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Abstract 
In previous work (Bennett 1993 DeJong and Bennetl 

1993) we proposed a machine learning approach called 
permissive planning to extend classical planning into 
the realm of real wor ld plan execution Our prior results 
have been favorable but empirical (Bennetl and DeJong 
1991) Here we examine the analytic foundations of our 
empirical success We advance a formal account of real-
wor ld planning adequacy We prove that permissive 
planning does what it claims to do it probabil istically 
achieves adequate real-world performance or guarantees 
that no adequate rea l -wor ld p lanning behavior is 
possible w i th in the f lex ib i l i t y al lowed We prove thai 
the approach scales tractably We prove that restrictions 
are necessary wi thout them permissive planning is 
impossible We also show how these restrictions can be 
quite naturally met through schema based planning and 
explanation-based learning 

1 Introduct ion 
R e a l - w o r l d execut ion of classical plans can be 

problematic Small but unavoidable discrepancies between 
the system s representations and the real world often conspire 
to cause real world failure We adopt a model of real wor ld 
planning adequacy Next we discuss planner bias an 
inescapable facet of classical planning We show that 
through adjustment of planner bias real wor ld adequacy can 
be achieved The adjustment process called permissive 
planning is empi r ica l ly guided Thus it is a form of 
machine learning In permissive planning the p lanners 
domain theory and projection capabilities remain unchanged 
Through bias adjustment the real-world manifestation of 
produced plans are brought into l ine w i t h project ion 
according to the micro wor ld 

1 1 Planning and Real-World Adequacy 
A classical planner can be viewed as accreting constraints 

unt i l the set of act ion sequences consistent w i th the 
constraints are al l believed to solve the planning problem 
We term a classical planner together wi th its declarative 
wor ld model (its operator def ini t ions etc ) a planning 
s\item A planning domain is a source ot p lanning 
problems together wi th some real world interface We model 
the p lanning problems as an unl imi ted sequence whose 
elements are randomly generated by the wor ld according to 
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some f ixed but unknown distr ibut ion over a universe of 
we l l - fo rmed problems The rea l -wor ld interface must 
minimal ly be able to execute a plan and report whether the 
goal of the planning problem is satisfied in the resulting 
stale 

The planning system is applied to domain problems in 
sequence For each problem the planner expends up to some 
fixed resources and either offers a solution or choose not to 
offer a solution (by outputting the special symbol 

We say a plan ISolves (solves according to the system s 
own Internal model of the world) a planning problem if the 
in i t ia l state projected through the plan satisfies the 
problems goal The plan ESolves (solves according to the 
External world) a planning problem if the real-world state 
that results when the plan is executed f rom the problems 
in i t ia l state satisfies the p rob lems goal L i kew ise a 
planning system ISolves (or ESolves) a problem il the plan 
it produces ISolves (or ESolves) the problem 

D e f i n i t i o n The adequacy of a planning system P over a 
universe of problems U randomly sampled according to 
a distribution D is 

Each cont r ibut ion is weighted by the probabi l i ty of 
encountering the problem according to the d is t r ibut ion 
Adequacy improves if an offered plan actually works in the 
real wor ld producing a bad plan cannot be better (and may 
be worse) than producing no plan at all 

1 2 Planner Bias Space 
Planner bias is the preference (exhibited bv all classical 

planners) for one solution over others When presented wi th 
a problem the planners abilities are in general capable of 
constructing many quite different solutions For breakfast 
one might be capable of making pancakes crepes Belgian 
waffles hot oatmeal cold raisin bran sausage and eggs 
gravy and biscuits eggs Benedict etc We cal l this the 
competence set of the planner No planner w i l l construct 
them all planning act iv i ty halts when the first solution is 
found We call this preferred element of the competence set 
the performance item 
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We wish to examine the effect of altering the bias of a 
planner The bias of a planner is just a selection function 
for any planning problem, the bias selects either an element 
of the competence set or The competence set of a 
problem remains the same if the bias is changed but a 
different performance item may be selected Now consider a 
space of possible biases The notion though abstract is 
well formed A bias space is simply a collection of possible 
selection functions 

Given a bias space and a planning system it is entirely 
possible (indeed quite likely) that for a given domain some 
biases wil l result in a higher adequacy than others By 
systematically searching the bias space we might hope to 
achieve acceptable real-world behavior We call such a search 
Permissive Planning 

2 Ideal Permiss ive P lann ing is Imposs ib le 
In ideal permissive planning the bias space is unrestricted 

There are no a prion constraints upon the individual biases 
that make up the space and the bias space may be infinite 

De f i n i t i on ideal permissive planning is a recursive 
procedure which when given 

a planner a bias space adequacy values 
a threshold of acceptable adequacy Ta between a 

and 
a source of planning problems 

produces a new planner through bias accommodation 
which has the following properties 

if the space contains no bias of adequacy the 
new planner refuses to offer solutions to any 
further problem 

otherwise the bias with the highest adequacy is 
adopted 

The recursiveness of the procedure requires that the 
algorithm always halt Therefore only a finite number of 
example problems can be examined before either selecting 
the best bias or guaranteeing that no acceptable bias exists 
Under these conditions the following theorem holds 

Theorem 1 Ideal permissive planning cannot be 
realized 

The proof follows directly from Lemma 1 concerning 
simplified ideal permissive planning a greatly restricted 
version of the ideal formulation Here the bias space 
contains exactly two biases Furthermore Ta=0 and 
After attempting to solve a finite number of world 
problems the better of the two biases must be selected 
Problems for which the planner offers no solution are 
counted as failures 

Lemma 1 The simplified formulation of ideal 
permissive planning cannot be realized 

Proof Under these conditions the biases are independent 
Bernoull i random variables We can know their 
characteristics only by sampling world problems and 
observing success or failure This is precisely the discrete 

ume minimax bandit problem with two Bernoulli arms 
(Presman and Sonin 1990) as the horizon N grows without 
bound A permissive planning algorithm is any decision 
proceduTe which after a finite sampling of the two biases 
selects once and for all the better of the two This 
corresponds to a regret function that is asymptotically flat in 
N An important result from the bandit literature is that the 

optimal regret function grows at least as Since no 
regret function can under these conditions be 
asymptotically flat no algorithm can realize simplified 
permissive planning QED 

Any ideal permissive planning algorithm is necessarily 
also an algorithm for simplified ideal permissive planning 
so Theorem 1 holds 

3 Res t r i c ted Pe rm iss i ve P lann ing Is Tractab le 
This negative result is not the last word on permissive 

planning We now show that a particularly simple kind of 
permissive planning, which we call restricted permissive 
planning is tractable Instead of guaranteed optimality we 
wil l content ourselves with any bias above the specified 
threshold We also allow a small non-zero adequacy tolerance 
parameter E that establishes an indifference region about the 
chosen adequacy threshold If the adequacy of the best bias in 
the space falls within of the threshold we are indifferent 
to the outcome of permissive planning it may either adopt a 
bias or decide there is no adequate bias and choose not to 
solve further problems Finally restricted permissive 
planning need only succeed with a high probability More 
precisely 

Definition restricted permissive planning is a recursive 
procedure which when given 

a planner a bias space adequacy values 
a threshold of acceptable adequacy Ta between a 

and 
a source of planning problems 
two parameters £ and 6 each between 0 and 1 

produces a new planner through bias accommodation 
which with probability of at least las the following 
properties 

if the bias space contains any bias of adequacy 
some bias with adequacy of at least 

Ta E wil l be adopted 
if the space contains no bias of adequacy the 

new planner refuses to offer solutions to any 
further problem 

if the best bias in the space falls within the 
indifference range of then the planner 
may either adopt a bias of adequacy or 
refuse to offer solutions to further problems 

The arrangement is borrowed from the PAC literature 
(Valiant 1984) and earlier employed in (Bechhofer 1954) 
From this point in the paper on when we mention adequacy 
we will understand it to mean . probabilistic attainment of 
an adequacy threshold 
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31 Schema-Based Planners and their Bias 
Spaces 

In a schema (or skeletal) planner planning techniques, are 
encoded as generalized solution patterns called schemata The 
system solves problems by retrieving an a general solution 
and instantiating it to f i t the particular problem fall ing back 
on a search planner only if no schemata apply A schema 
can be v iewed as a mechanism for supplying a set of 
constraints wh ich depend in part on the problem s init ial 
slate and goal 

D e f i n i t i o n a schema SC is a set of constant constraints 
on action sequences together wi th a function 

FSc that maps a planning problem 

into either a set of additional constraints or the special 
symbol A If FsC yields a constraint set for a problem 
|Csc I u Fsc denotes only action sequences that ISolve the 
problem 

The symbo l A is interpreted as indicat ing that the 
schema s preconditions are not satisfied by the problem The 
collection of all the system s schemata is its schema library 
The bias of a schema-based planner is the particular library u 
possesses Any change to a schema shifts the bias even if 
the replacement schema is only sl ightly different f rom the 
original We wish to consider biases composed of schemata 
acquired through E B L over problems sampled from the 
planners distr ibution 

As an aside problems often naturally cluster into problem 
classes The potent ia l goals and common in i t ia l slale 
leatures for getting to a distant city are significantly different 
than those invo lved in washing clothes We wi l l assume 
lhai problem classes are pre-existing and that it is easy for 
the planner to tell wh ich class a problem is from This is 
not to say that it is necessarily easy to know which 
schemata apply to a p rob lem Schema appl icabi l i ty is 
determined by the sa t i s f i ab i l i t y of each schema s 
preconditions From a formal point of view all ot our results, 
hold if we view all problems as coming from a single class 
But problem class is an important facet of schema planning 
and we prefer not to ignore it If problem classes are used 
however we insist that adequacy be judged for each class 
separately it wou ld be misleading to al low a planner to 
balance inferior performance on d i f f icu l t problem classes 
against infal l ible performance on easy ones 

3 2 Honest EBL 
When given a problem we w i l l require that the underlying 

E B L system produce at random one of the schemata from the 
set of possible EBL-acquirable schemata Furthermore the 
generation process must be fair We require that any schema 
that can in principle be produced w i l l be produced f rom the 
problem w i th no less than some f inite minimal probabil i ty 
Pmin That is we exclude E B L systems which can hide 
schemata beh ind v a n i s h i n g l y sma l l cons t ruc t i on 
probabil i t ies From this it fo l lows that a problem can lead 
to only a f in i te number of schemata in fact no more than 
1/pmin This is usually the case in E B L applications Note 

there is no upper bound on the number of different schemata 
that might be constructed from the domains problems and 
that the bias space may include an in f in i te number of 
distinct biases 

We also insist that a schema s precondit ions not be 
ar t i f ic ia l ly specif ic the precondit ions must accurately 
portray the capabilities of the schema s body For example a 
schema suff ic ient to ISolve general grocery shopping 
problems is not al lowed to c la im only to ISolve problems 
of acquiring dairy products More formal ly there cannot 
exist within the precondition language a more-general goal 
pattern nor a less constraining init ial state requirement that 
accurately captures the applicability of the schema We w i l l 
call such a schema honest since it can commit no sin of 
omission in advertising its appl icabi l i ty We w i l l say an 
E B L system is honest if u produces only honest schemata 

Our E B L system then is assumed to have the fo l lowing 
characteristics We provide it w i th some resource bound R 
and al low access to a domains problems When given a 
problem E B L expends at most R resources to produce a 
schema This succeeds wi th some probabi l i ty cal l it p 
W i t h probabi l i ty I p the E B L system produces A 
indicat ing that no schema w i l l be for thcoming When a 
schema is produced each of the set of acquirable schemdta 
appears wi th probabil i ty no less than pmm Only schemata 
that honestly characterize their preconditions are produced 
The E B L behavior over a domain can be summarized by 

and p Note that increasing R serves to increase p 

3 3 Conformable Schema Application 
Now we turn to the planner in which the E B L system is 

embedded This is the consumer of the EBL-acqui red 
schemata We w i l l say that a schema based planner is 
conformable if a schema can be applied to a problem only 

if the problem s goals require all of the schema's goal 
pattern To illustrate consider a schema for achieving the 
conjunctive goal pattern This 
schema is sufficient to achieve the simple problem goal 
ON(Blk l Blk3) but such a use would not be conformable 

since a port ion of the schema s goal pattern is not matched 
by the problem goal It might seem more desirable to apply 
an overly specific schema than to fai l to produce a solution 
altogether However a schema selection fai lure conveys 
important information to the learning component about the 
abilit ies of the schema based planner This information is 
obscured if schemata can be employed in a non-conformable 
(and incidentally often inefficient) manner 

We can now stale the fo l lowing lemmas 

L e m m a 2 The probabil i ty that a schema which has 
adequacy ESolves a random problem of the 

appropriate problem class is at leasi 

P r o o f Suppose we give the schema k problems of 
which r are both ISolved and ESolved p are nor attempted 
and q are ISolved but not ESolved By hypothesis the 
schema meets or exceeds the adequacy threshold Ta From 
(1) 
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L e m m a 4 Given an honest E B L schema acquisit ion 
system L and a conformable schema application 
planner A it is the case that if a p lanning 
problem P can be ISolved by A using a schema 
SC then SC is acquirable by L f rom P 

P r o o f S k e t c h We can think about each schema as 
embodying a planning strategy that can be applied directly 
without recourse to searching the constraint tree Acqui r ing 
planning schemata through E B L can be v iewed as the 
process of 1) observing an instance that i l lustrates an 
unknown strategy 2) explaining why the instance works 3) 
abstracting away unneeded and easily redenvable details of 
the example to y ie ld a general characterization of the 
illustrated strategy If a planning strategy suffices to solve a 
problem, men some from-scratch plan can be constructed (by 
the planner underly ing the E B L component) which is an 
example of the strategy This plan suitably explained can 
therefore be generalized back into the original strategy Of 
course, alternate from-scratch solutions might lead to other 
strategies and therefore other schemata But among the 
schemata acquirable f rom the planning problem must be the 
o r ig ina l l y postulated schema The on ly d i f f i c u l t y in 
t ransforming this in formal argument into a proof is to 
formal ly insure a tight f i t between the problem and the 
strategy the problem solution must necessarily illustrate all 
facets of the strategy This property is enforced by the 
honesty and conformabil ity requirements 

L e m m a 5 If a planner contains a schema, SC 
acquirable through honest E B L w h i c h has 
adequacy Ta or higher for a problem class then 
the probabi l i ty that E B L w i l l in fact construct 
SC f rom an arbitrary problem of the appropriate 

Lemma 5 plays an important role in the tractabil ity result 
In formal ly , it l imi ts how successfully an adequate schema 
can hide f rom random probing The higher a schema s 
adequacy the easier it w i l l be to f ind This may at first seem 
surprising but it is in fact quite intui t ive A schema of high 
adequacy must correctly apply to many problems and from 
lemma 4 each of these problems can give rise to the schema 
through E B L Thus random p rob ing af fords more 
opportunit ies to learn a h ighly adequate schema than one 
that is only marginally adequate 

3 4 Single Schema Planning 
We now wish to consider a very simple conformable 

schema-based planner, called a single schema planner It is 
given problems drawn from just one problem class and it 
may acquire at most one schema f rom its bias set by 
applying honest E B L to problems drawn f rom the world's 
distr ibution 

D e f i n i t i o n single schema permissive planning is 
restricted permissive planning in which the planner is a 
single schema planner 

T h e o r e m 2 Single schema permissive planning is 
tractable 

By "tractable we mean that the sample complexi ty (the 
number of domain problems consumed by the algori thm) is 
independent of the cardinali ty of the (potentially very large) 
bias space and is po lynomia l !y bounded in other relevant 
parameters F rom the 
def ini t ion of restricted permissive planning single schema 
permissive planning must w i t h high probabi l i ty , hal l w i th 
a correct answer 
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a lgor i thm hal ls consuming a t most K + M N doma in 
problems The parameters M K and N are assigned values 
which are independent of the cardinality of the bias space and 
polynomial in the other relevant parameters 

It remains to show that the probabil i ty of producing an 
incorrect answer is bounded by 6 There are two ways the 
algorithm might yield an incorrect answer 1) It may output 
A fai l ing to Find an adequate schema when one exists or 2) 
it may halt wi th an inadequate schema (whether or not an 
adequate one exists) The first error is a false negative call it 
F fn The second error F fp is a false posit ive We must 

show that Pr(F,) + Pr(F,)<,S It suff ices to show 

We first consider F f p This results if any one of the M 
hypothesized schemata is incorrectly judged to be adequate 

To avoid a false posit ive it suffices that where 

each dt is the probability that the 1'th hypothesized schema 
w i l l be falsely conf irmed as adequate Thus it suffices to 

show that for each i (4) 

The algorithm estimates the adequacy of each hypothesized 
schema by apply ing it to N sample problems The 8, s 
represent the probabil i ty that the result of the i th test falsely 
conf irmed by the observed data Statistics assures us that a 
sufficiently large N w i l l provide the required accuracy We 
show thai such an N respects our conditions of tractability 

Prov ided the variance over a randomly sampled 
distr ibut ion is finite Chebyshev s inequal i ty provides a 
useful relat ion for PAC-sty le proofs (Natarajan 1991) 
C h e b y s h e v s i n e q u a l i t y s i d l e s t h a i 

and true variance respectively of a (not necessarily normal) 
random variable X The symbol represents the measured 

mean of N samples of X is posit ive The relat ion 
quantifies the probability of observing a measured mean very 
differeni from the true mean 

Let SC be a hypothesized Schema under evaluation As be 
the computed sample adequacy of SC over N random 
problems and At be the (unknown) true adequacy of SC 
over the underlying distribution The underlying distr ibution 
of adequacies is a tr inomial of f inite values so o"2 is also 
finite Chebyshev s inequality applies For any positive A 

A necessary and sufficient condition for SC to be judged a 
false posit ive is that its sample adequacy is measured to be 
at least the desired adequacy threshold but its true adequacy is 
less than the threshold by at least E 

which impl i f ies to 
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P r o o f We w i l l show that the f o l l o w i n g a lgor i thm 
performs single schema permissive planning and that it does 
so tractably as defined above 

Informal ly, the algori thm attempts to construct and test as 
many as M schemata M is chosen so that if an adequate 
schema exists it is unl ike ly to be missed in all M trials 
Each test employs N sample problems N is chosen so that 
the measured adequacy is unl ikely to differ very much f rom 
the schema s true adequacy 

P r o o f The a lgo r i t hm alwavs halts Recal l the 
requirements The outer W H I L E 
loop is repeated at most K times K is Finite The embedded 
DO loop has the f in i te i terat ion target N The only 
conditional f l ow of control exits the outer loop prematurely 
Thus the a lgor i thms t ime complexity is O ( K N ) As many 
as K problems are drawn in the outer loop For as many as 
M (w i th iterations the inner loop is executed N 
times drawing one problem in each iteration Thus the 
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Recall again that Ta is the desired adequacy 

threshold and that e is E-adequacy parameter A necessary 
condition for F f n 3 failure is that a schema s sample adequacy 
is measured to be less than the desired adequacy threshold but 
its true adequacy is at least E greater than the threshold 

or s imp l i f y i ng , 

A suff ic ient condi t ion for avo id ing this form of false 
positive is Inequal i ty (6) But this is precisely the false 
positive error condit ion There we required a suff iciently 

large N to bound the error probabil i ty of each test by 

Here we need to bound the error probabil i ty of each test by 
It we require M to be at least 3, the error probabilities 

tor both the false posi t ive condi t ion a n d w i l l b e 
bounded as desired M is chosen to be at least 5 

Thus the probab i l i t y for a false negative and the 
probabil i ty for a false posit ive are each required to be no 
greater than so the a lgor i thm produces the correct 
answer wi th probabil i ty at least 

4 C o n c l u s i o n s 
Much previous research has applied machine learning 
techniques to p lann ing Usual ly ML is employed to 
improve the accuracy of a planners representations (e g 
(Gil 1994)) This alters the planners projection ability rather 
than its bias The chunking of control knowledge (e g 
S O A R (Lai rd el al 1987) and P R O D I G Y / E B L (Min ton 
1988)) can be viewed as altering planner bias as can some 
case-based approaches (Al len and Langley 1990 Hammond 
e( al 1990) though in these systems there is no formal 
connect ion to planner adequacy wh ich is central to 
permissive planning 

In addition lo our analytic results we have implemented a 
real -wor ld single-schema permissive planning system 
G R A S P E R a robot system that learns lo pick up novel 
objects Its model of wor ld change is simple and imperfect 
A bias is acquired that prefers to select among other things 
grasp points nearer the center of mass grasp forces higher 
than bel ieved necessary and wider than needed gripper 
openings on approach to the target piece 

Whi le single schema permissive planning may seem 
narrow the single schema results are immediately extendible 
to a schema planner wi th one schema per problem class 
Wi th l i t t le d i f f i cu l ty the results also extend to a schema 
planner with any f ixed maximum number of schemata for 
each problem type 

The permissive planning approach offers to bring plan 
execution and real-world behavior within the framework of 
classical planning We show that one natural way to realize 
permissive planning is wi th the combination of E B L and a 
schema planner The tractabi l i ty proof guarantees that 
permissive planning scales - that the benefits are not the 
manifestation of a simple domain 
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