Efficient Parameterizable Type Expansion
for Typed Feature Formalisms*

Hans-Ulnch

Krieger

Ulrich Schafer

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3 66123 Saarbrucken, Germany

phone +49 681 302-5299

fax +49 681 302-5341

{ krieger, schaefer}@ddfki uni-sb de

Abstract

Over the last few years, constraint-based gram-
mar formalisms have become the predominant
paradigm in natural language processing and
computational linguistics From the viewpoint
of computer science typed feature structures
can be seen as data structures that allow the
representation of linguistic knowledge in a uni-
form fashion Type expansion is an operation
that makes constraints of a typed feature struc-
ture explicit and determines its satisfiability
We describe an efficient expansion algorithm
that takes care of recursive type definitions and
permits the exploration of different expansion
strategies through the use of control knowledge
This knowledge is specified on a separate layer
independent of grammatical information The
algorithm as presented in the paper, has been
full> implemented in COMMON LISP and is an
integrated part of the typed feature formal-
Ism TDC that is employed in several large NL
projects

1 Introduction

Over the last few years constraint-based grammar for-
malisms [Shieber, 198G] have become the predominant
paradigm in natural language processing and computa-
tional linguistics While the first approaches releid on
annotated phrase structure rules (e g PATR-II [Shieber
et al 1983]), modern formalisms try to specify gram-
matical knowledge as well as lexicon entries entirely
through feature structures In order to achive this
goal one must enrich the expressive power of the first
unification-based formalisms with different forms of dis-
junctive descriptions Later other operations come into
play e g, (classical) negation

However the most important extension to formalisms
consists of the incorporation of types, for instance in
modern systems like TFS [Zajac, 1992] CUF [Dorre
and Dorna 1993] or TDC [Kneger and Schafer, 1994]

"This work was funded by the German Federal Ministry
of Education Science, Research and technology as part of
the Verbmobil project We are grateful to threp anonymous
1JCAI reviewers for helpful comments

1428 NATURAL LANGUAGE

Types are ordered hierarchically as is known from object-
oriented programming languageb a feature heavily em-
ployed in lexicahzed grammar theories like Head-Driven
Phrase Structure Grammar (HPSG) [Pollard and Sag,
1987] This leads to multiple inheritance in the descrip-
tion of linguistic entities In general, not only is a type
related to other types through the inheritance hierar-
chy but is also provided, with feature constraints that
are idiosyncratic to this type Hence a type symbol can
serve as an abbreviation for a complex expression and
an untyped feature structure becomes a typed one If a
formalism it. intended to be used as a stand-alone sys-
tem it must also implement recursive types if it does
not provide phrase-structure tecursion. directly (within
the formalism) or indirectly (via a parser/generator)’
In addition certain forms of relations (like append) or
additional extensions of the formalism (like functional
uncertainty) tan be nicely modelled through recursive
types

Now because types allow us to refer to complex con-
stiaints through the use of symbol names, we need an
operation that is responsible for deducing the constraints
that are inherent to a type This means, reconstructing
the idiosyncratic constraints of a type, plus those that
are inherited from the supertypes We will call such
a mechanism type expansion (TE) or type unfolding ®
Thus TE is faced with two main tasks

1 making some or all feature constraints explicit (type
expansion is a structure-budding operation)

1 determining th(global consistency of atype or more
generally, of a typed feature structure

Types not only serve as a shorthand, like templates,
but also provide other advantages which can only be ac-
complished if a mechanism for TE is available

For instance ALE employs a bottom-up chart parser,
whereas TFS relies entirely on type deduction Note that
recursive types can be substituted by definite clauses (equiv-
alences) as is the case for CUF, audi that parsing/generation
roughly corresponds to PROLOG s SLD resolution

It ia worth noting that our notion of TE shares simi-
larities with Ait-Kacj's sort unfolding [Ait-Kaci et al, 2993]
and Carpenter's total well typedness [Carpenter, 1992, Ch 6]
However, the latter notion is not well-defined for true recur-
sive typed feature structures in that such structures cannot
be totally well-typed within finite time and space

STRUCTURING KNOWLEDGE

Hierarchically ordered types allow for a modular
way of representing linguistic knowledge Gener-
alizations can be put at the appropriate levels of
representation Type expansion, then is responsi
ble for gathering the distributed information that is
attached to the type symbols

« SAVING MEMORY
In practice, it is not possible to hold huge lexica in
full detail in memory However, only the idiosyn-
cratic information of a lexicon entry needs to be
represented Type expansion is employed in making
the constraints imposed by lexical types explicit

« EFFICIENT PROCESSING
Working with type names onl> or with partially ex-
panded types minmnzes the cotts of copying struc-
tures during processing and speeds up unification
This can only he at complished if the system makes
a mechanism for type expansion available

« TYPE CHECKING

Type definitions allow a. grammarian to diclare
which attributes are appropriate OQOT' a given t\pe
and which types are appropriate for a given at
tribute, therefore disallowing one from writing in-
consistent feature structures Again typo expansion
is necessary to determine the global consistency of
a given description

» RECURSIVE TYPES

Recursive types give a grammar writer the oppor
tunity to formulate certain function’; or relatione as
recursive type specifications Working in the type
deduction paradigm forces a grammar writer to re-
place the context-free backbone through recuisive
tvpes Here, parameterized delayed type expansion
is the key to controlled linguistic deducation [Usiko-
reit 1991]

« ANYTIME BEHAVIOUR

Complex architectures for NL processing require
modules that can be interrupted at any time, re-
turning an incomplete, nevertheless useful result
[Wahlster, 1993) Such module* are able to continue
processing with only a negligible overhead, instead
of having been restarted from scratch Type cxpart
ston can serye as an anytime module for linguistic
processing

In the next section, we introduce the basic invento-
ry to describe our own novel approach to TE We then
describe the basic structure of the algorithm, present
several improvements, and show how it can be parame-
terized w r t different dimension Finally, we have a few
words on theoretical results and compare our treatment
with others

2 Preliminaries

In order to describe our algorithm, we need onlj a small
inventory to abstract from the concrete implementation
in TDC [Kneger and Schafer, 1994] and to make the ap-
proach comparable to others First of all we assume

pairwise disyoint sets of feafures (attributes} F, atems
{constants) A, logical verables V, and types T
In the following, we refer to a type fuerarchy I by a
pair {T, X), such that < C T x T 18 a decidable partial
arder,1e, < 15 reflexive antisvrometric and transitive
A iyped feature structure (TFS) @ 1 essentially either
a Y¥-term or an €-term [Alt-l\d.(‘l 1986), 1 e ,

8 ={zr,7,®) | {z.7,0)

suchthatz € V, 7€ T & = {f, = 6§
and 8 = {8,
a TFS

We will cali the equation f = @ a feature constraini (or
an attribute-value pair) * @ 12 interpreted conjunctively,
whereas O represents a disjunction Variables are used
to indicate structure sharng

Let us give a small example to see the correspondences
The typed festure structure

,J‘n = an})
8.} where each f, € F and #, 1s again

(r cyc—list {FIRST = 1 REST = 7})

should denote the same set of objects as the following
two-dimensional attrbute-valuc matrix (AVM) notation

cyc—lzst
| FIRST 1
RLST X

It is worth noting that for the purpose of simplicity
and clarity, we restrict TFS to the above two cases Ac-
tually our algorithm is more powerful in that it handles
other cases for instance conjunction disjunction, and
negation of types and feature constraints

A type system ft is a pair (0,l), where 6 is a finite
set of typed feature structures and Z an inheritance hi-
erarchy Given U we call 8 £ 9 a type definition

Our algorithm is independent of the underlying de-
duction system— we are not interested in the normaliza-
tion of feature constraints (I e how unification of feature
structures is actually done) nor are we interested in the
logic of types, e g whether the existence of a greatest
lower bound is obligatory (TFS [Zajac, 1992], ALE [Car-
penter and Perm 1994]) or optional as m TDC [kneger
and Schafer, 1994] We assume here that typed unifica-
tion is simply a black box and can be accessed through
an interface function (say unify tfs) From this perspec-
tive our expansion mecham can be either used as a
stand-alone system or as an integrated part of the typed
unification machinery

We only have to say a few words on the semantic foun-
dations of our approach at the end of this paper This
is because we could either choose extensions of feature
logic [Smolka, 1989] or directly interpret our structures
within the paradigm of (constraint) logic programming
[Lloyd, 1987, Jaffar and Lapses 1987]

31t should be noted that we define TFS to have a ne-fited
structure and not to be flat (in contrast to feature clauses in
a more logic-oriented approach, e g [Ait-Kaci el a!, 1993])
in order to make the connection to the implementation clear
and to come close to the structured at tribute-value matrix
notation

KRIEGER AND SCHAFER 1420

3 Algorithm

The overall design of our TE algorithm was mspired by
the following requirements

s support a compiete expansion strategy
e allow lezy erpension of recursive types
¢ munimize the number of unifications

s make expansion parametenzable for delav and pref-
erence information

Before we describe the algorithm we modify the svn-
tax of TFS to get rid of ununportant details First, we
simphfy TFS in that we omut variables This can be
done without loss of generality if variables are direct
ly mmplemented through siructure-sharing (which 1s the
case for our system) Hence conjunctive TFS have the
form (7, {1 = & o = 6r}}) whereas disjunctive are
of the form {r {4, 8.}

Guven a TFS 8, type of (¢) returns the type of 6
whereas typedef (v} obtans the tvpe defimtion with-
out inherited constraints as given by the type system
N ={87 Wccall this TFS a skeleton It 15 eithcr
(U {9]‘ -gn}} or (J! {fl = gl\ f‘n. = ﬁn})v Wl]el'? o
are the direct supertype(s) of 7

Because the algonthm should support partially ex-
panded (delayed) types, we ennich cach TFS # by two
Aags

1 A-erponded{f)=true, 1§ typedcf(type—of (#)) and
the definitions of all 1ts supertypes have been umfied
with & and false otheiwise

2 erpanded(f)=true 1 A-ezpanded{f)=true and er
panded(6,)=true for all elements &, of TFS 4

Hence A-erpended 15 a local property of a TFS that
tells whether the definttion of 1ts type 15 alrcady present
while ezpanded 15 a global property which indicates that
all substructures of a TFS are A-cxpanded Clearly,
atoms and typus that possess no features are always ex-
panded The exploitation of these flags leads to a drastic
reduction of the search spacc 1n the expansion algonthm

31 Basic Structure

The following functions briefly sketch the basic algo-
rithm It 1 a destructne depth-first algorithm with
a special treatment of recursive types that will be ex-
plaiped 1 Section 3 3

ezpend-tfs 1s the man function that 1mitializes TE
The while loop 1s executed until the TFS § 1s expanded
or so-called ‘resolved (see heyword resclved-predicate
in Section 3 5) Several pas-es may be necessary for re-
cursive TFS

erpand-ifs(8) =
while not (erpanded p(f) or rescived-p(f) or
no untficalion occurred in last pass)

depih—first-ezpand(8)

/* or lypes firel-ezpand(¥) resp */
depth-first-eapand and ilypes—first-cepand recursively
traverse a TFS Which of both functions 1s employed
can be specified by the user The visited check 1s done
by comparing varnables (actually, structure-shanng

1430 NATURAL LANGUAGE

the implementation makes vanablea obsolete} types-—
first-ecpand 15 defined analogously by first expanding
the root type of a TFS, and then procesaing the feature
constrants
depth-firsi-ezpand(f) =
if @ has been glready visited tn thes pass
then return
elae
0= ({6, ,0n))
then
for every 0 € {81, ,8a)
depih—first—ezpand (#)
else do /* ¢ = {r,{fi =6
for every 8 € {6, 0}
depth—ﬁr&t—ezpand(ﬂ),
if not A erpanded(®)
then umfy—type-and-node(r, 5)
od

unfy-type-and-node destructively unifies # with the ex-
panded TFS of The index : specifies which “proto-
type’ of 7 15 chosen {see Section 3 2)

vIn=60}) %/

u'n|.)"_\,,'—t5,-;“3—i:r.il'l.d:l-—node_'(‘."1 0 =
fr=-0o
then unify-ifs (negate—fs (erpand-type(o,c}), @)
else unsfy-tfs (expand-lype(r 1),8),

A erponded(8) « true
We adapt Smolla's treatment of negation for our TFS
[Smolia 1989] Note that we only depict the conjunctive
case here

negate-fs(0 = {7 {fr =61, fn=6.}1)) =
return
(T {(=7 1{}),

(T, {JLth (T {f1 = negate-fs(6:1)})
(T AT thH (T {f. = negate-fs(8)})})

32 Indexed Prototype Memoization

The basic 1dea of memoszation [Michie 1968] 1s to tab-
ulate results of function applications i order to prevent
wasted calculations We adapt this techmque to the type
expansion function The argument of our memazed ex-
pansion function 18 a pair consisting of a type name (or
a name of a lexicon entry or a rule) and an arbitrary in-
dex that allows access to different TFS of the same type
which may be expanded 1n different ways (e g , partially
or fully] Such feature structures are called prototypes

Once a prototype has been expanded according to
the attached contrel information its expanded version
1s recorded and all future calls return a copy of 1t, -
stead of repeating the same unifications once again

erpand—iype(T wndes) =
if protomemo(t wndez) undefined
then 8 +— ezpand—tfs(typedef (1)),
protomeme(+ index} — 6,
returh copy-ifa(@)
else return copy-ifs(protomemo(r, tndez))

Most of these computations can be done at comple
tune (partial evaluation), and hence speed up unification
at run time The prototypes can serve as bastc blocks for
bwlding a partially expanded grammar

Some empuncal results indicate the usefulness of m-
dexed prototype memoization Figure 1 contams sta-
tistical information about the expansion of an HPSG

grammar with approx 900 type definitions About 250
additional lexacon entnes and rules have been expanded
from scratch, 1e, all types are unexpanded (are skele-
tons) at the beginning The type and mnstance sheletons
together consist of about 9000 nodes, whereas the result-
ing structures have a total size of approx 50000 nodes

The measurements show that memmzation speeds up
expansion by a factor of 5 here (or 10 if all types ex-
cept the lexacon entries are pre-expanded) These fac-
tors are directly proportional to the number of umifica-
tions The time differcnce between the memoized and
non-memaized algorithm may be even bigger if disjunc-
tione are involved The sample grammar contans only
a few disjunctions

33 Detecting Recursion

The memoization technique 15 also employed 1 detect-
Ing recursive types This 15 important in order (o pre-
vent 1nfinite computations We use the so-called ox-
pand stack’ of expand-type to chuck whether 4 type 1<
recursive or not {see Section 34) Each call of erpand-
type(T indez) will push 7 outo the expand stack Tl
stack then 1s passed to ezpand-ifs

If a type r on top of the expand stach also occurs below
m the stack (r o, 2T T P p1}) we immediate
know that the types 7 o, my are recursive Further-
more these types form a strongly connecied component
(scc) of the ty pe dependency (or occurrence) graph 10,
each type m the sce o reachable from every other type
in the scc Examples for such sces are (eons fist) and
(statel) n the trace of the cxample below (Scetion 3 4)

Testing whether a tvpe 15 recursive or not Lhus reduces
to 4 simple find operation 1n a global list that contans
all vccs The expansion algonthm uscs this mjormation
m ezpand tfs 1o delay recursive types if tlie expand stack
contains more than one element Otherwise, prototype
memoi/ation would loop

If a recursive type occurs 1o 4 TFS and this fype has
already been expanded under a subpath and ne features
or other types are specthed at this node then tlus type
will be delayed since 1t would expand forever (we eall
this lazy erpansion) An mstance of such a recursive
type that stops 15 the recursive version of hst, as dehned
below

34 Example

In the following, we define a finite automaton with two
states that accepts the language a*(a + b) The nput
15 specified through a hst under path iNpuT F the
defimtion of type ab below The distributed (or named)
dusjunction [Eisele and Dorre 1990 headed by $1 m type
statef 15 used to map input symbols to state typcs {and
vice veraa) Defining FA this way provides a sohid bass
for the integration of automata-based allomorphy (e g,
2-level morphology) and morphotactics within the same
constrant-based formahsm (cf [krieger et ol 1993))

hst = {cons {}}

cons = [;:;S_: ;I;“] we abbr cons via {)}

INPUT ED[II PI)}
non final = | EDGE
[NEXT [iveuT]

INFUT {)]

final = | EDCE undef
NEXT undef

non finel
statef = | EDGE §1 (m,{n,b}}
NEXT §1{statef final}

ob = [stal‘.e! }

INPUT {a b)

Fig 2 shows a trace of the expansion of type aé The
algorithin 15 depth-firsi—erpand without any delay or
prefercnce informatien In this trace we assume that
it was not known before that the types cons (abbreviat-
ed as { }) h«t, and state are recursive hence the sces
will pe computed on the fly

The result of ezpend—type(ab) 15 the following feature
structure

ab]
INPUT éﬂma @¢@v @)))
EDGE
[stalel i
INPUT
expand type(ah) = EDGL %
NEXT final
wruT [4]
NEXT bpGae undef
] NEXT undef)

1f we ran our automaton on the imput abb,

abb = [statc[]

INPUT (& B b)

it would be rejecled ezpand-type(abb) = fail

35 Declarative Specification of Control
Information

Control information for the expansion algorithm can be
specified globally locally for each prototype, as well as
for a specific ezpend-tfs call The following control key-
words have been 1mplemented so far

¢ expand-function {depth|types}-first-expand specifies
the basic expansion algorithm

o delay { ({type | (fype [pred])} {path}*) }* specifies
types at path to be delayed path may be a feature

path or o complex path pattern with wildcard sym-
bols * +, ? feature and segment vanables pred
1s a test prudicate to compare types, eg, = or =
(checked 1in uniyfy-type-and node)

s { expand| expand-only}) { { {type | (type [indez
[pred|])} {path}*) }* There are two mutually ex-
clusive modes concerming expansion of types If the
expand-only list 15 specified, only types in this list
will be expanded with the speafied prototype n
dez all others will be delayed If the expand bLst

KRIEGER AND SCHAFER 1431

1432

algonthm depth—Ist-erpand | types-[st-ezpend [depth-Tsi-ecpand | types-ist-ezpand
memoization yes yes no no
time (seca) 45 {23° 46 | 23" 216 218
unifications 27221 | 14495 27207 | 134681 155888 155876
number of 853 | *cons* 260 [¥cons” 8330 [*avm* 8454 | Yavm*
calls to 316 | cat type 147 | *diff-list™ 2392 | sem-expr 2503 | sem-expr
ezpand type || 268 [*diff-list® 143 | morph-type | 1370 | term-type |142] |term type
243 morph type | 94 [nmorph-head (1161 | *cons* 1196 | *cons*
wilh types || 208 | atomic-wif B3 | sort expr 1003 | wif-type 1073 | wit-type
pre-expanded | 202 | rp-type 71 | atomic-wif 933 jagr-feat 951 |agr feat
146 | conj-wif-type | 62 [rp-type 880 | semantics 747 | semantics
120 | var type 53 | subwfT-inst 823 [indexed-wif | 730 |indexed-wiff

Figure 1 Efficicney of depth-frst vs types first expansion with /without mdexed prototvpe memoization

step erpand fype in (ype under path expand stack

1 cans ab INPUT REST (ab)

2 s cong REST {cons ab)

3 cons sl € (st cons ab) — {coms hst) 1s new sce delay cons here
4 cOns ah INFUT (ab)

5 stalel ab 3 {ab)

[statel statei NFXT {stated ab) — {statel) 1s new sc¢ delay siole! here
T firal stoled NEX1 {slate! ab)

l non final stgtef r (staied ab)

9 cons non final INPIT (non final staled ab)

10 siated ab NEXT {ab)

Figure 2 Tracing the expansion of type ab ab 15 consistent hence the fimte automata accepts mmput {a,b)

is specified all types will be expanded (checked in
unify type and node)

maxdepth integer specifies that all types al paths
longer than integer will bt delated anyway (checked
in unify-type-and-node)

attribute-preference {attribute}’ defines
order on attributes that will be considered in
the functions depth-first-expand and types-first-
crpand The substructures at the attributes left-
most m the list will be expanded first This non-
nunjental preference may speed up expansion if no
numerical heuristics are known

a partial

use-{conj|disj} heuristics {t|nil} [Uszkoreit 1991]
suggested exploiting numerical preferences to speed
up unification Both keywords control the use of
this information in functions dtpth-first-cxpand and
types-first-expand

resolved-predicate {resolved-p|always-false| } This
slot specifies a user definable predicate that may
be used to stop recursion (see function expand-tfs)
The default predicate is always-false which leads to
a complete expansion algorithm if no other delay
information is specified

ask-disj-pref ere nee {t|nil} If this flag IA set to t, the
expansion algorithm interactively asks for the order
in which disjunction alternatives should be expand-
ed (checked in depth-first-expand and types-first
expand)

NATURAL LANGUAGE

s gnore-global-control {tinl} Speafies whether glob-
ally specified expand-only, expand, and delay infor-
mation should be 1gnored or not

Let us give an example to show how comtrol mfor-
mation can he employed Note that we formulate this
cxample in the concrete syntax of 7DC

defcontrel varb
({ delay {(sign Subaumea)
SYNSEM NONLOCAL ? SLASH))
,» © matches INHERITED and TQ-BIND
(attribute-preferance
SYNSEM DTRS SUBCAT HEAD)
{ use-disj-heuristice T)
{ 1gnore-global-control T)
(expand {{(local 1nitial} #})}
,» * metches all paths 1n type local
andex 1

36

Type expansion with recursive type definitions is unde-
cidable in general, 1 e, there is no complete algorithm
that halts on arbitrary input (TFS) and decides whether
a description is satisfiable or not (see Section 5) How-
ever, there are several ways to prevent infinite expansion
in our framework

How to Stop Recursion

* The first method is part of the expansion algorithm
(lazy expansion) as described before

* The second way is brute force use the maxdepth
slot to cut expansion at a suitable path depth

* The third method is to define delay patterns or to
select the expand-only mode with appropriate type
and path patterns

* The fourth method is to use the attribute-preference
list to define the "right' order for expansion

« Finally one ran define an appropriate resolved-
predicate that is suitable for a class of recursne
types

4 Applications

In Section 3 4 we have already mentioned an NL ap-
plication in which type expansion was employed viz
in the formulation of the interface between allomorphy
and morphotactics [krieger et al 1993] Let us quicklv
present two other arces that profit from type expansion
parsing/generation as type expansion and distributed
parsing with partially expanded information

Parsing and generation can he seen in the light of type
expansion as a uniform process where only the phonol-
ogy (for parsing) or the semantics (for generation) must
be given foi instance

Parsing phrase
PHON { “John' “ltkes” “bageic™)
Type expansion together with a sufficiently specified
grammar then is responsible in both cases for construct-
ing a fully specified feature structure which i? maximal
informative and compatible with the input structure
Distributed parsing is a strategy which reduces the
representational overhead given out grammar which co-
specifies syntax and semantics proper constraints (1 e
filters) are separated from purely representational con-
straints The resulting subgrammars are then processed
b> two parsers in parallel This presupposes that we can
properly handle partially expanded typed feature struc-
tures

5 Theoretical Results

It is worth noting that testing for the satisfiability
of feature descriptions admilting recursive type equa-
tions/definitions is in general undecidablc [Rounds and
Man aster-Ram er, 1987] were the first to ha\e shown that
a Rasper-Rounds logic enriched with recursive t\pes al-
lows one to encode a Turing machine Later [Smol-
ka, 1989] argued that the undecidabihty result is due to
the use of coreference constraints He demonstrated his
claim by encoding the word problem of Time systems
Hence our expansion mechanism is faeced with the same
result in that expansion might not terminate

However, we conjecture that non-satisfiability and
thus failure of type expansion is, in general, semi-
decidable The intuitive argument is as follows given
an arbitrary recursive TFS and assuming a fair type un-
folding strategy, the only event under which TE termi-
nates in finite time follows from a local unification failure
which then leads to a global one In every other case the
unfolding process goes on by substituting types through
their definitions Recently, [Ait-Kaci et al 1993] have
formally shown a similar result by using the compact-
ness theorem of first-order logic However, their proof

assumes the existence of an infinite OSF clause (gener-
ated by unfolding a y-term]

Thus, our algorithm might not terminate if we choose
the complete expansion strategy However, we noted
above that we can even parameterize the complete ver-
sion of our algorithm to ensure termination for instance
to restrict the depth of expansion (analogous to the off-
line paisability constraint) The non-complete version
always guarantees termination and might suffice in prac-
tice

Semanticall), we can formally account for such recur-
sive feature descriptions (with respect to a type system)
in different ways either directly on the descriptions,
or indirectly through a transformational approach into
(first-order) logic Both approaches rely on the construc-
tion of a fixpomt over a certain continuous function*
The first approach is in general closer to an implemen
tation (and thus to our algorithm) in that the func-
tion which is involved in the fixpoint construction cor-
responds more or less to the unification/substitution of
TFS (see for instance [Ait-kaci, 1986] or [Pollard and
Moshier 1990]) The latter approach is based on the
assumption that TFS are only syntactic sugar for first-
order formulae If we transform these descriptions into
an equivalent set of definite clauses, we can employ tech-
niques that are fairlv common in logic programming, viz
charac terizing the models of a definite program through
a fixpoint Take for instance our cyc-list example from
the beginning to see the outcome of such a transforma
tion (assume that cyc-list is a subtype of list)

¥r eye-hst{z) & Jy = hat{z) A
FIRST(Z y) AREST{z 2z} A
Y= l1Az=1x

6 Comparison to other Approaches

To our knowledge, the problem of type expansion within
a typed feature-based environment was first addressed
by Hassan Ait-Kaci [Ait-kaci 1986] The language he
described was called KBL and shared great simdanties
with LOGIN, see [Ait-Kaci and Nasr, 1966] However, the
expansion mechanism he outlined was order dependent
in that it substituted types by then definition instead
of unifying the information Moreover it was non-lazy
thus it will fall to terminate for recursive types and per-
forms TE onl\ at definition time as is the case for ALE
[Carpenter and Penn, 1994] However, ALE provides re-
cursion through a built-in bottom-up chart parser and
through definite clauses Allowing TE only at definition
time is in general space consuming thus unification and
copying is expensive at run time

Another possibility one might follow is to integrate TE
into the typed unification process so that TE can take
place at run time Systems that explore this strategy are
TFS [Zajac, 1992] and LIFE [Ait-Kaci, 1993] However,
both implementations are not lazy, thus hard to control
and moreover, might not terminate In addition, if pro-
totype memoization is not available, TE at run time is

“In both cases, there is in general, more than one fixpoint,
but it seems desirable to choose the greatest one as it would
not rule out, for instance, cyclic structures

KRIEGERANOSCHAFER 1433

inefficient, cf Fig 1) A system that employs a lazy
strategy on demand at run tune is CUF [Dorre and Dor-
na, 1993] Laziness can be achieved here by specifying
delay patterns as is familiar from PROLOG This means
delaying the evaluation of a relation until the specified
parameters are instantiated

7 Summary

Type expansion is an operation that makes constraints
of a typed feature structure explicit and determines its
satisfiability We have described an expansion algorithm
that takes care of recursive types and allows us to ex-
plore different expansion strategies through the use of
control knowledge EfBciency is addressed through spe-
cialized techniques (I) prototype memoization reduces
the number of unifications, and (n) preference informa-
tion directs the search space Because our notion of type
expansion is conceived as a stand-alone module here, one
can freely choose the time of its invocation, e g , during
typed unification, parsing, etc

The algorithm as presented m the paper, lias been ful-
ly implemented within the TDCjl/Dibfe system [Kneger
and Schafer, 1994, Backofen and Wejers, 1994] and is an
integrated part of DISCO [Uszkoreit H al, 1994]

We are convinced that our approach is also of interest
to those who are working with (possibly recursive and hi-
erarchically ordered) record-like data structures in other
areas of computer science

References

[Ait-haci and Nasr 1986] Hassan Ait-han and Roger Nasr
LOGIN A logic programming language wiLh built-in in-
heritance Journal of Logic Programming 3 185-215 1986

[Ait Kaci et al 1993] Hassan Ait-kaci Andreas Podelski
and Seth Copen Goldstein Order-sorted feature theory
unification Technical Report 32 Digital Equipment Cor
poration, DEC Pans Research Laboratory France, May
1993 Also in Proceedings of the International Symposium
on Ixigic Programming, Oct 1993 MTT Press

[Ait-Kaci 1986] Hassan Ait Kaci An algebraic semantics
approach to the effective resolution of type equations The
oretical Computer Science 45 293-351 1486

[Ail-kaci, 1993] H assan Ait-Kari An introduction to
LIFE— programming wiLh logic inheritance functions,
and equations In Proceedings of the International Sym
posium on Logic Programming pages 5,2-68, 1993

[Backofen and Weyers 1994] Rolf Backofen and Chnstoph

Weyers UDiNe—A Feature Constraint Solver with Dis
tnbuted Disjunction and (lassical Negation Unpublished
manuscript

[Carpenter and Penn, 1994] Bob Carpenter and Gerald
Penn ALE —the attribute logic engine users guide ver-
sion 2 0 Technical report Laboratory Tor Computational
Linguistics Philosophy Department, Carnegie M» lion Uni-
versity Pittsburgh, PA August 1994

[Carpenter, 1992] Bob Carpenter The Logic of Typed Fea
lure Structures Tracts in Theoretical Computer Science
Cambndge University Press, Cambridge 1992

[Done and Dorna 1993] Jochen Dorre and Michael Dorna
CUF—a formalism for linguistic knowledge representa-
tion In Jochen Dorre editor, Computational Aspects of
Constraint Based Linguistic Description | D\ANA 1993

1434 NATURAL LANGUAGE

[Eisele and Dorre, 1990] Andreas Eisele and Jochen Dorre
Disjunctive unification PWBS Report 124, IWBS, IBM
Germany, Stuttgart, 1990

Jaffar and Jean-Louie
ID Proc of 14th

[Jaffar and Lassez, 1987] Joxan
Lassez Constraint logic programming
POPL, pages 111-119 1987

[Kneger and Schafer, 1994] Hans-Ulnch Kneger and Ulneh

Schafer I'DC—a type description language for constraint-
based grammarB In Proc of !5th COLING, pages 893-
899 1994

[Kneger et al, 1993] llans-Ulnch Kneger, John Nerbonne,
and llannes Pirker Feature-based allomorphy In Proc
of Slst ACL, pages 140-147, 1993

[Llovd, 1987] J W Lloyd Foundations of Logic Program
mmg Springer, 2nd edition, 1987

[Mjchje 1968] Donald Michie "Memo" functions and ma-
chine learning Nature, 218(1) 19-22, 1968

[Pollard and Moshier, 1990] Carl J Pollard and M Drew
Moshier Unifying partial descriptions of sets In P Han-
son editor Information Language and Cognition Vol 1
of Vancouver Studies m Cognitive Science pages 285-322
University of British Columbia Press, 1990

[Pollard and Sag 1987] Carl Pollard and Ivan A Sag
Information Based Syntax and Semantics Vol | Funda
mentals CSLI Lecture Notes, Number 13 Center for the
Study of Language and Information Stanford, 1987

[Rounds and Manaster-Ramer, 1987] William C Rounds
and Alexis Manaster-Ramer A logical version of func
tional grammar In Proc of 25th ACL, pages 89-96 1987

[Shieber et ai 1983] S Shieber, H Uszkoreit, F Pereira, J
Robinson, and M Tyson The formalism and implementa-
tion of PATR-Il In Barbara J Grosz and Mark E Stick
el editors, Research on Interactive Acquisition and Use
of Knowledge pages 39-79 Al Center, SRI International,
Menlo Park, Cal , 1983

[Shieber 1986] Stuart M Shiebpr An Introduction to
Unification Based Approaches to Grammar CSLI Lecture
Notes. Number 4 Center for the Study of Language and
Information Stanford 198b

[Smolka., 1989] Gert Smolka Feature constraint logic for uni-
fication grammars [IWBS Report 93, IWBS IBM Ger-
many Stuttgart, November 1989 Also in Journal of Logic
Programming 12 51-87 1992

[Uszkoreit et al 1994] H Uszkoreit, R Backofen, S Buse-
mann, A K Diagne, E A Hinkelman, W Kasper, B
Kiefer, H-U Kneger, K Netter, G Neumann, S Oepen,
and S P Spackman DISCO—an HPSG-based NLP sys-
tem and its application for appointment scheduling In
Proc of 15th COLING pages 436-140, 1994

[Uszkoreit, 1991] Hans Uszkoreit Strategies for adding con-
trol information to declarative grammars In Proc of 29th
ACL pages 237-245, 1991

[Wahlster 1993] Wolfgang Wabhlster VERBMOBIL—
translation of face-to-face dialogs Proc of MT Summit
IV, 127-135 Kobe, Japan July 1993

[Zajac, 1992] Remi Zajac
based grammar formalisms
18(2) 159-182, 1992

Inheritance and constraint-
Computational Linguistics,

