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Abstract

In previous work (Bennett 1993 DeJong and Bennetl
1993) we proposed a machine learning approach called
permissive planning to extend classical planning into
the realm of real world plan execution Our prior results
have been favorable but empirical (Bennetl and DeJong
1991) Here we examine the analytic foundations of our
empirical success We advance a formal account ofreal-
world planning adequacy We prove that permissive
planning does what it claims to do it probabilistically
achieves adequate real-world performance or guarantees
that no adequate real-world planning behavior is
possible within the flexibility allowed We prove thai
the approach scales tractably We prove that restrictions
are necessary without them permissive planning is
impossible We also show how these restrictions can be
quite naturally met through schema based planning and
explanation-based learning

1 Introduction

Real-world execution of classical plans can be
problematic Small but unavoidable discrepancies between
the system s representations and the real world often conspire
to cause real world failure We adopt a model of real world
planning adequacy Next we discuss planner bias an
inescapable facet of classical planning We show that
through adjustment of planner bias real world adequacy can
be achieved The adjustment process called permissive
planning is empirically guided Thus it is a form of
machine learning In permissive planning the planners
domain theory and projection capabilities remain unchanged
Through bias adjustment the real-world manifestation of
produced plans are brought into line with projection
according to the micro world

1 1 Planning and Real-World Adequacy

A classical planner can be viewed as accreting constraints
until the set of action sequences consistent with the
constraints are all believed to solve the planning problem
We term a classical planner together with its declarative
world model (its operator definitions etc ) a planning
slitem A planning domain is a source ot planning
problems together with some real world interface We model
the planning problems as an unlimited sequence whose
elements are randomly generated by the world according to
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some fixed but unknown distribution over a universe of
well-formed problems The real-world interface must
minimally be able to execute a plan and report whether the
goal of the planning problem is satisfied in the resulting
stale

The planning system is applied to domain problems in
sequence For each problem the planner expends up to some
fixed resources and either offers a solution or choose not to
offer a solution (by outputting the special symbol A}

We say a plan ISolves (solves according to the system s
own Internal model of the world) a planning problem if the
initial state projected through the plan satisfies the
problems goal The plan ESolves (solves according to the
External world) a planning problem if the real-world state
that results when the plan is executed from the problems
initial state satisfies the problems goal Likewise a
planning system |Solves (or ESolves) a problem il the plan
it produces ISolves (or ESolves) the problem

Definition The adequacy of a planning system P over a
universe of problems U randomly sampled according to
a distribution D is Ayn(P) =

o 1f P ISolves ¢ and P ESplves ¢

EPrDm- B P does not 1Solve ; (1)
U
N y1f P 180lves 1 bul does not ESolve «

where o f and yare constants with Y& f<0<ca

and Pr,(1) 14 the probabiluy of occurrence of problem ¢
according Lo distnbution D

Each contribution is weighted by the probability of
encountering the problem according to the distribution
Adequacy improves if an offered plan actually works in the
real world producing a bad plan cannot be better (and may
be worse) than producing no plan at all

1 2 Planner Bias Space

Planner bias is the preference (exhibited bv all classical
planners) for one solution over others When presented with
a problem the planners abilities are in general capable of
constructing many quite different solutions For breakfast
one might be capable of making pancakes crepes Belgian
waffles hot oatmeal cold raisin bran sausage and eggs
gravy and biscuits eggs Benedict etc We call this the
competence set of the planner No planner will construct
them all planning activity halts when the first solution is
found We call this preferred element of the competence set
the performance item
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We wish to examine the effect of altering the bias of a
planner The bias of a planner is just a selection function
for any planning problem, the bias selects either an element
of the competence set or A The competence set of a
problem remains the same if the bias is changed but a
different performance item may be selected Now consider a
space of possible biases The notion though abstract is
well formed A bias space is simply a collection of possible
selection functions

Given a bias space and a planning system it is entirely
possible (indeed quite likely) that for a given domain some
biases will result in a higher adequacy than others By
systematically searching the bias space we might hope to
achieve acceptable real-world behavior We call such a search
Permissive Planning

2 ldeal Permissive Planning is Impossible

In ideal permissive planning the bias space is unrestricted
There are no a prion constraints upon the individual biases
that make up the space and the bias space may be infinite

Definition ideal permissive planning is a recursive
procedure which when given
a planner a bias space adequacy values ¢« B 7y
a threshold of acceptable adequacy T, between a
and p
a source of planning problems
produces a new planner through bias accommodation
which has the following properties
if the space contains no bias of adequacy 2T; the
new planner refuses to offer solutions to any
further problem
otherwise the bias with the highest adequacy is
adopted

The recursiveness of the procedure requires that the
algorithm always halt Therefore only a finite number of
example problems can be examined before either selecting
the best bias or guaranteeing that no acceptable bias exists
Under these conditions the following theorem holds

Theorem 1 Ideal permissive planning cannot be
realized

The proof follows directly from Lemma 1 concerning
simplified ideal permissive planning a greatly restricted
version of the ideal formulation Here the bias space
contains exactly two biases Furthermore T,=0 and y:ﬁ
After attempting to solve a finite number of world
problems the better of the two biases must be selected
Problems for which the planner offers no solution are
counted as failures

Lemma 1 The simplified formulation of ideal
permissive planning cannot be realized

Proof Under these conditions the biases are independent
Bernoulli random variables We can know their
characteristics only by sampling world problems and
observing success or failure This is precisely the discrete
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ume minimax bandit problem with two Bernoulli arms
(Presman and Sonin 1990) as the horizon N grows without
bound A permissive planning algorithm is any decision
proceduTe which after a finite sampling of the two biases
selects once and for all the better of the two This
corresponds to a regret function that is asymptotically flat in
N An important result from the bandit literature is that the

optimal regret function grows at least as ﬁ Since no
regret function can under these conditions be
asymptotically flat no algorithm can realize simplified
permissive planning QED

Any ideal permissive planning algorithm is necessarily
also an algorithm for simplified ideal permissive planning
so Theorem 1 holds

3 Restricted Permissive Planning Is Tractable

This negative result is not the last word on permissive
planning We now show that a particularly simple kind of
permissive planning, which we call restricted permissive
planning is tractable Instead of guaranteed optimality we
will content ourselves with any bias above the specified
threshold We also allow a small non-zero adequacy tolerance
parameter E that establishes an indifference region about the
chosen adequacy threshold If the adequacy of the best bias in
the space falls within E of the threshold we are indifferent
to the outcome of permissive planning it may either adopt a
bias or decide there is no adequate bias and choose not to
solve further problems Finally restricted permissive
planning need only succeed with a high probability More
precisely

Definition restricted permissive planning is a recursive
procedure which when given
a planner a bias space adequacy values o, [} ¥
a threshold of acceptable adequacy T, between a
and B
a source of planning problems
two parameters £ and 6 each between 0 and 1
produces a new planner through bias accommodation
which with probability of at least 1-8 llas the following
properties
if the bias space contains any bias of adequacy
2Tg+& some bias with adequacy of at least
T. E will be adopted
if the space contains no bias of adequacy 2Ty €, the

new planner refuses to offer solutions to any
further problem

if the best bias in the space falls within the
indifference range of Tgt£ then the planner
may either adopt a bias of adequacy £Tg-g, or
refuse to offer solutions to further problems

The £/& arrangement is borrowed from the PAC literature
(Valiant 1984) and earlier employed in (Bechhofer 1954)
From this point in the paper on when we mention adequacy
we will understand it to mean |-f probabilistic attainment of
an g-adequacy threshold



31 Schema-Based Planners and their Bias
Spaces

In a schema (or skeletal) planner planning techniques, are
encoded as generalized solution patterns called schemata The
system solves problems by retrieving an a general solution
and instantiating it to fit the particular problem falling back
on a search planner only if no schemata apply A schema
can be viewed as a mechanism for supplying a set of
constraints which depend in part on the problem s initial
slate and goal

Definition a schema SC is a set of constant constraints
{Csc)} on action sequences together with a function
Fsc P— C U A that maps a planning problem

into either a set of additional constraints or the special
symbol A If Fsc yields a constraint set for a problem
|Csc | u Fs denotes only action sequences that ISolve the
problem

The symbol A is interpreted as indicating that the
schema s preconditions are not satisfied by the problem The
collection of all the system s schemata is its schema library
The bias of a schema-based planner is the particular library u
possesses Any change to a schema shifts the bias even if
the replacement schema is only slightly different from the
original We wish to consider biases composed of schemata
acquired through EBL over problems sampled from the
planners distribution

As an aside problems often naturally cluster into problem
classes The potential goals and common initial slale
leatures for getting to a distant city are significantly different
than those involved in washing clothes We will assume
lhai problem classes are pre-existing and that it is easy for
the planner to tell which class a problem is from This is
not to say that it is necessarily easy to know which
schemata apply to a problem Schema applicability is
determined by the satisfiability of each schema s
preconditions From a formal point of view all ot our results,
hold if we view all problems as coming from a single class
But problem class is an important facet of schema planning
and we prefer not to ignore it If problem classes are used
however we insist that adequacy be judged for each class
separately it would be misleading to allow a planner to
balance inferior performance on difficult problem classes
against infallible performance on easy ones

3 2 Honest EBL

When given a problem we will require that the underlying
EBL system produce at random one of the schemata from the
set of possible EBL-acquirable schemata Furthermore the
generation process must be fair We require that any schema
that can in principle be produced will be produced from the
problem with no less than some finite minimal probability
Pmin That is we exclude EBL systems which can hide
schemata behind vanishingly small construction
probabilities From this it follows that a problem can lead
to only a finite number of schemata in fact no more than
1/pmin This is usually the case in EBL applications Note

there is no upper bound on the number of different schemata
that might be constructed from the domains problems and
that the bias space may include an infinite number of
distinct biases

We also insist that a schema s preconditions not be
artificially specific the preconditions must accurately
portray the capabilities of the schema s body For example a
schema sufficient to 1Solve general grocery shopping
problems is not allowed to claim only to ISolve problems
of acquiring dairy products More formally there cannot
exist within the precondition language a more-general goal
pattern nor a less constraining initial state requirement that
accurately captures the applicability of the schema We will
call such a schema honest since it can commit no sin of
omission in advertising its applicability We will say an
EBL system is honest if u produces only honest schemata

Our EBL system then is assumed to have the following
characteristics We provide it with some resource bound R
and allow access to a domains problems When given a
problem EBL expends at most R resources to produce a
schema This succeeds with some probability call it p
With probability | p the EBL system produces A
indicating that no schema will be forthcoming When a
schema is produced each of the set of acquirable schemdta
appears with probability no less than p,n» Only schemata
that honestly characterize their preconditions are produced
The EBL behavior over a domain can be summarized by
Pnun and p Note that increasing R serves to increase p

3 3 Conformable Schema Application

Now we turn to the planner in which the EBL system is
embedded This is the consumer of the EBL-acquired
schemata We will say that a schema based planner is
conformable if a schema can be applied to a problem only
if the problem s goals require all of the schema's goal
pattern To illustrate consider a schema for achieving the
conjunctive goal pattern ON(?x 7y} A ON{?y 'z) This
schema is sufficient to achieve the simple problem goal
ON(BIk | BIlk3) but such a use would not be conformable
since a portion of the schema s goal pattern is not matched
by the problem goal It might seem more desirable to apply
an overly specific schema than to fail to produce a solution
altogether However a schema selection failure conveys
important information to the learning component about the
abilities of the schema based planner This information is
obscured if schemata can be employed in a non-conformable
(and incidentally often inefficient) manner

We can now stale the following lemmas

Lemma 2 The probability that a schema which has
adequacy Tg ESolves a random problem of the

=
a-f

Proof Suppose we give the schema k problems of
which r are both 1Solved and ESolved p are nor attempted
and q are ISolved but not ESolved By hypothesis the

schema meets or exceeds the adequacy threshold T, From

(1)

appropriate problem class is at least
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ra+pf+qy
k
KT, — gy —
r»a ay—-pf
a

2T, (2)  or equivalently

(3)

r
Let us examine a lower bound on the ratio s Consider how

k problems can be apportoned among r g, and p From (3)
we see that for a given Ty r1s minimized when q=0 (since

y<f<0<a) If g=0 then p=k-r Substituung these into

T -
{2) and solving for r we obtain lya This ratio 1s

k a-p
Just the proportion of problems which are both ESolved and
ISolved to the total number of problems QED
Lemma 3 The probability that a schema which has
adequacy T; ISolves a random problem of the
T,-8
o-f

appropnate problem class 1s at Jeast

(This 1s established 1n the proof of Lemma 2)

Lemma 4 Given an honest EBL schema acquisition
system L and a conformable schema application
planner A it is the case that if a planning
problem P can be ISolved by A using a schema
SC then SC is acquirable by L from P

Proof Sketch We can think about each schema as
embodying a planning strategy that can be applied directly
without recourse to searching the constraint tree Acquiring
planning schemata through EBL can be viewed as the
process of 1) observing an instance that illustrates an
unknown strategy 2) explaining why the instance works 3)
abstracting away unneeded and easily redenvable details of
the example to yield a general characterization of the
illustrated strategy If a planning strategy suffices to solve a
problem, men some from-scratch plan can be constructed (by
the planner underlying the EBL component) which is an
example of the strategy This plan suitably explained can
therefore be generalized back into the original strategy Of
course, alternate from-scratch solutions might lead to other
strategies and therefore other schemata But among the
schemata acquirable from the planning problem must be the
originally postulated schema The only difficulty in
transforming this informal argument into a proof is to
formally insure a tight fit between the problem and the
strategy the problem solution must necessarily illustrate all
facets of the strategy This property is enforced by the
honesty and conformability requirements

Lemma 5 |If a planner contains a schema, SC
acquirable through honest EBL which has
adequacy T, or higher for a problem class then
the probability that EBL will in fact construct
SC from an arbitrary problem of the appropriate
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(Ta _ﬁ)

class 1s at feast Pt a7/ where o and f
x-§

are adequacy perameters from Definttion 1 end

Pmn 15 mumum schema probabhty factor of

the EBL system

Proof By hypothesis the planner contamns a schema of
adequacy at least Ty Call that schema SC From Lemma 3
the expecied ISolve solution rate of SC over relevani
T —

a

problems 1s at least From Lemma 4 we know tha

cach of the ISolvable problems could 1n principle give nse
to the acquisition of SC through honest EBL Thus the
expected fracuon of problems of the appropnate class thal

could i prnciple give nise to SC s T: ﬁﬂ In honest EBL,
the mimimum probability with which a particular schema 15
produced from a problem 1s pyyrp Thus the probability that
SC 1s produced by EBL on a random problem of the
P (Ta 'ﬂ)
appropnate type 15 at least - — - QED
x-p

Lemma 5 plays an important role in the tractability result
Informally, it limits how successfully an adequate schema
can hide from random probing The higher a schemas
adequacy the easier it will be to find This may at first seem
surprising but it is in fact quite intuitive A schema of high
adequacy must correctly apply to many problems and from
lemma 4 each of these problems can give rise to the schema
through EBL Thus random probing affords more
opportunities to learn a highly adequate schema than one
that is only marginally adequate

3 4 Single Schema Planning

We now wish to consider a very simple conformable
schema-based planner, called a single schema planner It is
given problems drawn from just one problem class and it
may acquire at most one schema from its bias set by
applying honest EBL to problems drawn from the world's
distribution

Definition single schema permissive planning is
restricted permissive planning in which the planneris a
single schema planner

Theorem 2 Single schema permissive planning is
tractable

By "tractable we mean that the sample complexity (the
number of domain problems consumed by the algorithm) is
independent of the cardinality of the (potentially very large)
bias space and is polynomially bounded in other relevant
parameters (Ta @ A y p, pmun I/€ 1/8) From the
definition of restricted permissive planning single schema
permissive planning must with high probability, hall with
a correct answer



Proof We will show that the following algorithm
performs single schema permissive planning and that it does
so tractably as defined above

Algorithm SSPP (g, §, 7o)

GLOBAL a B Yp pPmumn
% Adcquacy consiants and expected EBL charactensncs %

___o:—ﬂ ln[E)
Poun(Ta=B) N8/ |}
| SpM +3+/68pM + 9

= 5 7 \

e !’M Z(qu— ;v)'l

Set M =max| 3

£°8
% Sec il for M N K descnphions %
Sel Tried=0 Set Schemas=0
WHILE (Tned<K) and (Schemas<Af) DO
Se! Tned=Tned+1

Get a problem P
% a problem Ior hypathesis gencration %

Set SC SEBL(Pr) Set Asc=0

IF SC#A BEGIN
Set Schemas=Schemas+ !
REPEAT N times

Get a problem Py
% a problem for hypothesis lesting %

Apply 8C to P¢ to yield PLAN
IF PLAN = A THEN
Agc=Agc+p
ELSE IF Execute{(PLAN)
achieves Goal(Py) Then
Agc=Agc+a
ELSE Agc=Agc+y
END REPEAT
END BEGIN,IF
Asc=Asc/N
IF Agc>T; THEN Exit SSPP with SC
END WHILE
Exit SSPP with A

Informally, the algorithm attempts to construct and test as
many as M schemata M is chosen so that if an adequate
schema exists it is unlikely to be missed in all M trials
Each test employs N sample problems N is chosen so that
the measured adequacy is unlikely to differ very much from
the schema s true adequacy

Proof The algarithm. alwavs halts Recall the
requirements Ta)-ﬂ, e>} §>0 and O<p<l The outer WHILE
loop is repeated at most K times K is Finite The embedded
DO loop has the finite iteration target N The only
conditional flow of control exits the outer loop prematurely
Thus the algorithms time complexity is O(KN) As many
as K problems are drawn in the outer loop For as many as
M (with M<K) iterations the inner loop is executed N
times drawing one problem in each iteration Thus the

algorithm halls consuming at most K+MN domain
problems The parameters M K and N are assigned values
which are independent of the cardinality of the bias space and
polynomial in the other relevant parameters

It remains to show that the probability of producing an
incorrect answer is bounded by 6 There are two ways the
algorithm might yield an incorrect answer 1) It may output
A failing to Find an adequate schema when one exists or 2)
it may halt with an inadequate schema (whether or not an
adequate one exists) The first error is a false negative call it
Ffn The second error Ffp is a false positive We must

Pr(F,) + Pr(F,)<,S It suffices to show

F:) F)
Pr(Fﬁl)SAand Pr(Ffphs/z

We first consider Ff, This results if any one of the M
hypothesized schemata is incorrectly judged to be adequate

To avoid a false positive it suffices that EJJ = % where
M

show that

each d; is the probability that the 1'th hypothesized schema
will be falsely confirmed as adequate Thus it suffices to

show that 5{ = %M for each i (4)

The algorithm estimates the adequacy of each hypothesized
schema by applying it to N sample problems The 8, s
represent the probability that the result of the j th test falsely
confirmed by the observed data Statistics assures us that a
sufficiently large N will provide the required accuracy We
show thai such an N respects our conditions of tractability
Provided the variance over a randomly sampled
distribution is finite Chebyshev s inequality provides a
useful relation for PAC-style proofs (Natarajan 1991)
Chebyshev s inequality sidles thai
Uz

Pr( EA)S-—-,-— where i and 0 are the truc mean
AN

and true variance respectively of a (not necessarily normal)

.“_ﬂ?

random variable X The symbol ﬂf represents the measured

mean of N samples of X A is positive The relation
quantifies the probability of observing a measured mean very
differeni from the true mean

Let SC be a hypothesized Schema under evaluation A be
the computed sample adequacy of SC over N random
problems and At be the (unknown) true adequacy of SC
over the underlying distribution The underlying distribution
of adequacies is a trinomial of finite values so 0"2 is also
finite Chebyshev s inequality applies For any positive A

x-y
AN

A necessary and sufficient condition for SC to be judged a
false positive is that its sample adequacy is measured to be

at least the desired adequacy threshold but its true adequacy is
less than the threshold by at least E

(Ag 2T )N (A, <Tg—€)

Pr{ja, - 4|2 4) < (5)

which implifies to
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A > A+ e

Thos a sufficient condimien for avoiding a false positive Is
that for each test

|as - 4| <& Q)
Inequality (5) provides a bound on the probabihily that
a e
meguality (6) 1s violated Pr(‘As - A:l > t:) < _r'.V For N
E°N

1o be sufficient we require this probability to sahsfy

o— [
Inequality (4) —2{5 — Thus N must be chosen so
E°N 2M
2{a-7y)
NeM 5 which 1s respected by the algorithm

£°6
Note that N 1s independent of the cardinality of the bias

space (the number of enlertainable schemata) and thal it 15
polynomially bounded provided M 1s

Next we turn to M and the probability of a false
negauve Fp, For a false negative condition the algorithm
incorrectly claims that no adequate schema exists There are
three ways the algonthm might result 1n a false negative
First the K sampled problems may be sufficiently difficult
that fewer than M can be solved In this case the algorithm
cannot construct the requisilte M random hypothesis
schemata Call this false negative failure Fyp) The second
type of failure Ffp2, octurs when no adequate schema 15
entertained among the M hypotheses Finally one or more
adequalte schemata may be hypothesized but are judged Lo be
inadequate by the statistical adequacy tests Frp3 We require

3
that EPr(F ) 8/ 1t suffices 1o show Pr(F o) <8/

toreach 1
First we consider Fyn1 We will show for the given

method of selecting K that with probability | — % at leasl

M of the K sampled problems are solvable We assume the
difficully of a problem s an independent property of the
problem Provided the resources, R allocated 1o the EBL
planner are roughly adequate for the intninsic difficulbies of
the problem class, the assumplion seems reasonable

Let us define a new random variable S S, 1s 1 1l problem )
15 solved within the resources allowed and 0 of 1t 15 not The
mean of S of course 1» p, the expected proportion of
problems that can be solved We must limit the chance of

o
pewung fewer than M solvable problems to — We requnre
o

Pr( cM)s's
p__— —
A 4 )

Kp-MY &
PFP—PE.E—“K— SE )]

or equivalent]y
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Chebyshev applies to (7) 1if we let the number of samples

be K define A = and note that the vanance of § |5
K
at most I Chebyshev assures us that
Kp- M 1
PrOD - p-l 2 £ )S {8)
s K Kp-M

() s

The left hand side of (7) 1s weaker than (B) since
Chebyshev also provides a bound on how much the observed

solution rale 0. can be larger than the true rate 0 We

require only that the observed rate nol often be much
smaller Thus we successfully hmit Fgpp 1of K 1s chosen to

1 )
— < — This sumplifies to
K

K> 5pM+3+1(66pM +9
5,02

The SSPP algornhm chooses K consistent with this
bound which 1s independent of the size of the bias space and
polynomial 1n the other parameters M apgain appears
lincarly so a tractable number of examples can
probabilistically guarantee a low probabiiity of Fin) only (f
M 15 also tractable

We require Ffp2 the possibihity that an adequate schema
5 nat among the M hypothesized schemata to be unhikely

PI(F 42 %, Let SC be an adequate schema We know

satisfy

an adequate schema exists or the false negative condition
could not anse By lemma 5 1f a random schema 1s acquired
using a randomly sampled problemn the probability that the
construcled schema will be the adequate schema SC 1s al

pmm(Tﬂ _ﬁ)
a-§
randomly acquired schema s not SC 1s no greater than
| _ Prun T =)

a-p
are independent events Thus the probability that all M
altempts fdail to acquire SC 15 no greater than

least Conversely the probability that the

Repeated randomly acquired schemata

oa-f

M
[1 -pmm(Tﬂ ’ﬁ)}
a-p
a-§
———In
pmm(Ta _ﬁ)
Finally there 1s the possibility of Ffp3 that an

cntertained adequate schema fels 1ts confirmation test and 1s
incorrectly judged 1o be inadequate We require

M
T -
[1 - fﬂfl(—a.,_ﬁ_)) 1t suffices to choose M 1o sausfy
b E or sufficiently

6
M2 (E] Thus M 1s also tractable



Pr(Fﬁl3) s % Recall again that T, is the desired adequacy

threshold and that e is E-adequacy parameter A necessary
condition for Ff,3 failure is that a schema s sample adequacy
is measured to be less than the desired adequacy threshold but
its true adequacy is at least E greater than the threshold

(A <Tg)n(A 2T, +&) or simplifying, Ag <A —¢
A sufficient condition for avoiding this form of false

positive is Inequality (6) But this is precisely the false
positive error condition There we required a sufficiently

large N to bound the error probability of each test by %M

Here we need to bound the error probability of each test by
9/6 1t we require M to be at least 3, the error probabilities
tor both the false positive condition a nFgpy || be
bounded as desired M is chosen to be at least 5

Thus the probability for a false negative and the
probability for a false positive are each required to be no
greater than 8/2 so the algorithm produces the correct
answer with probability at least 1 =& QED

4 Conclusions
Much previous research has applied machine learning
techniques to planning Usually ML is employed to
improve the accuracy of a planners representations (e g
(Gil 1994)) This alters the planners projection ability rather
than its bias The chunking of control knowledge (e g
SOAR (Laird el al 1987) and PRODIGY/EBL (Minton
1988)) can be viewed as altering planner bias as can some
case-based approaches (Allen and Langley 1990 Hammond
e( al 1990) though in these systems there is no formal
connection to planner adequacy which is central to
permissive planning

In addition lo our analytic results we have implemented a
real-world single-schema permissive planning system
GRASPER a robot system that learns lo pick up novel
objects Its model of world change is simple and imperfect
A bias is acquired that prefers to select among other things
grasp points nearer the center of mass grasp forces higher
than believed necessary and wider than needed gripper
openings on approach to the target piece

While single schema permissive planning may seem
narrow the single schema results are immediately extendible
to a schema planner with one schema per problem class
With little difficulty the results also extend to a schema
planner with any fixed maximum number of schemata for
each problem type

The permissive planning approach offers to bring plan
execution and real-world behavior within the framework of
classical planning We show that one natural way to realize
permissive planning is with the combination of EBL and a
schema planner The tractability proof guarantees that
permissive planning scales - that the benefits are not the
manifestation of a simple domain
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