
Efficient Parameterizable Type Expansion
for Typed Feature Formalisms*

H a n s - U I n c h K r i e g e r U l r i c h Schafer
German Research Center for Art i f ic ia l Intelligence (D F K I)

Stuhlsatzenhausweg 3 66123 Saarbrucken, Germany
phone +49 681 302-5299 fax +49 681 302-5341

{ k r i e g e r , schaefer}@ddfki u n i - s b de

A b s t r a c t

Over the last few years, constraint-based gram­
mar formalisms have become the predominant
paradigm in natural language processing and
computational linguistics From the viewpoint
of computer science typed feature structures
can be seen as data structures that allow the
representation of linguistic knowledge in a uni­
form fashion Type expansion is an operation
that makes constraints of a typed feature struc­
ture explicit and determines its satisfiability
We describe an efficient expansion algorithm
that takes care of recursive type definitions and
permits the exploration of different expansion
strategies through the use of control knowledge
This knowledge is specified on a separate layer
independent of grammatical information The
algorithm as presented in the paper, has been
full> implemented in C O M M O N LISP and is an
integrated part of the typed feature formal-
lsm TDC that is employed in several large NL
projects

1 I n t r o d u c t i o n
Over the last few years constraint-based grammar for-
malisms [Shieber, 198G] have become the predominant
paradigm in natural language processing and computa­
tional linguistics While the first approaches releid on
annotated phrase structure rules (e g PATR-II [Shieber
et al 1983]), modern formalisms try to specify gram-
matical knowledge as well as lexicon entries entirely
through feature structures In order to achive this
goal one must enrich the expressive power of the first
unification-based formalisms with different forms of dis­
junctive descriptions Later other operations come into
play e g , (classical) negation

However the most important extension to formalisms
consists of the incorporation of types, for instance in
modern systems like TFS [Zajac, 1992] CUF [Dorre
and Dorna 1993] or TDC [Kneger and Schafer, 1994]

"This work was funded by the German Federal Ministry
of Education Science, Research and technology as part of
the Verbmobil project We are grateful to threp anonymous
1JCAI reviewers for helpful comments

Types are ordered hierarchically as is known from object-
oriented programming languageb a feature heavily em­
ployed in lexicahzed grammar theories like Head-Driven
Phrase Structure Grammar (HPSG) [Pollard and Sag,
1987] This leads to multiple inheritance in the descrip­
tion of linguistic entities In general, not only is a type
related to other types through the inheritance hierar­
chy but is also provided, wi th feature constraints that
are idiosyncratic to this type Hence a type symbol can
serve as an abbreviation for a complex expression and
an untyped feature structure becomes a typed one If a
formalism it. intended to be used as a stand-alone sys­
tem it must also implement recursive types if it does
not provide phrase-structure tecursion. directly (within
the formalism) or indirectly (via a parser/generator) 1

In addition certain forms of relations (like append) or
additional extensions of the formalism (like functional
uncertainty) tan be nicely modelled through recursive
types

Now because types allow us to refer to complex con-
stiaints through the use of symbol names, we need an
operation that is responsible for deducing the constraints
that are inherent to a type This means, reconstructing
the idiosyncratic constraints of a type, plus those that
are inherited from the supertypes We will call such
a mechanism type expansion (TE) or type unfolding 3

Thus TE is faced with two main tasks

1 making some or all feature constraints explicit (type
expansion is a structure-budding operation)

1 determining th(global consistency of a type or more
generally, of a typed feature structure

Types not only serve as a shorthand, like templates,
but also provide other advantages which can only be ac­
complished if a mechanism for TE is available

For instance ALE employs a bot tom-up chart parser,
whereas TFS relies entirely on type deduction Note that
recursive types can be substituted by definite clauses (equiv­
alences) as is the case for CUF, audi tha t parsing/generation
roughly corresponds to P R O L O G s SLD resolution

It ia worth noting that our notion of TE shares simi­
larities with Ait-Kacj's sort unfolding [Ait-Kaci et al, 2993]
and Carpenter's total well typedness [Carpenter, 1992, Ch 6]
However, the latter notion is not well-defined for t rue recur­
sive typed feature structures in that such structures cannot
be total ly well-typed wi th in f inite time and space

1428 NATURAL LANGUAGE

• STRUCTURING KNOWLEDGE
Hierarchically ordered types allow for a modular
way of representing linguistic knowledge Gener­
alizations can be put at the appropriate levels of
representation Type expansion, then is responsi
ble for gathering the distributed information that is
attached to the type symbols

• SAVING MEMORY
In practice, it is not possible to hold huge lexica in
full detail in memory However, only the idiosyn­
cratic information of a lexicon entry needs to be
represented Type expansion is employed in making
the constraints imposed by lexical types explicit

• EFFICIENT PROCESSING
Working with type names onl> or with partially ex­
panded types minmnzes the cotts of copying struc­
tures during processing and speeds up unification
This can only he at complished if the system makes
a mechanism for type expansion available

• TYPE CHECKING
Type definitions allow a. grammarian to diclare
which attributes are appropriate COT a given t\pe
and which types are appropriate for a given at
tribute, therefore disallowing one from writing in­
consistent feature structures Again typo expansion
is necessary to determine the global consistency of
a given description

• RECURSIVE TYPES
Recursive types give a grammar writer the oppor
tunity to formulate certain function'; or relatione as
recursive type specifications Working in the type
deduction paradigm forces a grammar writer to re­
place the context-free backbone through recuisive
tvpes Here, parameterized delayed type expansion
is the key to controlled linguistic deducation [Usiko-
reit 1991]

• ANYTIME BEHAVIOUR
Complex architectures for NL processing require
modules that can be interrupted at any time, re­
turning an incomplete, nevertheless useful result
[Wahlster, 1993) Such module* are able to continue
processing with only a negligible overhead, instead
of having been restarted from scratch Type cxpart
ston can serye as an anytime module for linguistic
processing

In the next section, we introduce the basic invento-
ry to describe our own novel approach to TE We then
describe the basic structure of the algorithm, present
several improvements, and show how it can be parame­
terized w r t different dimension Finally, we have a few
words on theoretical results and compare our treatment
with others

2 Preliminaries
In order to describe our algorithm, we need onlj a small
inventory to abstract from the concrete implementation
in TDC [Kneger and Schafer, 1994] and to make the ap-
proach comparable to others First of all we assume

It is worth noting that for the purpose of simplicity
and clarity, we restrict TFS to the above two cases Ac­
tually our algorithm is more powerful in that it handles
other cases for instance conjunction disjunction, and
negation of types and feature constraints

A type system ft is a pair (0,I), where 6 is a finite
set of typed feature structures and Z an inheritance hi-
erarchy Given U we call 8 £ 9 a type definition

Our algorithm is independent of the underlying de­
duction system— we are not interested in the normaliza­
tion of feature constraints (I e how unification of feature
structures is actually done) nor are we interested in the
logic of types, e g whether the existence of a greatest
lower bound is obligatory (TFS [Zajac, 1992], ALE [Car-
penter and Perm 1994]) or optional as m TDC [kneger
and Schafer, 1994] We assume here that typed unifica­
tion is simply a black box and can be accessed through
an interface function (say unify tfs) From this perspec­
tive our expansion mecham can be either used as a
stand-alone system or as an integrated part of the typed
unification machinery

We only have to say a few words on the semantic foun­
dations of our approach at the end of this paper This
is because we could either choose extensions of feature
logic [Smolka, 1989] or directly interpret our structures
within the paradigm of (constraint) logic programming
[Lloyd, 1987, Jaffar and Lapses 1987]

3 l t should be noted that we define TFS to have a ne-flted
structure and not to be flat (in contrast to feature clauses in
a more logic-oriented approach, e g [Ai t -Kaci el a! , 1993])
in order to make the connection to the implementation clear
and to come close to the structured at tribute-value matr ix
notation

KRIEGER AND SCHAFER 1 4 2 0

1430 NATURAL LANGUAGE

is specified all types wil l be expanded (checked in
unify type and node)

• maxdepth integer specifies that all types al paths
longer than integer wil l bt delated anyway (checked
in unify-type-and-node)

• attribute-preference {attribute}' defines a partial
order on attributes that w i l l be considered in
the functions depth-first-expand and types-first-
crpand The substructures at the attributes left­
most m the list will be expanded first This non-
nunjental preference may speed up expansion if no
numerical heuristics are known

• use-{conj|disj} heuristics {t|nil} [Uszkoreit 1991]
suggested exploiting numerical preferences to speed
up unification Both keywords control the use of
this information in functions dtpth-first-cxpand and
types-first-expand

• resolved-predicate {resolved-p| always-false | } This
slot specifies a user definable predicate that may
be used to stop recursion (see function expand-tfs)
The default predicate is always-false which leads to
a complete expansion algorithm if no other delay
information is specified

• ask-disj-pref ere nee {t|nil} If this flag IA set to t, the
expansion algorithm interactively asks for the order
in which disjunction alternatives should be expand­
ed (checked in depth-first-expand and types-first
expand)

3 6 H o w to S t o p R e c u r s i o n
Type expansion wi th recursive type definitions is unde-
cidable in general, 1 e , there is no complete algorithm
that halts on arbitrary input (TFS) and decides whether
a description is satisfiable or not (see Section 5) How­
ever, there are several ways to prevent infinite expansion
in our framework

• The first method is part of the expansion algorithm
(lazy expansion) as described before

• The second way is brute force use the maxdepth
slot to cut expansion at a suitable path depth

1432 NATURAL LANGUAGE

• The third method is to define delay patterns or to
select the expand-only mode with appropriate type
and path patterns

• The fourth method is to use the attribute-preference
list to define the "right' order for expansion

• Finally one ran define an appropriate resolved-
predicate that is suitable for a class of recursne
types

4 A p p l i c a t i o n s

In Section 3 4 we have already mentioned an NL ap­
plication in which type expansion was employed viz
in the formulation of the interface between allomorphy
and morphotactics [krieger et al 1993] Let us quicklv
present two other arces that profit from type expansion
parsing/generation as type expansion and distributed
parsing with partially expanded information

Parsing and generation can he seen in the light of type
expansion as a uniform process where only the phonol­
ogy (for parsing) or the semantics (for generation) must
be given foi instance

Type expansion together with a sufficiently specified
grammar then is responsible in both cases for construct­
ing a fully specified feature structure which it? maximal
informative and compatible with the input structure

Distributed parsing is a strategy which reduces the
representational overhead given out grammar which co-
specifies syntax and semantics proper constraints (1 e
filters) are separated from purely representational con­
straints The resulting subgrammars are then processed
b> two parsers in parallel This presupposes that we can
properly handle partially expanded typed feature struc­
tures

5 T h e o r e t i c a l R e s u l t s

It is worth noting that testing for the satisfiability
of feature descriptions admilt ing recursive type equa­
tions/definitions is in general undecidablc [Rounds and
Man aster-Ram er, 1987] were the first to ha\e shown that
a Rasper-Rounds logic enriched with recursive t\pes al­
lows one to encode a Turing machine Later [Smol-
ka, 1989] argued that the undecidabihty result is due to
the use of coreference constraints He demonstrated his
claim by encoding the word problem of Time systems
Hence our expansion mechanism is faeed with the same
result in that expansion might not terminate

However, we conjecture that non-satisfiability and
thus failure of type expansion is, in general, semi-
decidable The intuitive argument is as follows given
an arbitrary recursive TFS and assuming a fair type un­
folding strategy, the only event under which TE termi­
nates in finite time follows from a local unification failure
which then leads to a global one In every other case the
unfolding process goes on by substituting types through
their definitions Recently, [Ait-Kaci et al 1993] have
formally shown a similar result by using the compact­
ness theorem of first-order logic However, their proof

assumes the existence of an infinite OSF clause (gener­
ated by unfolding a i

Thus, our algorithm might not terminate if we choose
the complete expansion strategy However, we noted
above that we can even parameterize the complete ver­
sion of our algorithm to ensure termination for instance
to restrict the depth of expansion (analogous to the off-
line paisability constraint) The non-complete version
always guarantees termination and might suffice in prac­
tice

Semanticall), we can formally account for such recur­
sive feature descriptions (with respect to a type system)
in different ways either directly on the descriptions,
or indirectly through a transformational approach into
(first-order) logic Both approaches rely on the construc­
tion of a fixpomt over a certain continuous function 4

The first approach is in general closer to an implemen
tation (and thus to our algorithm) in that the func­
tion which is involved in the fixpoint construction cor­
responds more or less to the unification/substitution of
TFS (see for instance [Ai t -kaci , 1986] or [Pollard and
Moshier 1990]) The latter approach is based on the
assumption that TFS are only syntactic sugar for first-
order formulae If we transform these descriptions into
an equivalent set of definite clauses, we can employ tech­
niques that are fairlv common in logic programming, viz
charac terizing the models of a definite program through
a fixpoint Take for instance our cyc-list example from
the beginning to see the outcome of such a transforma
tion (assume that cyc-list is a subtype of list)

6 Compar ison to other Approaches
To our knowledge, the problem of type expansion within
a typed feature-based environment was first addressed
by Hassan Ait-Kaci [Ai t -kaci 1986] The language he
described was called KBL and shared great simdanties
with LOGIN, see [Ait-Kaci and Nasr, 1966] However, the
expansion mechanism he outlined was order dependent
in that it substituted types by then definition instead
of unifying the information Moreover it was non-lazy
thus it wil l fall to terminate for recursive types and per­
forms TE onl\ at definition time as is the case for ALE
[Carpenter and Penn, 1994] However, ALE provides re­
cursion through a built-in bottom-up chart parser and
through definite clauses Allowing TE only at definition
time is in general space consuming thus unification and
copying is expensive at run time

Another possibility one might follow is to integrate TE
into the typed unification process so that TE can take
place at run time Systems that explore this strategy are
TFS [Zajac, 1992] and LIFE [Ait-Kaci, 1993] However,
both implementations are not lazy, thus hard to control
and moreover, might not terminate In addition, if pro-
totype memoization is not available, TE at run time is

4In both cases, there is in general, more than one fixpoint,
but it seems desirable to choose the greatest one as it would
not rule out, for instance, cyclic structures

KRIEGERANOSCHAFER 1433

inefficient, cf Fig 1) A system that employs a lazy
strategy on demand at run tune is CUF [Dorre and Dor-
na, 1993] Laziness can be achieved here by specifying
delay patterns as is familiar from PROLOG This means
delaying the evaluation of a relation unti l the specified
parameters are instantiated

7 S u m m a r y

Type expansion is an operation that makes constraints
of a typed feature structure explicit and determines its
satisfiability We have described an expansion algorithm
that takes care of recursive types and allows us to ex­
plore different expansion strategies through the use of
control knowledge EfBciency is addressed through spe­
cialized techniques (l) prototype memoization reduces
the number of unifications, and (n) preference informa­
tion directs the search space Because our notion of type
expansion is conceived as a stand-alone module here, one
can freely choose the time of its invocation, e g , during
typed unification, parsing, etc

The algorithm as presented m the paper, lias been ful­
ly implemented within the TDCjl/Dibfe system [Kneger
and Schafer, 1994, Backofen and Wejers, 1994] and is an
integrated part of DISCO [Uszkoreit H al, 1994]

We are convinced that our approach is also of interest
to those who are working with (possibly recursive and hi­
erarchically ordered) record-like data structures in other
areas of computer science

R e f e r e n c e s

[A i t -hac i and Nasr 1986] Hassan A i t - h a n and Roger Nasr
LOGIN A logic programming language wiLh bui l t - in in­
heritance Journal of Logic Programming 3 185-215 1986

[Ait Kaci et al 1993] Hassan A i t - kac i Andreas Podelski
and Seth Copen Goldstein Order-sorted feature theory
unification Technical Report 32 Digital Equipment Cor
poration, DEC Pans Research Laboratory France, May
1993 Also in Proceedings of the International Symposium
on Ixigic Programming, Oct 1993 MTT Press

[Ai t -Kaci 1986] Hassan Ai t Kaci An algebraic semantics
approach to the effective resolution of type equations The
oretical Computer Science 45 293-351 I486

[A i l - kac i , 1993] H assan A i t -Kar i An introduction to
LIFE— programming wiLh logic inheritance functions,
and equations In Proceedings of the International Sym
posium on Logic Programming pages 5,2-68, 1993

[Backofen and Weyers 1994] Rolf Backofen and Chnstoph
Weyers UDiNe—A Feature Constraint Solver wi th Dis
tnbuted Disjunction and (lassical Negation Unpublished
manuscript

[Carpenter and Penn, 1994] Bob Carpenter and Gerald
Penn A L E —the at t r ibute logic engine users guide ver­
sion 2 0 Technical report Laboratory Tor Computational
Linguistics Philosophy Department, Carnegie M» lion Uni ­
versity Pi t tsburgh, PA August 1994

[Carpenter, 1992] Bob Carpenter The Logic of Typed Fea
lure Structures Tracts in Theoretical Computer Science
Cambndge University Press, Cambridge 1992

[Done and Dorna 1993] Jochen Dorre and Michael Dorna
CUF—a formalism for linguistic knowledge representa­
tion In Jochen Dorre editor, Computational Aspects of
Constraint Based Linguistic Description I D \ A N A 1993

[Eisele and Dorre, 1990] Andreas Eisele and Jochen Dorre
Disjunctive unification PWBS Report 124, IWBS, I B M
Germany, Stut tgart , 1990

[Jaffar and Lassez, 1987] Joxan Jaffar and Jean-Louie
Lassez Constraint logic programming ID Proc of 14th
POPL, pages 111-119 1987

[Kneger and Schafer, 1994] Hans-Ulnch Kneger and Ulneh
Schafer I'DC—a type description language for constraint-
based grammarB In Proc of ! 5th COLING, pages 893-
899 1994

[Kneger et al , 1993] I lans-Ulnch Kneger, John Nerbonne,
and Ilannes Pirker Feature-based allomorphy In Proc
of Slst ACL, pages 140-147, 1993

[Llovd, 1987] J W Lloyd Foundations of Logic Program
mmg Springer, 2nd edit ion, 1987

[Mjchje 1968] Donald Michie "Memo" functions and ma­
chine learning Nature, 218(1) 19-22, 1968

[Pollard and Moshier, 1990] Carl J Pollard and M Drew
Moshier Uni fy ing part ial descriptions of sets In P Han­
son editor Information Language and Cognition Vol 1
of Vancouver Studies m Cognitive Science pages 285-322
University of Brit ish Columbia Press, 1990

[Pollard and Sag 1987] Carl Pollard and Ivan A Sag
Information Based Syntax and Semantics Vol I Funda
mentals CSLI Lecture Notes, Number 13 Center for the
Study of Language and Information Stanford, 1987

[Rounds and Manaster-Ramer, 1987] Wi l l i am C Rounds
and Alexis Manaster-Ramer A logical version of func
t ional grammar In Proc of 25th ACL, pages 89-96 1987

[Shieber et ai 1983] S Shieber, H Uszkoreit, F Pereira, J
Robinson, and M Tyson The formalism and implementa­
tion of PATR- I I In Barbara J Grosz and Mark E Stick
el editors, Research on Interactive Acquisition and Use
of Knowledge pages 39-79 AI Center, SRI International,
Menlo Park, Cal , 1983

[Shieber 1986] Stuart M Shiebpr An Introduction to
Unification Based Approaches to Grammar CSLI Lecture
Notes. Number 4 Center for the Study of Language and
Information Stanford 198b

[Smolka., 1989] Gert Smolka Feature constraint logic for uni­
f icat ion grammars IWBS Report 93, IWBS I B M Ger­
many Stut tgart , November 1989 Also in Journal of Logic
Programming 12 51-87 1992

[Uszkoreit et al 1994] H Uszkoreit, R Backofen, S Buse-
mann, A K Diagne, E A Hinkelman, W Kasper, B
Kiefer, H - U Kneger, K Netter, G Neumann, S Oepen,
and S P Spackman DISCO—an HPSG-based NLP sys­
tem and its application for appointment scheduling In
Proc of 15th COLING pages 436-140, 1994

[Uszkoreit, 1991] Hans Uszkoreit Strategies for adding con­
trol information to declarative grammars In Proc of 29th
ACL pages 237-245, 1991

[Wahlster 1993] Wolfgang Wahlster V E R B M O B I L —
translation of face-to-face dialogs Proc of MT Summit
IV , 127-135 Kobe, Japan July 1993

[Zajac, 1992] Remi Zajac Inheritance and constraint-
based grammar formalisms Computational Linguistics,
18(2) 159-182, 1992

1434 NATURAL LANGUAGE

