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A b s t r a c t 

We present new strategies for "probably ap­
proximately correct" (par) learning that use 
fewer training examples than previous ap-
proaches The idea is to observe training exam 
pies one-at-a-time and decide "on-line" when to 
return a hypothesis, rather than collect a large 
fixed-size training sample This yields sequen 
tial learning procedures that par-learn by ob-
serving a small random number of examples 
We provide theoretical bounds on the expected 
training sample size of our procedure — but es-
tablish its efficiency primarily by a scries of ex­
periments which show sequential learning ac tu-
ally uses many times fewer training examples in 
practice These results demonstrate that pac-
learning can be far more efficiently achieved in 
practice than previously thought 

1 I n t r o d u c t i o n 
We consider the standard problem of learning an accu­
rate classifier from examples given a target classifica­
tion scheme X \ —► Y defined on a domain X, we are 
interested in observing a sequence of training examples 
{(Tl,c(x1)), ,(xt,c(xt))) and producing a hypothesis 
h X —> Y that agrees with c on as much of the domain as 
possible Here we adopt the standard batch training pro-
tocol, where after a finite number of training examples 
the learner must produce a hypothesis h which is then 
tested ad infinitum on subsequent training examples 

In practice, domain objects can be represented in 
many different ways (e g , boolean or real-valued vectors, 
or structured descriptions like strings, graphs terms, 
etc), and so too can hypotheses (e g , decision trees, 
neural networks, nearest neighbor classifiers, etc ) How 
ever, regardless of the specific representation used, the 
central question is always how best to extrapolate the 
classifications of a few domain objects to an accurate 
classification scheme over the entire domain 
M o t i v a t i o n Classification learning is by far the most 
studied in machine learning research The immense in­
terest in this problem arises from the fact that classi­
fication itself is an important subtask in many appli­
cations — in fact, comprising the central function of 
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most expert systems [Clancey 1985] The importance 
of /earning in this context is that w< often lack the 
requisite knowledge needed to specify an appropriate 
classifier, and yet have access lo many correctly clas­
sified examples In such situations, we can attempt 
to exploit the wealth of available data to overcome 
inadequate prior knowledge and hence use learn­
ing as an effective classifier synthesis tool In fact 
there are numerous examples where learning systems 
have produced classifiers that outperform the best avail­
able "hand-coded' systems, c q , [le ( un et al , 1989, 
Weiss and Kulikowski, 1991] 

Although empirical research tends to examine the per­
formance properties of particular hypothesis guessing 
strategies on specific domains, the underlying goal of 
classification learning research is to uncover whatever 
general principles might underly the effective extrapola­
tion of training object classifications to entire domains 
However it has often been observed that there really is 
no such thing as a genera) purpose extrapolation strat 
egy [Schaffer 1994] — a particular strategy performs Well 
on a specific application only by fortuitous predisposi­
tion il just happens to 'guess right on unseen domain 
objects, whether by prior knowledge or luck lo guaran-
ttt success one must supply prior constraints 

The current trend towards theoretical analysis in ma­
chine learning represents a fundamental shift in emphasis 
away from discovering "universal" extrapolation strate 
gies towards explicitly acknowledging the role played 
by prior constraints in yielding successful extrapolat ion 
The role of a theoretical analysis is not to prescribe prior 
knowledge/constraints hut to determine the best that 
can be achieved given whatever is known beforehand 

1 1 Pac- learning theory 
The most influential analysis of classification learning 
is the theory of 'probably approximately correct" (par) 
learnmg introduced by Valiant [1984] Rather than spec 
ulate about the mechanisms that might underly gen 
eral purpose" classification learning Valiant's idea was 
to characterize those situations where successful learning 
could be provably achieved, and where it is demonstrably 
impossible 

P r o b l e m Pac-learning theory adopts an "i i d ran­
dom examples" model of the learning situation, which 
assumes domain objects are independently generated by 
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P r o c e d u r e 

COLLECT ) training examples sufficient to eliminate 
all e-bad concepts from C wi th prob at least 

R E T U R N any that correctly classifies every example 

Figure 1 Procedure F 

cept class 
random t ra in ing examples are suff icient to ensure F 
par learns C, where (Th is result has 
since been improved by Shawe-Taylor ft al [1993] to 
' O v e r a l l , t h e s e 

a r e p o w e r f u l results as they characterize the necessary 
and sufficient t ra in ing sample sizes needed to pac-learn 
any concept class C in terms of a ' t i gh t " l inear funct ion 
of i ts VC dimension 

1 2 Issue 
However, despite these impressive results, pac- learning 
theory has arguably had l i t t l e direct impac t on the actual 
pract ice of machine learn ing W h y ? Beyond cr i t ic isms of 
certa in mode l l i ng assumptions (e g noise-free examples 
bivalent classif ications, wh i ch actual ly have been 
addressed the pac- f ramework, cf [Haussler, 1992]), the 
most prevalent c r i t i c i sm of pac- learning theory is that 
the actual numbers of t r a i n i ng examples it demands are 
far too large to be pract ical 

E x a m p l e Consider the 
p rob lem ment ioned earlier No t i ng that 

v c ( C ) = 11, we can s imp ly use to determine a 
sufficient sample size for Procedure F Bu t here we f ind 

demands 91,030 t ra in ing examples ' (Even the 
improved demands 15,981 examples in this rase ) 
T h i s seems l ike an outrageous number given the appar­
en t ly modest parameter sett ings Moreover, these results 
compare poor ly to the empi r ica l "rule of t h u m b " tha t 
for a concept class defined by to free parameters, roughly 

t ra in ing examples are needed to achieve an er­
ror of e [Baum and Haussler, 1989] App l i ed here, 
demands only 1 100 t r a i n i ng examples — an order of 
magn i tude fewer than ( O f course, th is rule of 

t h u m b comes w i t h no guarantees, b u t i t does give an 
ind ica t ion o f how m a n y t ra in ing examples pract i t ioners 
wou ld deem "reasonable" for th is p rob lem ) Further­
more , and ' a r e orders o f magn i tude larger 
than the best known lower bound which demands 
on ly 32 t ra in ing examples in th is case' See Table 1 in 
Section 3 for a direct compar ison 

Th i s shows tha t , a l though the theoret ical upper and 
lower bounds are t igh t up to constant and log factors, 
they give results t ha t are orders of magn i tude apar t in 
pract ice Th i s has drast ic consequences for the appl ica-
b i l i t y of the theory, since in pract ice i t is of ten t ra in ing 
da ta , not compu ta t i on t ime , t ha t is the cr i t i ca l resource 
/ e , c u t t i n g the t ra in ing sample size in ha l f wou ld be a 
significant improvemen t in mos t appl icat ions, even i f this 
came w i t h a s l ight increase in overal l compu ta t i on t ime 

The apparent inefficiency of pac learn ing has lead to 
much speculat ion about the sources of d i f f i cu l ty The 
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a fixed d i s t r i b u t i o n Px and label led according to a f ixed 
target concept c Under this mode l , the er 
ro r of a hypothesis w i t h respect to c and 
Px is g iven by Here we consider the 
d i f f i cu l ty of meet ing the so-called pac criterion produc­
ing a hypothesis h w i t h error at most e, w i t h p robab i l i t y 
at least 1 — S, for specified accuracy and re l iab i l i t y pa­
rameters e and 6 Of course, the d i f f i cu l ty of achieving 
th is cr i ter ion depends on how much we know about c 
and PK beforehand Pac- learning theory adopts a model 
of p r io r knowledge where we assume the target concept 
c belongs to some known class C bu t no th ing is known 
about the doma in d i s t r i bu t ion Px Given this mode l , we 
natural ly consider what, can be achieved in the "WORST 
case d is t r ibu t ion- f ree ' sense 

For example, we m i g h t be interested in so lv ing the 
prob lem , 
where domain objects are described by 10 real-valued 
a t t r ibu tes , the target concept is known to be some linear-
halfspacc of JR.10, and we wish to produce a hypothesis 
w i t h 1% error w i t h p robab i l i t y at least 95% Our goal is 
to solve these learn ing problems as efficiently as possi­
ble - i. e., using a m i n i m u m of da ta and computa t iona l 
resources The p r i m a r y focus of this paper is on improv­
ing the data-efficiency of pac-learncr6, rather than their 
computational- efficiency 

R e s u l t s Some of the most impor tan t technical results 
of pac-learning theory concern the data resources needed 
to solve pac- learning problems In tu i t i ve l y , i t should 
take more t r a i n i ng examples to pac-learn a complex con­
cept class than a s imple one, since it is harder to d isam­
biguate possible targel concepts f r o m a complex class 
The question is how can one measure the representa­
t ional complex i ty of a concept class C so as to precisely 
determine the number of t r a i n ing examples needed to 
pac learn It turns out tha t j us t such a measure 
is provided by the Vapnik-Chtrvonenhs (VC) dimension 
of C ] Ehrenfeucht et al [1989] have shown tha t , fo r any 
concept class C w i t h v c ( C ) — d the m i n i m u m number 
of t ra in ing examples needed by any learner to 
learn C is at least 
Furthermore there is a s imple fixed-sample-size learn­
ing procedure, F, tha t always meets this lower bound tc 
w i t h i n constant and log factors and hence learns w i t h 
near-opt imal data-eff iciency see Figure 1 In par t i cu ­
lar, B lumer et al [1989] have shown tha t for any2 con-

The VCdimension measures how "fine grained" C is by 
the maximum number of domain objects C can independently 
label [Vapnik and Chervonenlas, 197l] This in an abstract 
combinatorial measure which applies to arbitrary domains 
and concept classes Moreover, it often gives intuit ive results 
( e g , the class of halfspace concepts on is defined by n +1 
"free parameters" and also has a VCdimension of n -+- 1) 

C must satisfy certain (benign) measurabibty constraints 
[Blumer, et al, 1989], which we wil l assume throughout 



predominant "folk wisdom" is that the large sample 
sizes follow from the worst case nature of the par-
guarantees [Haussler, 1990] — that is, the worst case 
bounds are inherently unreasonable because they must 
Lake into account "pathological" domain distributions 
and target concepts which force large training sample 
sizes (moreover, the argument continues these patho­
logical situations do not arise in ' typical' applications) 
In fact, this belief motivates much research that makes 
distributional assumptions in order to improve data-
efficiency, e g , [Benedek and I ta i , 1988 Aha, et al 1991, 
Barllett and Wil l iamson, 199l] However, notice that 
this line of reasoning is actually quite weak First of 
all, no-one can demonstrate that these "pathological' 
situations really exist (for this would be tantamount to 
improving the lower bound tEHKV) Secondly, it is clear 
from the previous example that the current bounds are 
loose, and can likely be substantially improved t g 
TSTAB a-nd tEHKv differ by roughly a factor of 64 In -
A p p r o a c h In this paper we investigate an alternative 
view perhaps the simplistic (collect find) learning pro­
cedure F is not particularly data-efficient This raises the 
obvious question of whether alternative learning strate­
gies might be more data-efficient than F Here we investi­
gate sequential learning procedures that observe training 
examples one-at-a-time and autonomously deride "on­
line' when to stop training and return a hypothesis 
The idea is that we should be able to detect situations 
where an accurate hypothesis can be reliably returned 
even before the sufficient sample si7C bounds have been 
reached (c g , we might detect that C has been reduced 
to a single possible target) The hope is that, in this 
way, we can significantly reduce the number of training 
examples, observed, while still meeting the exact same 
pac-criterion as before namely, that an e-accurate hy­
pothesis be returned with probability at least for any 
target concept and distribution Px An underlying 
assumption here is that we are willing to incur a slight 
computational penalty to obtain a significant improve­
ment in data-efficiency This is motivated by the fact 
that training data is usually the most critical resource in 
practical learning applications 

The remainder of this paper develops a few simple 
sequential learning procedures that (i) are correct pat 
learners, (n) are provably data-efficient, and (III) use 
many ttmes fewer training examples in empirical case 
studies 

2 Sequential pac-learning 
A sequential /earner L consists of a stopping rule 
that maps training sequences to stopping times, and a 
hypothesizer HL, that maps finite training sequences to 
hypotheses Our basic strategy for constructing sequen­
tial pac-learners is to take an arbitrary consistent hy-
pothesizer H for C (which produces hypotheses 
that correctly classify every observed training example) 
collect H's hypotheses and test these against subsequent 
training examples until one proves to have sufficiently 
small error The main challenge is finding an appropri­
ate stopping rule that guarantees the pac-cntenon, while 
observing as few training examples as possible 

Figure 2 Procedure R 

Note that in general a sequential learner observes a 
random rather than fixed number of training examples 
Thus to compare the data-efficiency of our approach 
with previous techniques we must comparr a distribu 
tion of sample sizes to a fixed number There are a num­
ber of ways one could do this but we focus on what is 
arguably the most natural measure comparing the av 
erage (i e expected) training sample size of a sequential 
learner with the fixed sample size demanded by previous 
approaches In solve the same pac-learning problem 

O b v i o u s a p p r o a c h Perhaps the rnost obvious s t ra t 
egy for sequential pac learning is based on the ide a of 
repeated significance testing- test a series of hypothe­
ses generated b\ H until one (orrett ly classifies a suffi­
cient number of consecutive training examples see Pro­
cedure R in f igure 2 3 Although this is a plaubible ap­
proach (which, in fact, works well in prat ticc) it is hard 
lo prove reasonable bounds on R s expected sample si7< 
The problem ii that R r<jecls "good enough hypotheses 
with high probability and yet takes a long time to do 
so (i c , R rejer ts hypotheses of error f with prob\bi l i ly 
1 — but this takes | expected time) lhus, if H pro­
duces a series of ' borderline" hypotheses R wil l take a 
long time to terminate (expected time about which is 
hot very good) fortunately there is a better, approach 
B e t t e r approach Here we introduce a novel learning 
procedure S (Figure i ) , which is also based on repeated 
significance testing but avoids the apparent inefficiency 
of R s survival testing approach S is based on two 
ideas First instead of throwing away H s hypotheses 
after a single mistake, S saves hypotheses and contin-
ues testing them until one proves to have small error 
Second, S identifies accurate hypotheses by using a se 
quential probability ratio test ( sp r t ) [Wald, 1947] to test 
each candidate "on-line" (in parallel), Fr igure 4 Thus, 
S never rejects a potentially acceptable hypothesis, and 
quickly identifies any sufficiently accurate candidate 

Procedure S is a correct pac learner in the exac t same 
sense as F The key property of S is that its call to sp r t 
eventually accepts any good hypothesis with proba 
bility 1 (wp l ) , but only accepts an e-bad hypothesis h, 
with probability at most This implies that S even 
tually halts w p l , and returns an c-good hypothesis with 

3 Variants of Procc dure R have been proposed by many au­
thors in the past [Liniual tt al 1991, Oblow, 1992], primarily 
to achieve "nonuniform" pac-learning However, the goals of 
nonuniform pac-leaming fundamentally differ from what we 
are trying to accomplish here (see Footnote 6) 
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Figure 3 Procedure S 

probability at least , for any target concept 
and domain distribution Px (thug, achieving the exact 
same worst case pac-guarantees as F) 4 This property 
also allows US to prove a reasonable upper bound on the 
average number of training examples S observes for any 
target concept cEC and domain distribution Px 

Theorem 1 For and any (well behaved) 
concept class C with vc(C') = d using a consistent hy 
pothesizer H for C and any constant K> I, Procedure S 
observes an average training sample size of at most 

for any target concept and distribution Px 

Although this is a crude bound, it is interesting to note 
that it scales the same as and Moreover, 
this bound actually beats and for small val­
ues of S [Schuurmans, 1995J However, as shown below 
S actually performs much better in practice than any 
bounds we can prove about its performance Since this 
is not a possibility for fixed-sample-sized approaches, we 
expect S to perform much better t h a n a n d 
in practical applications 

Before demonstrating S's advantage in empirical tests, 
we first note that there are inherent limits to the data-
efficiency even of sequential learning 

Theorem 2 For sufficiently small c and 6, and any con 
cept class C wtth \ _v_ , - -_ - any learner that al 
ways observes (for any fixed c £ C and Yx) an average 
training sample size less than 

cannot meet the pac criterion for all ' and Px 

Notice that this lower bound scales the same as in 
terms of ( and vc(C) — which shows that no new con­
cept classes become pac-learnable merely by considering 
a sequential over fixed-sample-size approach 

4Provided (details omitted) Proofs of all 
results mentioned in this paper (and more) are outlined in 
[Schuurmans and Greiner, 1995] Complete details appear in 
[Schuurmans, 1995] 

Figure 4 Procedure sprt 

3 Empirical efficiency 
Although the theoretical advantage we can demonstrate 
for S is only slight, we expect S to perform much better m 
practice than any bounds we can prove about its perfor 
mance This is because S's actual data-efficiency in any 
particular case study is determined by the specific case 
at hand, and not by the worst case situation (or, worse 
yet, what we can prove about the worst case situation) 
In fact, in empirical studies, S proves to be far more 
efficient than any bounds we can prove about its per 
formance, and many times more efficient than TBEHV, or 
TstAB This is easily demonstrated by a simple example 

I l lustrat ion We tested Procedure S on the problem 
< with the fol 
lowing setup Training objects were generated accord­
ing to a uniform distribution on [—1, l ] n and labelled by 
a fixed target halfspace (defined by a "diagonal" hyper 
plane passing through the origin 0" with norm directed 
towards The constant K was set to 3 14619 (so thai 

and we supplied S wi th a hypothesizer H 
that finds consistent halfspace concepts 5 "We ran Pro­
cedure S 100 times for n = 10 and obtained the results 
shown in Table 1 Notice that S's average training sam­
ple size of 3,402 is about 5 times smaller than TSTAB , 
27 times smaller than , and only about 3 timet, 
larger t h a n I t i s important to emphasize that S 
obtains these empirical sample size improvements while 
maintaining the exact same worst case pac-guarantees 
as before (that an c-accurate hypothesis is returned with 
probability at least These results are in fact rep-
resentative over the entire range of parameter settings 
S's empirical advantage actually improves for increased 
problem dimension n (Figure 5), and is maintained at 
higher accuracy and reliability levels [Schuurmans, 1995] 
Overall, S appears to be pac-learning with near-practical 
data-efficiency in this example 

Interestingly, S also outperforms the simplistic proce-
dure R on this problem Figure 6 shows that, R performs 
nearly as well as S on easy problems (low dimension, ac­
curacy, reliabil ity), but S's advantage grows significantly 
as these parameters are scaled up 

'Specifically, we used the BFGS secant optimization pro­
cedure [Dennis and Schnabel, 1983] with a "relaxation" ob-
jective function [Duda and Hart, 1973] 
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Exp lana t ions These results demonstrate a clear ad­
vantage for sequential over fixed-sample-size learning 
we solve the exact same pac-learning problem using far 
fewer training examples in this case Of course these pre­
ceding results are anecdotal, and it is tempting to explain 
away the advantage as a mere artifact of the specific ex­
perimental setup However, we have found that these 
experimental results are, in fact, quite robust 

First, the previous experiment only tested a single do­
main distribution (uniform), which could happen to be a 
particularly "easy" one for S To counter this claim, we 
repeated the experiment with various domain distribu 
tions to see if any could seriously affect S's performance 
In particular we considered three different transforma­
tions of the uniform[—1,1]" distribution spherical (non­
linear compression towards origin), pyramidal (compres­
sion from opposite corners towards hyperplane) and ac­
cretive (translation towards discrete points m { — 1 1]n) 
Surprisingly, none of these transformations had any no-
ticeable effect on S's performance [Sc huurmans, 1995], as 
demonstrrted in Figure 7 for the pyramidal case 

A second reason for S's advantage might be that the 
specific target concept (diagonal halfspace) is a partic­
ularly "easy" one for S — i f , H could somehow be 
biased to guess similar hypotheses However this is eas­
ily shown not to be the case We repeated the original 
experiment on 10 different target halfspaces each suc-
cessively closer to "axis-parallel, and found that none 
of these made any appreciable difference, Figure 8 

Third, it could be the case that the class of halfspaces 
<oncepts happens to be 'easy" among classes with com­
parable VOdimension This turns out to be partly 
true We have been able to construct alternative con­
cept classes which force S to observe slightly more train­
ing examples, see Figure 9 However, we have yet to de­
vise any roncept class (with the same \( dimension) that 
ran even double S's original performance on halfspaces 
In fact, S's performance often imprnvts for different con-
cept classes (particularly finite ones) Overall, it appears 
that halfspaces is not a remarkably hard or easy class for 
a given VCdimension 

Another explanation of S s advantage over F is that 
TSTAB might possibly be a gross overestimate of the true 
worst case situation (which seems likely given the gap 
between TSTAB and tSHAV) Of course, this means that 
any current advantage enjoyed by S could potentially 
be overcome by future improvements to TSTAB — but 
notice that we can enjoy S s improved performance im­
mediately, without having to wait for theoreticians to 
improve the bounds (Ensuring the correctness of F re­
quires one to prove some bound is sufficient this is not 
a requirement for Procedure S since its correctness is 
completely decoupled from its. efficiency ) 

A final explanation of S s advantage is that sequential 
learning might be inherently more efficient than fixed 
sample-size learning Clearly since the sequential ap-
proach generalizes the fixed-sample-size approach, it can 
be no worse than F The question is how substantial 
an advantage can be obtained in principle? This is left 
largely unanswered by our empirical results and remains 
an interesting open topic for future research 

Figure 5 Scaling in input dimension n Number of train-
ing examples observed for (Rn halfspaces, t = 0 01,8 = 0 OS) 
with n = 1 2 3 5 10 15, 20 (Results of 100 runs each ) 
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Advantages Despite the empirical nature of these re 
suits, sequential learning holds many clear advantages 
over fixed-sample-size learning for solving pac-learning 
problems First, the sequential approach decouples the 
actual data-efficiency of a pac-learner from the precise 
bounds we can prove about its performance a pnon 
Thus, the actual data-efficiency of a sequential learner 
depends on the specifir case at hand, not on what W( 
can prove about the worst case situation Consequent!} 
the sequential approach automatically takes advantage 
of beneficial situations like 'easy" target concepts and 
domain distributions [Oblow, 1992], or a ' good" hypoth 
csizer that makes lucky guesses -— without the system 
designer having to explicitly notice that these beneficial 
situations exist a pnon ' More importantly the true 
worst case data-efficiency of sequential learning depends 
on the true worst case convergence properties of the con 
cept class, not on the particular bounds we happen to 
be able to prove at the time (i e , if bad concepts are 
eliminated sooner than proven bounds, then S automat­
ically stops sooner) So in effect we are able to exploit 
the optimal worst case bounds right now, even though 
we are unable to prove exactly what tbey are 

C o m p u t a t i o n Wc also note that Procedure S only in­
troduces reasonable computational overhead over Pro­
cedure F and in fact is often more computa t iona l 
efficient than Rr Although, at first glance, S appears to 
be extremely space-inefficient this rarely amounts to a 
significant expense in practical applications The point 
is that, in practice, it is the task of finding consistent 
hypotheses (calling H) that takes most of the work — 
storing hypotheses once (found (updating statistics, etc ) 
does not require much overhead in comparison Conse 
quently, R is often slower than S (even though it uses less 
space) simply because R Lends to call H more often 

4 Add i t i ona l results 
Special cases We have obtained even stronger results 
in slightly restricted settings [Schuurmans and Gremer 
1905] For example, a variant of Procedure S can serve 
as a sequential ' mistake bounded to pac" conversion 
procedure that is provably more efficient than Lit l le 
stone's fixed-sample-size procedure [Littlestone, 1989] 
(and which uses 30 dmes fewer training examples in em­
pirical tests) We also obtain stronger improvements for 
the case of distribution specific pac-learmng (where we 
assume the learner knows Px, but not the target concept 

Notice that a sequential approach is sti l l possi­
ble in this case, and, in fact a variant of Procedure S 
can pac-learn concept spaces | using 5 times fewer 
training examples than the best known fixed-sample-size 
procedure developed in [Benedek and I ta i , 1988] 

Range of app l i cab i l i t y Beyond improving data-
efficiency, sequential learning is also applicable to a much 
wider range of pac-learning problems than fixed-sample-
size learning For example. Procedure S can be direcLly 
applied to "nearest neighbor" and "decision-tree" hy 
pothesizers (like CART [Breiman, et al, 1984]) which 
implicit ly consider concept classes of infinite VCdimen 
sion No fixed-sample-size bound can ever be sufficient 
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in these cases, and yet Procedure S can be applied to 
pac learn these classes "as is " The only catch is that 
we can no longer place a uniform upper bound on S s 
expected training sample size 6 

5 Conclusion 
Research d i rec t ions There are numerous directions 
for future research First, since our empirical results 
address "artif icial" learning problems, it would be in­
teresting to test these procedures on real world' data 
sets (e g , as contained in the UCI repository of machine 
learning databases) to verify that the same empirical ad­
vantages can be realized there Another important re 
search direction is to extend our techniques lo deal with 
classification noise which remains the main barrier be­
tween the results presented here and real applications 
Finally, one can also consider a slightly different learning 
sconano which perhaps has more practical applications 
than pac-learning rather than first fixing the accuracy 
and reliability parameters and then determining suffi-
nent sample size it is much more natural to take a fixed 
sample size, fix a reliability parameter and produce an 
estimate of the accuracy achieved by the learner's final 
hypothesis In this regard we are currently investigat 
mg a variant of Procedure S which produces hypotheses 
with small (but reliable1) error estimates 

C o n t r i b u t i o n s We have described a novr 1 pac-learning 
pro<edurc, S, that uses far fewer training examples 
than previous approaches Procedure S is, in effect 
generic test, procedure (hat can pac-learn arbitrary ran 
(ept rlasses C (with finite VC dimension), provided only 
that we can supply a hypothesizer H that produces con­
sistent concepts from C This procedure introduces l i t t le 
computational overhead and yet substantially reduces 
the number of training examples needed to pac learn in 
practice — as demonstrated in numerous case studies 
where S used many times fewer training examples than 
the previous best known approaches while still main­
taining the exact same worst case pac guarantees 

In a way these results exploit the empirical advan­
tage demonstrated by practical learning algorithms over 
the theoretical bounds, to improve the efficiency of pac-
learmng Overall, our results show how pac learning can 
be far more efficiently achieved in practice than previ­
ously thought — countering the claim that pac learning 
can never be feasibly achieved in real applications 

A c k n o w l e d g m e n t s 

Thanks to Steven Shapiro for his help with the imple­
mentations 

6 It is important not Lo confuse the idea of sequential 
with nonuniform pac-learning [Lima] et al 1991, Oblow, 
1992] Although nonuniform pac learning procedures also 
Use ' on-bne" stopping rules very similar to R they do not 
share the same theoretical advantages shown for S Sequen 
tial pac-learning, seeks to obtain a uniform improvement in 
data efficiency for all cases permitted by our prior knowledge 
whereas nonuniform pac learning sacrifices data-efficiency in 
some situations to obtain an improvement in others These 
two concerns are in fact orthogonal 
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