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Abstract 

Autonomous mobile robots need very reliable nav­
igation capabilities in order to operate unattended 
for long periods of time This paper reports on 
first results of a research program that uses par 
tially observable Markov models to robustly track a 
robot s location in office environments and to direct 
its goaJ-onented actions The approach explicitly 
maintains a probability distribution over the possi 
ble locations of the robot taking into account var 
IOUS sources of uncertainly including approximate 
knowledge of the environment and actuator and 
sensor uncertainty A novel feature of our approach 
is its integration of topological map information 
with approximate metric information We demon 
stcate Itw robustness of this appiorch «\ controlling 
an actuaJ indoor mobile robot navigating corridors 

1 I n t r o d u c t i o n 

We are interested in the task of long term autonomous nav­
igation in an office environment (with corridors foyers and 
rooms) While the slate of the art in autonomous office nav­
igation is fairly advanced it is not generdlly good enough to 
permit robots lo traverse corridors for long periods of time 
without getting lost Evidence for this can be seen in re­
cent AAA1-sponsored robot competitions [Konolige 1994 
Simmons 1995] where the robots often got confused as to 
where they were and had difficulty relocalizing once that 
occurred 

We contend that navigation can be made more reliable by 
having the robot explicitly represent spatial and sensor uncer­
tainty To this end we have developed a navigation technique 
that uses Markov models lo robustly track the robot's position 
and direct ils course A partially observable Markov deci­
sion process (POMDP) model is constructed from topolog­
ical information about the connectivity of the environment, 
approximate distance information plus sensor and actuator 
characteristics The Markov model estimates the position of 
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the robot in the form of probability distributions The proba­
bilities are updated when the robot reports that it has moved 
or turned, and when it observes features such as wails and 
corridor junctions To direct the robot s behavior, a planner 
associates a directive (e g turn or stop) with every Markov 
stale Whenever the probability distribution of the Markov 
model is updated the total probability mass for each directive 
is calculated, and the robot executes the one with the largest 
probability mass 

Our approach has several features that make it well-suited 
for the office navigation task It explicitly accounts for uncer­
tainty in actuation sensor data and their interpretation and 
the robot s position It can utilize all available sensor informa 
lion to track position and is particularly amenable to adding 
new sources of sensor information It seamlessly combines 
topological and metric map information enabling the robot to 
utilize as much or as little metric information as nhas avail 
able It is also very reactive - once the robot believes it has 
strayed from the nominal (optimal) path it wil l automatically 
execute corrective actions On the other hand n is relatively 
immune lo temporary uncertainly in position For example 
even if the robot does not know for certain which of two par­
allel comdors it is traversing H does not stop and replan as 
long as the control directives associated with both corridors 
are the same In this way it can continue making progress 
towards its desired goal while at the same lime collecting 
sensor readings to help disambiguate its true location 

An important aspect of this work is that it must run in 
real time on board an actual robot Problems include not 
only how to model the navigation problem as a POMDP but 
also how to deal with memory and time constraints While 
still preliminary our experimental results both in simulation 
and on the actual robot, are encouraging In particular they 
indicate that the approach produces very robust navigation 
even when using estimates of the actual sensor and action 
models While, to date, we have concentrated more on imple 
mentation and validation aspects of the approach our work 
opens up new application areas for more theoretical results 
in the area of planning with Markov models, including some 
of our own group s work tChnsman, 1992, Goodwin, 1994 
Koenig and Simmons 1994] 

2 Re la ted W o r k 

Most recent work in robolic office navigation has used a 
landmark based approach that relies on topological maps 
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whose nodes correspond to landmarks (locally distinctive 
places) such as corridor junctions and whose edges indicate 
how the robot should navigate between nodes [Kortenkamp 
and Weymouth, 1994 Kuipers and Byun, 1988] This ap 
proach is attractive because it does not depend on geometric 
accuracy and is reactive to sensed features of the environ­
ment (the landmarks) It suffers however, from problems 
of sensors occasionally not detecting landmarks and of sen­
sor aliasing (not being able to distinguish between similar 
landmarks) On the other hand, using purely metric maps 
is vulnerable to inaccuracies in both the map making and 
dead-reckoning abilities of the robot While some researchers 
augment topological maps with approximate metric informa­
tion such information is primarily used to resolve topolog­
ical ambiguities [Kuipers and Byun 1988 Mataric 1991 
Simmons, 1994] In contrast our Markov model approach 
seamlessly integrates topological landmark-based informa 
lion and approximate metric information 

Some navigation techniques represent uncertainly in po­
sition using models that presume a certain probability 
distribution typically Gaussian [Kosake and Kak, 1992, 
Smith and Cheeseman 1986] While such models are ef­
ficient to encode and update they are not ideally suited for 
office navigation In particular due to sensor aliasing one 
often wants to encode the belief that the robot might be in one 
of a number of non-conliguouslocations This cannot be rep-
resented precisely using Gaussian distributions but is quite 
easy for our Markov models On the other hand we need to 
lessellale space into discrete states, rather than representing 
position using real numbers Thus there is a tradeoff between 
the precision and expressiveness of the different models We 
contend that for office navigation however that die added 
expressiveness of the Markov models outweighs the decrease 
in precision from discretization 

Like our own work several researchers have investigated 
Bayesian approaches for probabilistic planning and execution 
monitoring in office navigation [Nourbakhsh el al 1995] 
use a partially observable Markov model approach similar to 
ours but do not utilize any metric information The states 
of the robot are either at a topological node or somewhere 
in a connecting comdor In contrast our approach can use 
estimates of how far the robot has traveled and sensor reports 
that occur within a corridor to further constrain the robot s 
location For example knowing that two corridor junctions 
are approximately 5 meters apart enables the robot to estimate 
when it is in the vicinity of the second junction even if it 
misses seeing the junction 

Most of the other Bayesian approaches rely on metric maps 
[Kirman a al, 1991] and [Nicholson and Brady 1994] use 
approaches based on temporal belief networks With such 
methods the size of die models grows linearly with the amount 
of temporal lookahead, which limits their use to rather small 
lookaheads [Dean et al 1993] use robot navigation as an 
example to describe a planning and monitoring algonmm dial 
uses a totally observable Markov model which assumes that 
the location of the robot is always known precisely [Hu and 
Brady, 1994] use Bayesian techniques to detect unforeseen 
obstacles in an otherwise completely known environments 

Figure 1 Augmented Topological Map 

3 C o n s t r u c t i n g the M a r k o v M o d e l s 

Before describing how we construct Markov models of an 
office environment, we introduce some terminology A finite 
Markov model consists of a finite set of states S a finite set 
of actions A a set of actions A(s) for each state 
that can be executed in that state, and transition probabilities 

and (the probability that 
the new stale is y if action a is executed in slate s) We also 
define a set of sensors The sensors are characterized 
by observation probabilities 
(the probability that sensor / reports feature o when the robot 
is in state s) Note that Markov models assume that the 
transition and observation probabilities are determined only 
by the current state of the robot (the "Markov assumption ) 

In our case, the Markov model is partially observable be 
cause the robot may never know exactly which slate it is in 
Instead it maintains a belief of its current state in form of 
a probability distribution p{s) over die slates The 
probability distribution is updated in two ways When an ac­
tion report a is received indicating a move or turn, the new 
probabilities become 

where A!" is a normalization factor to ensure that the probabil 
iiies all sum to one (this is necessary because not all actions 
are defined for all states) When a sensor report o is received 
from sensor i indicating that a feature has been detected the 
probabilities become 

The Markov model is constructed from three sources of 
information the topology of the environment (which we pre­
sume can be easily obtained) general knowledge about office 
environments (such as that corridors are straight and perpen­
dicular to each other) and approximate metric knowledge 
(obtained either from rough measurements or from general 
knowledge, such as the fact that, in our building, corridors are 
two meters wide and all doorways are between two and ten 
meters apart) 

The map information is initially encoded as a graph of 
nodes and edges (Figure 1) A node represents a junction 
between corridors (and/or doorways or foyers) Nodes are 
connected by a pair of directed edges which are augmented 
widi approximate length information in the form of a prob­
ability distribution over possible lengths Rooms and foyers 
(not shown) are also represented in the map 
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Figure 2 Group of Four Markov States 

The rest of this section describes how the augmented topo­
logical map is compiled into a Markov model 

Modeling Locations 
Each Markov state encodes both the orientation and location 
of the robot To insulate the model from low-level control 
aspects (such as turning to avoid obstacles) we encode the 
commanded heading of the robot rather than its instantaneous 
orientation Since our corridors are straight and perpendicular 
to each other it is sufficient to discretize orientation into 
the four compass directions North South, East, West The 
spatial locations of the robot are also discretized While more 
fine-grained discretizations yield more precise models they 
also result in more memory requirements and more time-
consuming computations We use a resolution of one meter 
which we have found to be sufficient 

Since our Markov states encode both orientation and lo 
cation four states are needed lo fully represent each spatial 
location Three actions are modeled turning right 90 de 
grees (r) turning left 90 degrees (/) and going forward one 
meter ( /) Right and left turn actions are defined for every 
state (Figure 2) Since they correspond lo changes in com­
manded heading and not to changes in position, we have found 
it sufficient lo model them determinislically Some states also 
have "forward' actions defined for transitioning from location 
to location (note that forward actions are not defined for stales 
that face walls) Dead-reckoning uncertainty is modeled by 
a self-transition that is, the forward action transitions with 
some probability from a Male into itself 

Modeling Corridors 
Our representation of topological edges is a key to our ap-
proach If the edge lengths are known exactly, it is simple lo 
model the ability to traverse a corridor with a Markov cain 
that has forward actions between those states whose onenta 
lions are parallel to the corridor axis (Figure 3a) The model 
becomes more complex when only approximate edge lengths 
are known While one approach is to represent a corridor 
edge by a single Markov state [Nourbakhsh et al 1995] this 
loses die ability lo utilize dead-reckoned information in doing 
position estimation 

Another approach is lo model an edge as a set of paral­
lel Markov chains, each corresponding to one of the possible 
lengths of the edge (Figure 3b) The transition probabilities 
into the first state of each chain are the same as the probability 
distribution over edge lengths associated with the topological 
map (see Figure 1) Each forward transition after that is de­
terministic (modulo dead-reckoning uncertainly — note that 
the identity transitions are not shown in these figures) While 
this representation best captures the actual structure of the 
environment it is relatively inefficient the number of stales 
is quadratic in the maximum length of the edges 

As a compromise between fidelity and efficiency, our cur­
rent implementation models edges by collapsing the parallel 
chains in a way that we call the come from" semantics (Fig-
ure3c) In this representation thespattal location of aMarkov 

L Come from semantics (if the edge length is not known exactly) 

Figure 3 Representations of Topological Edges 

state is known relative to the topological node from which the 
robot comes, but its location relative to the end of the chain 
is uncertain (c g stale B is 1 meter from A, but is between 1 
and 3 meters from C) For each stale the forward transition 
probabilities are derived from the edge length probability dis 
tnbutions When edge length uncertainty is large the come 
from semantics can save significant space over the 'parallel 
chains ' representation For example for an edge between 2 
and 10 meters long the come from semantics needs only 80 
stales to encode the edge compared lo 188 for the "parallel 
chains 

Each edge in the come from" semantics is actually repre 
sented using two chains one for each of the comdor direc­
tions Thus, if the robot travels some distance and then turns 
around the model limits the positional uncertainty as the robot 
travels back to the last topological node This is particularly 
useful when the robot realizes it has missed a junction, and 
turns around to head back 

Modeling Junctions and Doorways 
Unfortunately we cannot represent comdorjunctions simply 
with a single group of four Markov states since the spatial 
resolution of a Markov state is one meter but our corridors 
are two meters wide 
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(for claniy only actions from the highlighted nodes arc shown) 

Figure 4 Representation of Corridor Junctions 

While one approach would be to represent junctions using 
[our (two by two) groups of four Markov stales each we 
achieve nearly the same result with four groups of two states 
each which both saves space and makes the model simpler 
(Figure 4) The basic idea is that turns within a junction 
are non deterministic with equal probability of transitioning 
to one of the two slates of the appropriate orientation in the 
lunction For example in entering the junction of Figure 4 
from the South the robot would first encounter slate A then 
stale B if it continues to move forward If it then turns right it 
would be facing East and would transition to either stales C 
or D with equal probability This models agrees with how the 
robot actually behaves in junctions In particular it captures 
the uncertainty thai arises due to the facr that the robol turns 
with a non zero turn radius 

Doorways can be modeled much more simply since the 
width of our doors is approximately the resolution of the 
Markov model A single exact-length edge (Figure la) leads 
ihrough a door into a room Similarly lo [Nourbakhsh el al 
1995] doorway edges have an associated probabilityp mat the 
door is open Then the observation probabilities associated 
with seeing a doorway are 

j 

Modeling Foyers and Rooms 
We arc developing adequate models for large open spaces 
(layers and rooms) Currently we lessellale a foyer into a 
matrix of locations From each location, The forward action 
has some probability of transitioning straight ahead but also 
some probability of self-transitioinng and moving to diago-
nally adjacent states While this model corresponds well with 
our observations about how the robot actually performs in 
such spaces it is deficient in that it requires the exact length 
and width of the foyer Although this model could also be 
used to represent rooms it is probably overly complex for 
that purpose wc are currenlly leaning towards representing 
rooms using a single group of four slates each of which has 
a high probability of self-transitiomng 

4 T h e N a v i g a t i o n Sys tem A r c h i t e c t u r e 
The overall system architecture consists of five main compo-
nents (Figure 5) The robot controller performs local obstacle 
avoidance while trying to travel along a commanded heading 

Figure 5 Navigation System Architecture 

The sensor lnlerpretation component converts raw data from 
the wheel encoders and sonar into higher-level action reports 
(heading changes and disiance traveled) and sensor reports 
(features delected) Position estimation uses these reports 
and the Markov model lo maintain a belief about the current 
location of the robot Action selection uses this probability 
distribution along with a goal-directed policy produced by the 
planner to choose directives which arc sent to the controller to 
change the robot s heading or make it stop These directives 
are also fed back lo sensoT interpretation, since interpretation 
of features is often heading specific 

To dale the work reported here has focused on position 
estimation and action selection The robol controller and 
sensor interpretation components are essentially the same as 
those used in our previous work in landmark based navigation 
[Simmons 1994] and wc have not yet pul significant effort 
into the planner 

Robot Controller 
The main task of the robot controller is to head in a given 
direction while avoiding obstacles To do that, it uses a po 
(ential field approach lArkin 1987] in which obstacles arc 
represented as repulsive forces and the desired heading is an 
attractive force The robot sums the force vectors and locally 
moves in that direction modulating its speed if necessary lo 
avoid collisions 

The directives supplied to the controller are to make it stop 
go and change heading While the Markov model represents 
turns and moves as discrele actions in reality the robol does 
not stop to turn, but continually moves forward even while 
turning In addi'ion heading changes are cumulative so that 
two successive right turn directives for instance results in a 
smooth 180 degree turn 

Sensor Interpretation 
The task of the sensor interpretation component is lo convert 
the continual motion of the robot into discrete action reports 
and to produce sensor reports from the raw sensor data that 
indicate the observation of high-level features such as walls 
and corridor openings 

The sensor interpretation component periodically receives 
reports from the robot s dead reckoning which uses internal 
sensors (wheel encoders) lo estimate position and orientation 
This information is combined with the robol s commanded 
heading to produce a virtual odomeler that keeps track of 
the distance traveled along that heading This is needed so 
that the distance the robol travels in avoiding obstacles is 
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Figure 6 Occupancy Grid with Corridor Features 

not counted in determining how far it has traveled along a 
corridor After each meter of cumulative travel the sensor 
interpretation reports that one forward action has occurred 
Similarly, the robot controller reports when Us commanded 
heading has changed and this is reported (in units of 90 
degree turns) to the position estimation component 

Sonar readings are bundled into three virtual sensors' that 
report observations of walls and openings of various sizes 
(small medium and large) in front of the robot and to its 
immediate left and right An occupancy grid [Elfes 1989] 
which probabilistically combines sonar sensor readings taken 
over time as the robot travels is used lo filter noisy sen­
sor readings and produce a more global view of the robot s 
surroundings (Figure 6) The occupancy grid is processed 
by projecting a sequence of rays perpendicular to the robot s 
commanded heading (thus, it is independent of the robot's 
actual orientation) until they intersect an occupied grid cell 
The rays are then analyzed geometrically If the end points of 
the rays can be fit to a line reasonably well 0 e with a small 
chi-squared statistic) then a wall has been detected with high 
probability An opening is indicated by a contiguous sequence 
of long rays 

Position Estimation 

The virtual sensor and action reports are used to update the 
probability distribution over the Markov slates according to 
the update rules shown in Section 3 These rules need the tran 
silion probabilities for actions i , a ) and the observation 
probabilities for virtual sensors ) The transition proba­
bilities are derived from edge length distributions in the map 
plus knowledge of dead-reckoning uncertainty The observa-
tion probabilities must be estimated or learned To simplify 
the problem rather than characterizing each individual state, 
we characterize classes of states, such as w a l l open (corri­
dor junctions), c l o s e d - d o o r and o p e n - d o o r Then we 
create a table containing feature/state class pairs that encode 
the probability that the sensor reports a given feature when 
the robot is next to that particular class of states For example 
the left virtual sensor is partially characterized by 

These probabilities indicate that junctions are most com­
monly delected as medium-sized openings but can often be 
seen as large or small openings (although they are hardly 
ever confused for walls) The observation probabilities of 
the feature n o t h i r g which is used to indicate that a sensor 
has made no determination are chosen so that if the sensors 
reports n o t h i n g the overall probability distribution is un­
affected While these values represent our best guesses, we 
have implemented learning algondims to determine action 
transition and observation probabilities more precisely 

In general forward actions tend to increase positional un­
certainty due to non deterministic transitions, while observa 
nons tend to decrease it In certain cases however, the effects 
of a forward action can dramatically decrease uncertainty 
This occurs when there is some probability that the robot is 
in slates with no forward actions Such stales are 
prevalent — for instance all states within a corridor whose 
orientation is perpendicular to the axis of the corridor (see 
Figure 3) In practice, this effect can be seen when the robot 
turns at an intersection Before the turn there is often some 
probability thai the robot has not yet reached the intersection 
After the robot has turned and successfully moved forward 
a bit the probability that it is still in the original corridor 
drops to zero We believe this is a major factor in keeping the 
positional uncertainty low, even when the robot travels long 
distances 

When incorporating sensor reports, care must be taken to 
preserve the Markov assumption Since reports by the same 
sensor at the same location are not independent (since they 
depend on the same occupancy grid cells), multiple reports 
cannot be aggregated Instead we retract the old sensor report 
before updating with the new report which can be done easily 
as long as no action updates occur between the two reports 

Action Selection 
To control the robot s goal-directed behavior our planner (see 
below) associates a directive d(s) ~ with each Markov state 
(note these should not be confused with the set of actions 
A{s) defined for the Markov model) The four directives are 
change heading by 90 degrees (turn right) -90 degrees (turn 
left) 0 degrees (go forward) and stop The action selection 
component chooses new directives based on the probability 
distribution of the Markov model 

A straightforward strategy is to choose the directive as 
sociated with the stale s that has the highest probability 
[Nourbakhsh el al 1995] While this strategy may be ade 
quate when each topological entity is associated with a single 
Markov stale, it does not work well in our models For exam­
ple, since comdor junctions are modeled using several states 
for each orientation, it is reasonable to consider all of their 
recommendations when deciding which directive to issue 

A selection strategy with this property is the "best-action 
strategy in which the probability mass of each directive is 
calculated and the one with the highest total probability is 
chosen 
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A variation on this is the 'best-above threshold' selection 
strategy which chooses the best directive only if its prob-
ability mass is above some threshold otherwise the current 
directive remains in effect We have investigated this strategy 
because we thought it would reduce the chances of making 
wrong moves due to spunous false positive sensor reports 
Experimental evidence, however, both in simulation and with 
the real robot, indicate that the 'best-action' strategy is in fact 
superior in reducing the number of erroneous moves 

Reinforcement learning researchers such as [Chnsman, 
1992 Tenenberg et al 19921 often use other voting schemes, 
suc.h as the following Let gd(s,d) be the shortest distance 
from state to the goal if the robot executes directive 

and then behaves optimally The strategy chooses 
ihe directive with the smallest expected goal distance 

This scheme allows one for example to choose the second 
best action if all stales agree on the second best action but 
disagree on the best action While this scheme is attractive 
wc did not implement it because it would require substantial 
changes to our path planner 

Planning 
While opportunities abound for applying probabilistic plan­
ning techniques to this problem we currently use a very sim 
pie symbolic path planner a variant on the one used for our 
landmark based navigation 

The planner uses A* search in the augmented topological 
map to find a path to the goal It uses this plan skeleton to 
assign preferred headings to the edges and nodes in the map 
based on the expected total travel distance to the goal and 
estimates about how long it takes to turn Directives are then 
associated with the Markov stales a go forward directive 
is assigned to each state whose orientation is the same as the 
preferred heading of its associated topological entity The 
remaining states are assigned actions that will turn the robot 
towards the desired heading Finally a slop directive is 
assigned to the goal state and to nearby states (which helps 
to increase the total probability mass of the slop directive 
when the robot reaches the goal) 

Our planner and the voting heuristics used in action selec 
lion arc clearly inferior compared lo optimal POMDP solu 
tions (in which directives are assigned to probability distri­
butions rather than individual states) For example, unlike 
POMDP algorithms, our planner cannot decide to take actions 
whose only purpose is lo gather information Sometimes 
however it can be advantageous to gamer additional informa 
lion thai helps the robot to reduce positional uncertainty, even 
if that requires it to move away from the goal temporarily 

At present however it is infeasible lo determine even ap­
proximate POMDP solutions given the size of our stale spaces 
and our real-time constraints [Lovejoy 1991] [Cassandra el 
at 19941, for instance report that their POMDP method can 
solve a problem with 23 stales in under half an hour while the 
model for just half of one floor of our building has over 1000 
slates We still intend to explore POMDP algorithms how­
ever given recent advances in approximate algorithms [ParT 
and Russell 19951 and the hope that the restricted topology 
of our Markov models might make them more amenable to 
efficient solutions 

Figure 7 An Office Comdor Environment 

5 E x p e r i m e n t s 

While Markov models are expressive and relatively efficient 
thev make strong independence assumptions Empirical evi­
dence is needed to determine whether mthiscase theMarkov 
assumption is satisfied well enough to yield good, reliable 
navigation performance In this section we report on experi­
ments in two environments for which the Markov assumption 
is only an approximation a realistic simulation of a prototyp-
ical office comdor environment and an actual mobile robot 
navigating in our building The same navigation code is used 
for both sels of experiments since the simulator and the robot 
have the exact same interfaces 

5 1 Experiments w i th the Simulator 
Two navigation experiments were performed wilh the robot 
simulator in the comdor environment shown in Figure 7 The 
topological map has 17 nodes and 36 directed edges We 
modeled the uncertainty of the length of a topological edge 
as a uniform distribution over the interval ranging from 80 
to ISO percent of the real length of the edge The resulting 
Markov model has 1184 Markov slates The initial positional 
uncertainty for both experiments is minimal the initial prob-
ability for the robot s aciual location is about 90 percent The 
remaining probability mass is distributed in the vicinity of ihe 
actual location 

In the first experiment the task was to navigate from start j 
lo goal] The preferred headings assigned by our planner are 
shown with solid arrows Note that the preferred heading 
between B and C is towards C because even though the goal 
distance is a bil longer, this way Ihe robot does not have to 
turn around if il overshoots B We ran a lolal of 15 trials for 
both the best action and the best-above-threshold strategies 
all of which were completed successfullv (Table 1) 

The robot has to travel a rather long distance from start] 
before its first turn Since this distance is uncertain and com­
dor openings are occasionally missed the robol occasionally 
overshoots B and then becomes uncertain whether it is re 
ally at C or B However, since the same directive is assigned 
to both nodes this ambiguity does not need to be resolved 
the robot turns left in both cases and then goes straight The 
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same thing happens when it gets to D since it thinks it may 
be at either D or E The robot eventually corrects its beliefs 
when after turning left and traveling forward, and it detects 
an opening lo its left At this point the robot becomes fairly 
certain that it is at E A purely landmark based navigation 
lechnique can easily get confused in this situation since it 
has no expectations about seeing this opening, and can only 
attribute it to sensor error (which in this case, is incorrect) 

In the second experiment the robot had to navigate from 
start-i to goal2 The preferred headings for this task arc shown 
with dashed arrows Again we ran 15 trials lor both action 
selection strategies (Table 2) 

For reasons that are similar to those in the first experiment 
the robot can confuse G with F If at is at G but thinks it is 
probably at F it turns right and goes forward However when 
it detects the end of the corndor but does noi detect a right 
comdor opening it realizes that it must be at H rather man 
I Since the probability mass has now shifted, it turns around 
and goes over G F and I to the goal This shows that our nav 
igation lechnique can gracefully recover from misjudgements 
based on wrong sensor reports - even if it takes some lime lo 
correct its beliefs It is important to realize that this behavior 
is not triggered by any explicit exception mechanism but re­
sults automatically from the way the position estimation and 
action selection interact 

53, Experiments w i th Xavier 

Xavier our indoor mobile robot is buill on an RWI B24 
base and includes bump sensors sonars a laser range sensor 
and a color camera on a pan-tilt head Control perception and 
planning are all earned out on two on-board mulli-processing 
486-based machines 

As mentioned the probabilistic navigation system uses 
a modified version of the planner and essentially the same 
robot controller and sensor interpretation components as our 
landmark-based navigation system Thus, differences in per­
formance can be directly attributed to the different navigation 
approaches In addition to facilitate comparisons we ran 
Xavier along the same routes as reported in [Simmons 1994] 

In particular the robot traversed f rom point S to G and back 
again (Figure 8) in some trials (45 meters each way) and in 
some circumnavigated around the bui ld ing (150 meters) 

The topological map used lo represent the corridors in Fig­
ure 8 has 95 nodes and 180 directed edges As wi th the 
simulator trials the edge lengths ranged uniformly f rom 80 to 
150 percent of the real comdor length The resulting Markov 
model has 3348 states 

In 25 trials (mostly back and forth between points S and G) 
the robot successfully reached its goal in 22 cases averaging 
30 cm/s whi le traversing a total of over a ki lometer In two of 
those cases the robot missed seeing a junct ion, but turned back 
when it realized it had probably gone too far and successfully 
continued This success rate of 88% compares favorably with 
ihe 80% rate reported in [Simmons 1994] 

The main difference is thai Ihe probabilistic navigation 
scheme uses all available sensor information to help local-
i?e itself For example whi le the probabilistic navigation 
uses the robot s dead reckoning to directly constrain its po 
sition estimates the land mark-based navigation uses metric 
information in only two ways it ignores landmarks that are 
reported before a min imum distance has been traveled and 
turns around after a maximum distance Similar ly the prob 
abilistic navigation scheme utilizes all sensor reports, whi le 
the land mark-based scheme pays attention only to those fea­
tures that might correspond to the expected landmark One 
effect of this is that the probabilistic navigation scheme tends 
lo turn the robot earlier when entering a junction it often 
gets enough confidence from a single sensor report whi le the 
land mark-based scheme needs several ( e g seeing both an 
opening lo the side and the end of the corridor ahead) before 
it decides to turn 

The few remaining failures are attributable to two sources 
Occasionally the action selection heuristics enter a l imit cycle 
and continually lurn the robot (we suspect this is due to a 
software bug) More fundamental is that the local obstacle 
avoidance w i l l especially in foyers move the robot a signih 
cant distance orthogonally lo its commanded heading Since 
this is not currently reported the robot s position estimation 
becomes very inaccurate We can remedy this by reporting 
side motions and adding a slide action lo the Markov model 
that w i l l cause the appropriate state transitions 

6 Future Work and Conclusions 
This paper has presented our first efforts al using partially 
observable Markov models (POMDPs) for autonomous office 
navigation The approach enables a robot to uti l ize all its 
sensor information both positional and feature based in order 
to robustly track its location A simple path planner and 
action selection heuristics are used lo direct the robot s goal 
heading Advantages of this approach include the abil ity to 
account for uncertainty in the robol s init ial position actuator 
uncertainly sensor noise, and uncertainly in the interpretation 
of thesensordata Also by integrating topological and metric 
information the approach easily deals wi th uncertainty arising 
from incomplete descriptions of the environment 

We are extending this work in several directions We have 
implemented methods, based on EM learning techniques that 
passively refine metnc map information as wel l as the sensor 
and action models and w i l l be testing it wi th Xavier In 
addition we are developing improved learning techniques that 
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are more resistant to violations of the Markov assumption We 
intend to pursue planning and action selection algorithms that 
approximate optimal POMDP policies and to compare meir 
performance to the greedy heunstics descnbed here Finally, 
we inlend to add new sources of sensor information pnmanly 
vision-based feature detectors 

The implemented probabilistic navigation system has 
demonstrated its reliability, both in simulation and on Xavier 
even in the face of significant uncertainty We believe that 
such probabilistic navigation techniques hold gTeat promise 
for getting robots reliable enough to operate unattended for 
long penods of time in complex uncertain environments 
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