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A b s t r a c t 

Over the last few years, constraint-based gram­
mar formalisms have become the predominant 
paradigm in natural language processing and 
computational linguistics From the viewpoint 
of computer science typed feature structures 
can be seen as data structures that allow the 
representation of linguistic knowledge in a uni­
form fashion Type expansion is an operation 
that makes constraints of a typed feature struc­
ture explicit and determines its satisfiability 
We describe an efficient expansion algorithm 
that takes care of recursive type definitions and 
permits the exploration of different expansion 
strategies through the use of control knowledge 
This knowledge is specified on a separate layer 
independent of grammatical information The 
algorithm as presented in the paper, has been 
full> implemented in C O M M O N LISP and is an 
integrated part of the typed feature formal-
lsm TDC that is employed in several large NL 
projects 

1 I n t r o d u c t i o n 
Over the last few years constraint-based grammar for-
malisms [Shieber, 198G] have become the predominant 
paradigm in natural language processing and computa­
tional linguistics While the first approaches releid on 
annotated phrase structure rules (e g PATR-II [Shieber 
et al 1983]), modern formalisms try to specify gram-
matical knowledge as well as lexicon entries entirely 
through feature structures In order to achive this 
goal one must enrich the expressive power of the first 
unification-based formalisms with different forms of dis­
junctive descriptions Later other operations come into 
play e g , (classical) negation 

However the most important extension to formalisms 
consists of the incorporation of types, for instance in 
modern systems like TFS [Zajac, 1992] CUF [Dorre 
and Dorna 1993] or TDC [Kneger and Schafer, 1994] 
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Types are ordered hierarchically as is known from object-
oriented programming languageb a feature heavily em­
ployed in lexicahzed grammar theories like Head-Driven 
Phrase Structure Grammar (HPSG) [Pollard and Sag, 
1987] This leads to multiple inheritance in the descrip­
tion of linguistic entities In general, not only is a type 
related to other types through the inheritance hierar­
chy but is also provided, wi th feature constraints that 
are idiosyncratic to this type Hence a type symbol can 
serve as an abbreviation for a complex expression and 
an untyped feature structure becomes a typed one If a 
formalism it. intended to be used as a stand-alone sys­
tem it must also implement recursive types if it does 
not provide phrase-structure tecursion. directly (within 
the formalism) or indirectly (via a parser/generator) 1 

In addition certain forms of relations (like append) or 
additional extensions of the formalism (like functional 
uncertainty) tan be nicely modelled through recursive 
types 

Now because types allow us to refer to complex con-
stiaints through the use of symbol names, we need an 
operation that is responsible for deducing the constraints 
that are inherent to a type This means, reconstructing 
the idiosyncratic constraints of a type, plus those that 
are inherited from the supertypes We will call such 
a mechanism type expansion (TE) or type unfolding 3 

Thus TE is faced with two main tasks 

1 making some or all feature constraints explicit (type 
expansion is a structure-budding operation) 

1 determining th( global consistency of a type or more 
generally, of a typed feature structure 

Types not only serve as a shorthand, like templates, 
but also provide other advantages which can only be ac­
complished if a mechanism for TE is available 

For instance ALE employs a bot tom-up chart parser, 
whereas TFS relies entirely on type deduction Note that 
recursive types can be substituted by definite clauses (equiv­
alences) as is the case for CUF, audi tha t parsing/generation 
roughly corresponds to P R O L O G s SLD resolution 

It ia worth noting that our notion of TE shares simi­
larities with Ait-Kacj's sort unfolding [Ait-Kaci et al, 2993] 
and Carpenter's total well typedness [Carpenter, 1992, Ch 6] 
However, the latter notion is not well-defined for t rue recur­
sive typed feature structures in that such structures cannot 
be total ly well-typed wi th in f inite time and space 
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• STRUCTURING KNOWLEDGE 
Hierarchically ordered types allow for a modular 
way of representing linguistic knowledge Gener­
alizations can be put at the appropriate levels of 
representation Type expansion, then is responsi 
ble for gathering the distributed information that is 
attached to the type symbols 

• SAVING MEMORY 
In practice, it is not possible to hold huge lexica in 
full detail in memory However, only the idiosyn­
cratic information of a lexicon entry needs to be 
represented Type expansion is employed in making 
the constraints imposed by lexical types explicit 

• EFFICIENT PROCESSING 
Working with type names onl> or with partially ex­
panded types minmnzes the cotts of copying struc­
tures during processing and speeds up unification 
This can only he at complished if the system makes 
a mechanism for type expansion available 

• TYPE CHECKING 
Type definitions allow a. grammarian to diclare 
which attributes are appropriate COT a given t\pe 
and which types are appropriate for a given at 
tribute, therefore disallowing one from writing in­
consistent feature structures Again typo expansion 
is necessary to determine the global consistency of 
a given description 

• RECURSIVE TYPES 
Recursive types give a grammar writer the oppor 
tunity to formulate certain function'; or relatione as 
recursive type specifications Working in the type 
deduction paradigm forces a grammar writer to re­
place the context-free backbone through recuisive 
tvpes Here, parameterized delayed type expansion 
is the key to controlled linguistic deducation [Usiko-
reit 1991] 

• ANYTIME BEHAVIOUR 
Complex architectures for NL processing require 
modules that can be interrupted at any time, re­
turning an incomplete, nevertheless useful result 
[Wahlster, 1993) Such module* are able to continue 
processing with only a negligible overhead, instead 
of having been restarted from scratch Type cxpart 
ston can serye as an anytime module for linguistic 
processing 

In the next section, we introduce the basic invento-
ry to describe our own novel approach to TE We then 
describe the basic structure of the algorithm, present 
several improvements, and show how it can be parame­
terized w r t different dimension Finally, we have a few 
words on theoretical results and compare our treatment 
with others 

2 Preliminaries 
In order to describe our algorithm, we need onlj a small 
inventory to abstract from the concrete implementation 
in TDC [Kneger and Schafer, 1994] and to make the ap-
proach comparable to others First of all we assume 

It is worth noting that for the purpose of simplicity 
and clarity, we restrict TFS to the above two cases Ac­
tually our algorithm is more powerful in that it handles 
other cases for instance conjunction disjunction, and 
negation of types and feature constraints 

A type system ft is a pair (0,I), where 6 is a finite 
set of typed feature structures and Z an inheritance hi-
erarchy Given U we call 8 £ 9 a type definition 

Our algorithm is independent of the underlying de­
duction system— we are not interested in the normaliza­
tion of feature constraints (I e how unification of feature 
structures is actually done) nor are we interested in the 
logic of types, e g whether the existence of a greatest 
lower bound is obligatory (TFS [Zajac, 1992], ALE [Car-
penter and Perm 1994]) or optional as m TDC [kneger 
and Schafer, 1994] We assume here that typed unifica­
tion is simply a black box and can be accessed through 
an interface function (say unify tfs) From this perspec­
tive our expansion mecham can be either used as a 
stand-alone system or as an integrated part of the typed 
unification machinery 

We only have to say a few words on the semantic foun­
dations of our approach at the end of this paper This 
is because we could either choose extensions of feature 
logic [Smolka, 1989] or directly interpret our structures 
within the paradigm of (constraint) logic programming 
[Lloyd, 1987, Jaffar and Lapses 1987] 

3 l t should be noted that we define TFS to have a ne-flted 
structure and not to be flat (in contrast to feature clauses in 
a more logic-oriented approach, e g [Ai t -Kaci el a! , 1993]) 
in order to make the connection to the implementation clear 
and to come close to the structured at tribute-value matr ix 
notation 
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is specified all types wil l be expanded (checked in 
unify type and node) 

• maxdepth integer specifies that all types al paths 
longer than integer wil l bt delated anyway (checked 
in unify-type-and-node) 

• attribute-preference {attribute}' defines a partial 
order on attributes that w i l l be considered in 
the functions depth-first-expand and types-first-
crpand The substructures at the attributes left­
most m the list will be expanded first This non-
nunjental preference may speed up expansion if no 
numerical heuristics are known 

• use-{conj|disj} heuristics {t|nil} [Uszkoreit 1991] 
suggested exploiting numerical preferences to speed 
up unification Both keywords control the use of 
this information in functions dtpth-first-cxpand and 
types-first-expand 

• resolved-predicate {resolved-p| always-false | } This 
slot specifies a user definable predicate that may 
be used to stop recursion (see function expand-tfs) 
The default predicate is always-false which leads to 
a complete expansion algorithm if no other delay 
information is specified 

• ask-disj-pref ere nee {t|nil} If this flag IA set to t, the 
expansion algorithm interactively asks for the order 
in which disjunction alternatives should be expand­
ed (checked in depth-first-expand and types-first 
expand) 

3 6 H o w to S t o p R e c u r s i o n 
Type expansion wi th recursive type definitions is unde-
cidable in general, 1 e , there is no complete algorithm 
that halts on arbitrary input (TFS) and decides whether 
a description is satisfiable or not (see Section 5) How­
ever, there are several ways to prevent infinite expansion 
in our framework 

• The first method is part of the expansion algorithm 
(lazy expansion) as described before 

• The second way is brute force use the maxdepth 
slot to cut expansion at a suitable path depth 
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• The third method is to define delay patterns or to 
select the expand-only mode with appropriate type 
and path patterns 

• The fourth method is to use the attribute-preference 
list to define the "right' order for expansion 

• Finally one ran define an appropriate resolved-
predicate that is suitable for a class of recursne 
types 

4 A p p l i c a t i o n s 

In Section 3 4 we have already mentioned an NL ap­
plication in which type expansion was employed viz 
in the formulation of the interface between allomorphy 
and morphotactics [krieger et al 1993] Let us quicklv 
present two other arces that profit from type expansion 
parsing/generation as type expansion and distributed 
parsing with partially expanded information 

Parsing and generation can he seen in the light of type 
expansion as a uniform process where only the phonol­
ogy (for parsing) or the semantics (for generation) must 
be given foi instance 

Type expansion together with a sufficiently specified 
grammar then is responsible in both cases for construct­
ing a fully specified feature structure which it? maximal 
informative and compatible with the input structure 

Distributed parsing is a strategy which reduces the 
representational overhead given out grammar which co-
specifies syntax and semantics proper constraints (1 e 
filters) are separated from purely representational con­
straints The resulting subgrammars are then processed 
b> two parsers in parallel This presupposes that we can 
properly handle partially expanded typed feature struc­
tures 

5 T h e o r e t i c a l R e s u l t s 

It is worth noting that testing for the satisfiability 
of feature descriptions admilt ing recursive type equa­
tions/definitions is in general undecidablc [Rounds and 
Man aster-Ram er, 1987] were the first to ha\e shown that 
a Rasper-Rounds logic enriched with recursive t\pes al­
lows one to encode a Turing machine Later [Smol-
ka, 1989] argued that the undecidabihty result is due to 
the use of coreference constraints He demonstrated his 
claim by encoding the word problem of Time systems 
Hence our expansion mechanism is faeed with the same 
result in that expansion might not terminate 

However, we conjecture that non-satisfiability and 
thus failure of type expansion is, in general, semi-
decidable The intuitive argument is as follows given 
an arbitrary recursive TFS and assuming a fair type un­
folding strategy, the only event under which TE termi­
nates in finite time follows from a local unification failure 
which then leads to a global one In every other case the 
unfolding process goes on by substituting types through 
their definitions Recently, [Ait-Kaci et al 1993] have 
formally shown a similar result by using the compact­
ness theorem of first-order logic However, their proof 

assumes the existence of an infinite OSF clause (gener­
ated by unfolding a i 

Thus, our algorithm might not terminate if we choose 
the complete expansion strategy However, we noted 
above that we can even parameterize the complete ver­
sion of our algorithm to ensure termination for instance 
to restrict the depth of expansion (analogous to the off-
line paisability constraint) The non-complete version 
always guarantees termination and might suffice in prac­
tice 

Semanticall), we can formally account for such recur­
sive feature descriptions (with respect to a type system) 
in different ways either directly on the descriptions, 
or indirectly through a transformational approach into 
(first-order) logic Both approaches rely on the construc­
tion of a fixpomt over a certain continuous function 4 

The first approach is in general closer to an implemen 
tation (and thus to our algorithm) in that the func­
tion which is involved in the fixpoint construction cor­
responds more or less to the unification/substitution of 
TFS (see for instance [Ai t -kaci , 1986] or [Pollard and 
Moshier 1990]) The latter approach is based on the 
assumption that TFS are only syntactic sugar for first-
order formulae If we transform these descriptions into 
an equivalent set of definite clauses, we can employ tech­
niques that are fairlv common in logic programming, viz 
charac terizing the models of a definite program through 
a fixpoint Take for instance our cyc-list example from 
the beginning to see the outcome of such a transforma 
tion (assume that cyc-list is a subtype of list) 

6 Compar ison to other Approaches 
To our knowledge, the problem of type expansion within 
a typed feature-based environment was first addressed 
by Hassan Ait-Kaci [Ai t -kaci 1986] The language he 
described was called KBL and shared great simdanties 
with LOGIN, see [Ait-Kaci and Nasr, 1966] However, the 
expansion mechanism he outlined was order dependent 
in that it substituted types by then definition instead 
of unifying the information Moreover it was non-lazy 
thus it wil l fall to terminate for recursive types and per­
forms TE onl\ at definition time as is the case for ALE 
[Carpenter and Penn, 1994] However, ALE provides re­
cursion through a built-in bottom-up chart parser and 
through definite clauses Allowing TE only at definition 
time is in general space consuming thus unification and 
copying is expensive at run time 

Another possibility one might follow is to integrate TE 
into the typed unification process so that TE can take 
place at run time Systems that explore this strategy are 
TFS [Zajac, 1992] and LIFE [Ait-Kaci, 1993] However, 
both implementations are not lazy, thus hard to control 
and moreover, might not terminate In addition, if pro-
totype memoization is not available, TE at run time is 

4In both cases, there is in general, more than one fixpoint, 
but it seems desirable to choose the greatest one as it would 
not rule out, for instance, cyclic structures 
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inefficient, cf Fig 1) A system that employs a lazy 
strategy on demand at run tune is CUF [Dorre and Dor-
na, 1993] Laziness can be achieved here by specifying 
delay patterns as is familiar from PROLOG This means 
delaying the evaluation of a relation unti l the specified 
parameters are instantiated 

7 S u m m a r y 

Type expansion is an operation that makes constraints 
of a typed feature structure explicit and determines its 
satisfiability We have described an expansion algorithm 
that takes care of recursive types and allows us to ex­
plore different expansion strategies through the use of 
control knowledge EfBciency is addressed through spe­
cialized techniques (l) prototype memoization reduces 
the number of unifications, and (n) preference informa­
tion directs the search space Because our notion of type 
expansion is conceived as a stand-alone module here, one 
can freely choose the time of its invocation, e g , during 
typed unification, parsing, etc 

The algorithm as presented m the paper, lias been ful­
ly implemented within the TDCjl/Dibfe system [Kneger 
and Schafer, 1994, Backofen and Wejers, 1994] and is an 
integrated part of DISCO [Uszkoreit H al, 1994] 

We are convinced that our approach is also of interest 
to those who are working with (possibly recursive and hi­
erarchically ordered) record-like data structures in other 
areas of computer science 
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