any systern corresponding to the “conservative core”
In Sysiem Z, e sel of rules R representing defaults is
partitioned 1nto an Iist of mutually exclusive sets of rules
R ,Rn One begins with a set B = {r | a, — 3,}
where each o, and A, are propositional formulas A set
R C R toleraies a rule r of {0, A 8.} U R v satisfiable
From this, an oruering on the rules in R 15 defined

1 Find a]] rules tolerated by R and ¢all this sel Ry

2 Next, find all rules tolerated by R — Ry, and call
this set R,

3 Continue m this fashion until all rules have been
accourted lor

We obtain a paruition {Rg, R.) of R, where R, =
{r|ristolerated by R~ R¢— — R._1} The rank of
rule r, wniten Z(r), 15 given by Z(r)=z.ff r € R, For
our example, we oblain the ordering
RD:{B—.FB—-W}, R-l:{P—»B‘P—vﬂF}
An interpretation M 1s given a Z-rank, Z(M), according

to the highest ranked rule 1t falsifies Z(M) = min{ n |
M E ar D 8., Z(r) > n} The rank of a formule ¢ 18
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defined as the lowest Z-rank of all interpretations sat-
wlymg ¢ Z(w) = min{Z(M) | M | ¢} A form of
default entailment If-entatlment, 18 defined by

w1 @ Z{w Ad) < Z(e A —~¢)

This gives a form of default inference that has some very
mice properties Irrelevani facts are bandled well and for
example we have BA G Iy F, 8o green birds Ay There
are iwo weaknesses with this approach First, one cannot
inherit properties across exceptional subclasses So one
cannot conclude that penguins have wings (since W
will be true at some least-ranked P world) Second, un-
desirable speaficities may be obtained conmder where
we add to our example the default that calm animale
(C) have low blood pressure (L) Intuitively, O — L
18 1Trelevant to the other defaults yet we obiain the de-
fault conclusion that calm anunals aren’t penguins, since
Z(CA-P) < Z{(CAP) The first difficulty 1s addressed 1n
[Benferhat et al , 1993), the second 1s not  Moreover, this
seems to be a problem endemc to all such approaches

3 A Logic for Default Properties

The approach 12 founded on a speafic conditronel logic
This logic carresponds to an extension of the aforemen-
tioned “conservative core” for default inferences 2 See
[Delgrande, 1987, Boutiher, 1992] for detals The fun-
damental 1dea 18 straightforward possible worlds are ar-
renged according to & notion of “exceptionalness”, a de-
fault @ = # 15 true just when there 18 & world 1n which
a A f1s true and o O F 18 true al all worlde that are
not more exceplional Thus, “birds ly”, B = F, 18 true
if, tn the lesst B-warlda, B O F 13 true Intuilrvely,
we disregard exceptional circumstances such as being a
penguin, having a broken wing, etc

More formally, our language 18 Lhat of propositional
logic augmented with a binary operator = We reserve
O for matenal impheation For readabihity (especially
10 Section 4) comjunction 15 sometimes represented by
Juxtapomtion, hence A A B and AF stand {or the same
formula For sumpheity there are no nested occurrences
of Lhe = operator Sentences are interpreted 1o terms of

8 model M = (W, E, P) where
1 W s aset (of worlds),

2 £ 15 a binary accesmbility relation on worlds, with
properties

Reflexive Eww for every we W
Transitive If EFw,w; and Euswy then Fwyws

Forward Connected If Ew,wy and Fuwqwy then
Euwgw;y or Ewgzweg

3 P s a mapping of atomic sentences and worlds onto
{true, false)

Truth at & world w i model M (=M) 16 as for propo-
aitional logie, except that

I There are two reasons for adopting a shghtly stronger
gystem First ths system includes (in the author’s opimion)
olher essential relations goverming genenc statements {moat
umportantly that & = v D ((a A g = 4) V(e Ag 2> 7))
3 vahd} Second 1t has & mmpler eemantics However the
results presented here apply equally Lo thess wesker systems
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=M o = 8 1ff there 18 a w, such that Ew,un
and |=ﬂ: a A S and for every w3 where Ew, wy

we have M o 5 g

In addition, Oa (*necessanly a”) 18 defined as e = a,
and Th(T) 18 the get of formulas logically entailed by
default theory T

The accessibility relation between worlds 15 defined 8o
that from a particular world w one “sees” a sequence of
successively “less exceptional™ sets of worlds For o = 2
to be true we require that there be a world 1n which o
18 true, and so we exclude the case of a vacuously-true
default ¥ This has no effect on the expressihihty of the
language (and indeed the following exposition can be
developed ellowing vacuously-true conditionals), but it
does ssmphify things somewhat

This logic eupplies us with a weak, but semantically
Justified, system of default inferencing Given a set of
defaults and necesgitations T', @ follows by default [rom
o Jusl when o =% 15 true 10 all models of 7 Thus

Definition 3 1
B foliows from a by defaxh m T Tk o= 8

Hence (as previously discussed) we can conclude that a
penguin does not fly, while a bird does, and if some-
thing flies then i 16 not a penguin However we cannol
conclude thet green birds fly, since there are models n
which green birds do not fly Nor can we conclude that
penguins, by virtue of being hirds, have winge In both
these cases 1t seems that, plausibly, we would want to
make the given inference, from green bird to fly, and
from penguin to winged In the next section we describe
two approaches for extending a defanlt theory, wheremn
relevance and inhenitance are properly handled

4 The Approach

In what follows, I will 1dentify a default theory T with
a set of defeult conditionals (corresponding to mesertions
such ss “birds fly”) together with a set of assertions
taken to be necesganly true (corresponding to assertions
such a8 “penguing are necessarily birds”) A default the-
ory ihen contamns ipformation that 15 taken to be Lrue
across all domaing of interest Contingent world knowl-
edge (such a8 “individual z flies”) 18 not part of a default
theory, but rather represents case-specific information

The logic of Section 3 supplies us with a means of de-
termuning the relative spectficiiy of default conditionels
2 18 sinictly more apecafic than o, wntten o < 2, can be
defined as {ollows

Defimtion 41 TEa <8 1ff TEavi=>-f

The night side of the definition says that fer every
model of T, at some a V £ world, v, = 15 Lrue, and o Vv
B 2 =f 18 true al all equally- or less-exceptional worlds
Thus o 18 true at w, and there are no equuvalently-
exceplional or less-exceptional worlds 1n which J 18 true
We have that < 18 yrreflexive, ssymmetric, and traomtive,
also, < and = are interdefinable [Lewis, 1973)

o < 18 defined as —=(8 < a) Using this, the following
notion of apecificity 19 defined

Thus this conditional corresponds to the “would” cond-
tional of [Lews, 1973]



Definition 4 2
S 18 more specific than o 1r thesry T, wnttena <1 §
ffTEa=Fand 13 not the case thal T = 8 < o

The general 1dea of the approach 18 streaghtforward
Beginning with 8 defeult theory T, we “appropnately’
extent this theory, so thet we obtain “reasonable” con-
clusione 1n the extension Default reasoning 1s given as
in Defimtion 3 1, but with respect to extensions Thus,
aince birds fly and we have no remson to believe that a
green bird does not fly, we would 1nelude BAGr = F
in an extension However there 18 & good reason (o be-
heve thal a bird that 18 a green penguin does not fly,
nemely that penguins do not fly, and so we would not
include BAPAGr = F The ssue then 1s to distinguish
“reasonable” {rom “unreasonable” additions Lo a theory

In this regard, there are two common notions for aug-
menting a default theory These are strenglhening the
aniecedent of a conditional, which I will call §TR, and
transitivity among conditionals, or TRANY Infor nally,
these notions correspond to Lhe mncorporation of irrele-
vant properties 1n a conditional and inhentance of prop-
erties, respectively In what follows | first develop a del-
imtion for STR Following this, a definilion for TRANS
15 given and the two notions are shown to be equivalent

For STR, there are three properties that can be ex-
pected 1o hold for an exiension £ of default theory T

1 It should contain Lhe ongnal theory
2 It should be logically closed
3 fa=z>fgTthena=>pge Eff

(a) There is a reason to accept the conditional

(b) There is no equally strong (or stronger) reason
to not accept the conditional

Thus in the case of green penguins there 16 a reason to
suppose that such an animal flies (since birds fly) and a
reason to suppose that it does not (since penguins don't
fly) Since the notion of penguinhood is more specific
than that of being a bird, we would conclude that a
green penguin does not fly by default

More formally, we have the following definition

Definition 4 3 (STR)
An extension E from strengthening a default theory T
is a minimal set of formulas such thai

! TCE,
2 Th(E)=E, and
S ifoa'BelEthenare’' e Esflfara’ DL

and whenever E ana’ Do’ and o’ = ~F Cc E
then a” € of

For default transitivity, we can again 1dentfy three
properties that can be reasonably expected to hold for
any exteosion £ In addition to Properties 1 and 2

3 Ha=y¢ThutoezF,8=>9v€EE thena=yeE
Ef
() There 15 a reason to accepb a =y € £

{b) There 18 no equally atrong or stronger reason
to not aecept &« =+ v € E

Hence, appropriately realised, these propertiea would
perrmt the inference that a pengwin has wings, based on
the fact that penguine are birds and birds have wings
We have the definition

Definition 4 4 (TRANS)
An extension E from transitivity of a default theory T
15 o mimimal sel of formulas such that

! TCE,

2 Th(E)=F,

$ Ifa=o' 0" cFE thena= 2 E 1f whenever
a=a"€F and 0" = =F € E then o g o'

In this case, for the third part, o 2> A€ Ef

1 there 18 a reason Lo accepl the condilional via tran-
aitivity we have conditionals @’ = o € E and

a=8¢€E, and

2 if there are also formulas o' = o' and o = -
in E, then o 15 less specific than &’ Thal 15, we
would conclude o' and o' from o However, since
a' € F o' we would conclude # and not =43

Informally, this definition allows us Lo asserl that “bards
fly based on the defaults “birds normally have wings"
and “winged things normally fly” Hence birds mhernit
the property of flight from that of winged things

Interestingly, these two notions for constructing an ex-
tension are equivalent.

Theorem 4 1 E' is gn eztension of T from strengthen-
ing 1ff E 15 an exitnsion of T from transilimiy

In hght of Theorem 4 1, we need not distinguish ex-
tensionk obtained from strengthening versus extensions
obtained from transitivity Consequently I will simply
refer 1o ertensions of a defanlt theory, and will just make
use of Defimtion 43 4

The next theorern provides a quasi-iterative specifica-
tion for an extenaion While this may be of limiied use in
constructing am exXtension (since the extension appears
1n the specification), 1t does provide a means of vemfying
whether a set of formulas 19 an exiension of a default
theory

Theorem 42 Lelt T and E be sets of condiltonals
Define

Eu = T
ard for everyz > ()

{a=>f| Eadland
{1} there 1a o' such that Fa Do
where o’ = B € E,, and
(w)if Eada’ enda”" = -FcE
then o” €p o'}

Then E 15 ar exlension of T off E = U £

1=0

11 18 worth noting that for any suffiqently strong system
of defeamble inlerencing these nolions coinade, in that any
syalem that “reasonably” umplemenis STR will also obtan
TRANS and vice versa See [Delgrande, 1995) for details
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Default inference 18 defined rs follows

Definition 4 5
B follows from o by default i theory T, a by B.° +ff
for every extenston E of T, we have E o=

The remainder of this seciion presents examples and
discnases properties of the approach The first example
18 a variani on an example presenied at the outset of the

paper

Example 41
T={B=WW=FP=BP=-F}

So birds have wings, winged things fly, penguins are
nonflying birds The extension £ of T contains the fol-
lowing sentences

BAGr=F, BAGraAP=-F P=W
In the notation of Defimition 4 § this could be written as
BAGrpr F, BAGrAPpr-F, Phr W

In the first formula, birds fly by Lransitivity, and green-
ness 13 irrelevant, so green birds iy Green 16 alsc irrele-
vant with respect to a penguin & being able to fly, and so
green penguins don't fly While penguins are exceptional
birds, in that they do not fly nonetheless penguins have
wings by default

Note that there are two sources of ‘nonmonolonic-
ity” The first 18 1n e sense illusory, denving from the
properties of the conditional logic itsell For the above
example we have B = F,BA P = =F € Th(T) and so
By F,and BAP por ~F Thal 1s despite appear-
ances, we are here deahng with an underlying monotonic
systern However Lhere 15 a second source, deriving from
the definition of an extension Thus 1l T 15 as above and
T'={B = F} then we have 7" C T, and BA P pops F
but 8 AP pep o F

Example 42 T = {@Q = P, R = -P}

Thie 15 a familiar example involving conficling de-
faults There 15 one extension £ of T, we have, among
other conclusions QA-R=> P Q=>-ReckE

Example 4 3
T={A = B1,A, 2 By, Ag = By, 0-(ByByBa)}

This 13 an extension of the previous example there are
three defaults which cannot be simultanecusly applied
Again there 15 only one extension The formula 4,45 =
By 15 10 the extension, as 158 AjA; = By By Clearly
we would not want 4,434z = B, to be in the exten-
slon, since by symmetry we would also have the same
antecedent support B; and B3 But these statements
together are only trivially satisfiable Note that in order
1o block the presence of 4, 4544 = B, € £ based on
Ay = By €T we use the fact that 4s 43 = Ba A3 € £,
whence Aada = ~0;, € £ However we do have that
the following formulea s 1n the extenmon

AlA2A3 = (B] Bz"‘Ba) V' (Bl—‘BzBa) vV (-'Bl BQB;;)
*By nghts o should be a set of formulas For sumphaly

[ will sometimes abuse notation and wrte a [ormula to the
left of p+r
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That 15, given A1 A543 we have that two of By, Bq, Bs
hold, but we don't know which Furthermore we have
that
A1A2A3-By = BB and A1 A;-ByAs—Ba = B

are 1n the extensicn Thus, 1n the presence of falsified
conditionals, we obtain the desired conclusions Fmnally
if we were to add the information that 42 < 4; and A3 <
A; to T', we would obtain A; 4243 = B, in the extension
(1n fact we also obtain A; AyAs = B (B; v Bg))

There are default theoriea where there 18 more than
one extension Perhaps the sumplest such theory 18 Lhe
Tollowing

Example 4 4
T={By=>C, 8;=C3, A= (8,C1)V (B~C)}

The third default aasserts that one of the first two does
not hold, however 11 does not speafy which does not
hold We obtain one extension which contains AA B, =
C1 (and A A By = —() and a second which contains
AANBz = Cs (and 4 A B, = —(C}) Both exiensions
contain A = ~(B1 D (1) = (B2 2 (2)

Extensions have guite reasonable properties The fol-
lowing theorems are fundamental

Theorem 4 3 If T 15 a default theory then T has an

erlension

Theorem 4 4 For eziension £ of T, E 15 incensistent
1ff T' 1 inconstatend

Theorem 4 § If £,, Fy are extensions of T and F| #
Eqthen EyUE | L

Thus extensione exisl, and are inconsistent only 1f the
underlying theory 1s nconsistent  Further, if there 1s
more Lthan one extension of a theory then the extensions
are mutually \nconsistent

A default theory may be ambiguous or incomplete
with respect to specificity 1n the lollowing sense

Definition 4 6 T 15 ambiguous with respect to speci-
fierity +f there are 4;, 72, a such thal T | 71 V7, < «
btTEN <aamdTE <

We obtain

Theorem 4 6
No ertension 15 ambiguous with respect to specificity

Thus speafiaty ambiguilies are resolved in one fashion
or another in {orming an extension In Example 4 4 we
have T = By VB, < Abut T £ By < Aand T
B; < A In one exteneion we oblamn B; < A and in
another B3 < A 1n Example 4 2, on the other hand,
TEQVR<QARDUWTHEQ<QARendTE R <
QAR In the resulting (single) extension we obtain both
Q<Q@QARand R< QAR

Finally, for & conditional belonging to an extension,
either & given property 1s irrelevant with respect to the
conditional or 1t8 negation 18

Theorem 4 7
Ha=>feFE thenary=>BEEoran—~y=>8cE

Thus, given that B = F is 10 8n extension, then either
B AP = Fi1s1n the extension or BA=P = F s Also
presumably we would obtein that both BAGr = F and
B A=(Gr = F are in the extension



5 Discussion

Comparison with Related Work The technical de-
velopment of the last section is somewhat reminiscent
of that of Default Logic [Reiter, 1980], and it is worth-
while outlining the similarities and differences In De-
fault Logic (DL) a default theory is given by a pair
(D,W) where D is a set of default rules (expressed as
domain-specific "rules of inference") and W is a set of
classical (first-order or propositional) formulas, giving
information about the domain at hand An extension is
a maximal acceptable set of beliefs, obtained by "apply-
ing" as many rules from D (given W) as possible An
extension then is a superset of W

In our case the object is to extend the set of default
conditionals, in DL this would correspond to augment-
ing D An extension in the present approach then is
intended to be "applicable' to any domain of applica-
tion (1 e to any "W")

In both approaches three properties are given that can
be expected to hold for any extension

1 The thing extended (W in DL, T here) should he
contained in an extension

2 The extension should be deductively closed

3 As many "rules" as possible should be applied or
added

In both cases a nonconstructive definition of an exten
won is given the present approach does not require a
fixed-point definition as DL does (roughly) due to the
comparatively restricted form of the conditional defaults

With respect to more recent and more closely-related
work, the present approach can be compared to ap
proaches exemplified by System Z [Pearl, 1990]° As
mentioned in Section 2, there arc two weaknesses with
these systems one cannot inherit properties across ex-
ceptional subclasses, and undesirable specificities, are
sometimes obtained The first difficulty has been rec-
tified in, for example [Benferhat et al, 1993] How-
ever since this system subsumes System Z the second
problem remains The difficulty here (and the difference
with the approach at hand) is that System Z assumes
that things are as "unexceptional' (I e ranked as low)
as consistently possible Hence for our birds and pen-
guins example, any irrelevant conditional (e g "students
like cheap but good restaurants") is ranked at level O,
and consequently lower than any conditional involving
penguins This, as described previously, leads to unde-
sirable specificities In the approach at hand, unrelated
conditionals remain unrelated and so there are no direct
inferences between penguins and students

As mentioned, the approach of strengthening pre-
sented here strictly subsumes one of the approaches given
in [Delgrande, 1988], where an iterative means of aug-
menting a theory is given

6'Recall from Section 2 that systems such as CO"
[Boutiher 1992] possibilistic entailment [Benferhat el al,
1992], or rational closure [Lehmann and Magidor, 1992] are
essentially equivalent with respect to derivability

Further work  There are two major areas for further
work The first concerns a semantics for the approach,
while the second deals with implementation issues

The assertion was made at the outset that this ap-
proach is of independent interest Nonetheless, it has
been formulated with a specific semantic development
in mind [Delgrande, 1994] In this latter development,
a conditional in a theory T prefers a world in which the
classical counterpart of the conditional is true, over a
world in which it is false That is, B = F prefers a
world in which B O F is true over one in which B A =F
is true Following on this intuition, a set of condition-
als T determines an ordering (or ordenngs) on a set of
possible worlds In this approach (3 follows by default
from ct just if B is Lrue in the most preferred worlds in
which ft is true It is conjectured that these approaches
are equivalent they were formulated with this equiva-
lence in mind but it remains to be shown that they are
equivalent

With respect to implementation concerns, although
the definitions for an extension involve the addition of
an infinite number of defaults, it is clear that an im-
plementation would not need to contend with the full
set of defaults in an extension 7 Rather, in determining
whether alpha - B given a theorem prover for the logic
(see [Lamarre 1992] for example), the issue is to find a
set of supported conditionals which when added to T al-
lows or => 0 to be derived Second, we might expect that
when the form of sentences in a theory is appropriately
restricted (say, to something looking like Horn clauses)
we would obtain good complexity results

6 Conclusion

This paper has presented an approach for extending a
default theory so as to obtain a system for default in-
ferencing via the incorporation of irrelevant properties
or inheritance of properties The approach takes as a
starting point an extant (monotonic) logic of defaults
From this, given a default theory, definitions for an ex
tension were given corresponding to intuitions regarding
irrelevant properties and inheritance of properties In
addition to the logic of defaults described in Section 3,
the results of this paper apply also to the "conserva-
tive core" for default inferences Arguably the notion of
an extension satisfactorily formalises intuitions concern
ing augmenting a default theory That the approach
captures a reasonable notion of "extension' is also sup-
ported by the fact that the concepts of irrelevance and
inheritance prove to be interdefinable The approach
also handles standard and non-standard examples of de-
fault reasoning, and avoids the difficulties encountered
by other approaches Finally, it is conjectured that an
extant semantic approach is equivalent to the present
work

The approach is intended to be applicable to defea-
sible conditionals, or to generic sentences which allow
possible exceptions Consequently it will not be, nor

TAny more so than in classical logic, in determining
whether T |- o, one would first, form the deductive closure

of
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ISit intended to be, applicable in all areas For exam-
ple, in this approach defaults are implicitly "applied"
wherever possible Consequently, given a chain of de-
faults T = {A1 = A3, Az = Aa yAn-1 = An)
lacking contradictory information we would obtain that
Ay b1 A, This may be fine for default reasoning, but
it leads to unintuitive results for temporal reasoning, as
has been noted for example for chronological ignorance
Hence the present approach would appear to produce
results too strong for such reasoning

There are two principal areas for further work First
a provably equivalent semantics, presumably based on
preference orderings among worlds, is obviously desir-
able Second, computational concerns have not been ad-
dressed However the immediate goal of this paper has
been to characterisation proof-theoretic approaches to
default inference Given this, computational issues can
subsequently be addressed
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