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Abst rac t 
Most constructive induction researchers focus 
only on new boolean attributes This pa­
per reports a new constructive induction algo­
r i thm, called XofN, that constructs new nom­
inal attributes in the form of X-of-N represen­
tations An X-of-N is a Bet containing one or 
more attribute-value pairs For a given in­
stance, its value corresponds to the number 
of its at tribute-value pairs that are true The 
promising preliminary experimental results, on 
both artificial and real-world domains, show 
that constructing new nominal attributes in the 
form of X-of-N representations can significantly 
improve the performance of selective induction 
in terms of both higher prediction accuracy and 
lower theory complexity 

1 In t roduc t i on 
A well-known elementary l imitation of selective indue 
tion algorithms is that when task-supplied attributes 
are not adequate for describing hypotheses, their per­
formance in terms of prediction accuracy and/or theory 
complexity is poor To overcome this l imitation, con­
structive mduction algorithms [Michalski, 1978] trans­
form the original instance space into a more adequate 
space by creating new attributes By contrast to new 
attributes, the task-supplied attributes are called prim­
itive attributes 

On real-world application domains, domain experts 
use three different types of attributes binary, nomi­
nal, and continuous-valued attributes,1 to describe their 
examples and concepts Different types of attributes 
have different advantages For example, boolean at­
tributes are very simple, nominal and continuous-valued 
attributes are complex but more powerful for represent­
ing concepts Note that attributes with more than two 
ordered discrete values can be specified as either nominal 
or continuous-valued attributes 

Most selective mduction algorithms can accept at­
tributes of these three kinds However, many existing 

Some more sophisticated attributes such as structured 
attributes may be used, but here we talk about only these 
three most commonly used types of attributes 

constructive induction algorithms such as FRINGE [Pa-
gallo, 1990] and CITRE [Matheus and Rendell, 1989] 
construct new boolean attributes only by using logical 
operators such as A, --, and V ID2-of-3 [Murphy and 
Pazzani, 199l] creates, as new attributes, M-of-N repre-
sentations statmg whether at least M of N conditions are 
true M-of-N representations are also boolean attributes 

A few systems such as BACON [Langley et ai} 1987] 
and INDUCE [Michalski, 1978] explore methods to con­
struct new continuous-valued attributes using mathe0-
matical operators such as multiplication and division 
Systems such as L M D T [Brodley and Utgoff, 1992] and 
Swapl [Indurkhya and Weiss, 1991] construct linear dis­
criminant functions as new attributes To the best of the 
author's knowledge, few researchers have developed con­
structive mduction systems that construct new nominal 
attributes One exception is that INDUCE, AQ17-DCI, 
and AQ17-MCI construct attribute counting attributes 
for rule learning [Michalski, 1978, Bloedorn et al, 1993] 
They have ordered discrete values, but are used more 
like continuous-valued attributes rather than nominal at­
tributes (see section 6 for the differences from X-of-N) 
Subsetting used by C4 5 groups discrete values of a smgle 
primitive nominal attribute to form a new test [Quinlan, 
1993] It can be thought as a method of constructing 
new nominal attributes The author knows of no other 
decision tree algorithm that constructs new nominal at­
tributes 

In this paper, we propose a new constructive mduc­
tion algorithm that constructs nominal attributes in the 
form of X-of-N representations Our implemented sys­
tem, called XofN, uses decision trees as its theory de-
scription language However, the idea of constructing 
new nominal attributes in the form of X-of-N represen­
tations is not l imited to decision tree learning It is not 
difficult to extend the idea to rule learning 

The following section describes X-of-N representations 
Section 3 presents the approach to constructing new 
nominal attribute* in the form of X-of-N representations 
and the constructive mduction algorithm XofN Section 4 
reports experimental results of XofN on several artificial 
and real-world domains Section 5 further discusses the 
X-of-N representations and the XofN algorithm Section 
6 discusses related work, and finally, the paper concludes 
with future work 
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Figure 1 A tree on the Monks2 domain 

2 X-of-N Representat ion 
In short, an X-of-N is a set containing one or more 
attribute-value pairs For a given instance, the value 
of an X-of-N representation corresponds to the number 
of its attribute-value pairs that are true 

De f i n i t i on 1 The X-of-N representa t ion 
Let {Ax | 1 < t < MaxAtt) be the set of attributes of a 

domain, and for each Alt {VX3 | 1 < ; < MaxAttValx) be 
its value set,2 where MaxAtt is the number of attributes, 
and MaxAttVal, is the number of different values of Ax 

An X-of-N representation is a set, denoted as 
X-of-f AVk | AVt is an attnbute-value pair denoted as 

where N+ u the number of attnbute-value pairs m the 
X-of-N representation, called the size of the X-of-N rep 
resentatwn, and N is the number of different attributes 
that appear in the X-of-N representation The value of 
an X-of-N can be any number between 0 and N 

Given an instance, its value is X iff X of the AVk are 
true An at tribute- value pair . ' is true for 
an instance iff attribute .A, of the instance has value VtJ 

Now, let us see an example of the X-of-N representa­
tion The target concept of the Monks2 problem [Thrun 
et al, 1991] is "exactly two of the six attributes have 
their first valuen It can be represented using a tree as 
in Figure 1 The test at the root is a nominal X-of-N 
representation Given instances and 

its values are 2 and 5 respectively 
Aa a nominal attribute, the X-of-N representation has 

one main advantage over conjunction, disjunction, and 
M-of-N representations stronger expressive power with­
out expanding the search space 

Many constructive induction algorithms such as 
FRINGE, CITRE, and CI [Zheng, 1992] use A and -. 
as constructive operators They can onl> indirectly rep­
resent disjunctive concepts by using the negation of a 
conjunction This makes it harder to construct new at­
tributes in the form of disjunctions, especially on do­
mains wi th primitive nominal attributes Some algo­
rithms also have V as a constructive operator that makes 
it easier to create disjunctions However, there are 
still some other concepts such as parity concepts, at-
leaat, exactly, at-most M-of-N concepts, and their possi­
ble combinations, that cannot be effectively represented 
ID2-of-3 and MoN [Ting, 1994] can only create at-least 
M-of-N representations From the definition, we can see 
that X-of-N can directly represent all the following types 
of concepts 

aAt the moment, the X-of-N representation is defined 
on binary and nominal attributes Continuous-valued at-
tnbutes are transformed into binary or nominal attributes 
by discretization 

• disjunction with internal disjunction (as X-of-N in 
{1,2, ,N}),and 

• possible combinations of the above six types of con­
cepts 

Compared with M-of-N representations, the search 
space of X-of-N representations is smaller This is be­
cause to create an M-of-N representation, we must first 
search for N+ at tribute-value pairs and then search for 
a value M When the number N is large, searching for 
a good value M can be expensive However, to cre­
ate an X-of-N representation, we need only search for 
N+ at tribute-value pairs X-of-N representations have 
as large a search space as conjunction and disjunction 
representations 

One disadvantage of X-of-N representations is a "frag­
mentation" problem When X-of-N representations with 
large Ns are used as tests for decision trees, they quickly 
split training sets into a large number of small subsets 
This makes it harder to find good tests for the subtrees 
However, this situation occurs only when training sets 
are relatively small and target concepts are very com­
plex m the sense that a few X-of-N representations are 
not enough If target concepts are not complex or huge 
data sets are available, it is not a problem 

3 Const ruct ing New Nomina l 
A t t r i bu tes for Decision Trees 

Now, let us describe how to create and use X-of-N repre-
sentations in constructive mduction XofN uses the well-
known decision tree learning algorithm C4 5 [Quinlan, 
1993] as its selective induction component It consists 
of a single process As shown in Table 1, XofN builds a 
decision tree by constructing, at each decision node, one 
new attribute based on primitive attributes using the lo­
cal training set If the new attribute constructed at a 
node is better than all primitive attributes and previ­
ously created new attributes, XofN uses it as the test for 
the node, otherwise discards it and uses the best of the 
primitive attributes and previously constructed new at­
tributes After growing a tree, XofN apphes the pruning 
mechanism used by C4 5 [Quinlan, 1993] 

Decision trees built by conventional tree learning al­
gorithms such as C4 5 use a test based on one attribute 
at each decision node They are called univariate trees 
[Brodley and Utgoff, 1992] By contrast, XofN creates 
multivariate trees in which tests can refer to multiple 
attributes We call them X-of-N trees as X-of-N repre-
sentations are used as multivariate tests At each de-
cision node, besides creating one new X-of-N attribute, 
XofN considers reusing X-of-N attributes constructed pre-
viously for other decision nodes 

Function "Construct-Xof-N( )" in XofN constructs the 
best X-of-N representation using the local training set 

3This means that X-of-N equals , or N 
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XofN-Tree(AprimUlve, AactxW, Dtmming, C) 
Input Apnrmtive a set of primitive attributes, 

Aactive a s e t of primitive and X-of-N 
attributes for creating a test 
for the current decision node, 
initialized as Aprimitive 

Dtraining a set of training examples 
represented using Active 

C majority class at the parent node of the 
current node, initialized as the majority 
class in the whole training set 

Output a decision tree, 
Aactive modified bv adding one new X-of-N 

attribute constructed at this point 
IF(Dtraining is empty) 
THEN RETURN a leaf node labeled with C 
ELSE 
{ C = the majority class in Dtraining 

IF (all examples in Dtraining have the same class C) 
THEN RETURN a leaf node labeled with C 
ELSE 

J 
} 

Table 1 Kernel of the XofN algorithm 

at a decision node It performs a simple greedy search 
in the instance space defined by primitive attributes 
The starting point of the search is an empty X-of-N 
attribute At each search step, it applies one of two 
operators adding one possible attribute-value pair or 
deleting one possible attribute-value pair To make the 
search efficient, if possible,4 the deleting operator is ap­
plied first During the search, XofN creates and keeps 
the beat X-of-N representation for each possible size Fi­
nally, function "Construct-X-of-N( )" returns the best of 
the X-of-N representations retained 

The information gain ratio5 is used as the evaluation 
function for comparing and Belecting new attributes To 

*lf the size of an X-of-W representation is. less than or equal 
to two, the deleting operator cannot be applied, because the 
best X-of-N of 6ize one has already been found 

8 As used by C4 5 

avoid creating very complex new attributes that might 
over-fit the training data, another criterion is added, 
based on the coding cost of new attributes By complex, 
we mean that an X-of-N representation has a large num­
ber of attribute-value pairs 6 This land of new attribute 
splits the training set into many subsets, so over-fitting 
is likely to occur We use a similar coding method de-
scribed in [Quinlan and Rivest, 1989] The coding cost 
of a new attribute includes two parts One is for coding 
the new attribute itself The other is for coding the ex­
ceptions when applying the new attribute as a classifier 
to the local training data at the current decision node 
There is no weight added to either part The newly con­
structed X-of-N representation (new-X-of-N) will replace 
the current best X-of-N (best-X-of-N) to become the best 
one only if the following condition is true 

With this condition, the algorithm accepts a new at­
tribute with a higher gain ratio if its codmg cost is not 
higher The algorithm also accepts a new attribute with 
the same gain ratio but with a lower coding cost 

The stopping criterion for searching X-of-N represen­
tations is that the maximum possible size of X-of-N rep­
resentations is reached To reduce the search time, an­
other restriction is applied if no better new attribute 
has been found in five consecutive search steps,7 the al­
gorithm terminates 

From the definition of X-of-N representations, it may 
seem that X-of-N representations can only be directly 
constructed from binary and nominal attributes To deal 
with continuous-valued attributes, the XofN algorithm 
has a preprocessor that discretizes primitive continuous-
valued attributes In the current implementation, we 
use a \ery simple method, although some better, but 
more complex, methods could be used When there are 
some primitive continuous-valued attributes, XofN runs 
C4 5 on primitive attributes once and gets cut points 
for continuous-valued attributes Then it discretizes the 
continuous-valued attributes using the cut points The 
new attribute construction is earned out on the dis-
cretized attributes, binary attributes, and nominal at-
tributes 

4 Experiments 
The most commonly used measures of the behavior of 
learning systems are prediction accuracy of learned the-
ories on test examples, theory complexity, and tune com­
plexity Theory complexity (abbreviated to complexity 
later in this paper) is the size of a learned theory For a 
rule set, it is the number of all conditions in the rule set 
For a tree, it is the sum of sizes of all nodes of the tree 
The size of a leaf is 1 The size of a decision node is 1 for 
a univariate tree, and is the number of at tribute- value 
pairs m the test of the node for a multivariate tree such 

6We talk about the situation that most primitive at­
tributes in the X-of-N representation are different 

7This default setting is arbitrary, but it can be changed 
There is no special reason for selecting "five" 
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Table 2 Descr ip t ion of rea l -wor ld domains 

as a tree bu i l t by Xo fN , ID2-of -3 , or CI T i m e complex i ty 
is the execut ion t ime needed by a learn ing a lgor i thm We 
focus here on the f irst two measures, accuracy and the-
ory complexi ty , because t ime results of other a lgor i thms 
are not available or dif ferent computers a n d / o r p rogram­
ming languages are used As far as the t ime complex i ty 
is concerned, Xo fN is much slower than the selective tree 
learning a lgor i thm C4 5, bu t is s t i l l acceptable For ex­
ample, on a D E C A X P 3000/500 works ta t ion the cpu 
t ime for X o f N on the Cleveland. Heart Disease domain 
(13 cont inuous-valued a t t r ibu tes , 2 classes, 303 cases) is 
14 8 seconds, whi le it is 0 2 seconds for C4 5 On the 
Net ta lk (Phoneme) domain (7 nomina l a t t r ibu tes w i t h 
27 different values, 52 classes, 5438 cases), it is 9256 5 
seconds for Xo fN and 4 3 seconds for C4 5 

To evaluate exper iment all y the effects of construct­
ing new nomina l a t t r ibu tes in the fo rm of X-of-N repre-
wn ta t i ons , the results of XofN on a set of ar t i f ic ia l and 
real-wor ld domains are given For compar ison, e also 
give the results of some other construct ive induc t ion al­
gor i thms A Q 1 7 - H C I , A Q 1 7 - D C I , A Q 1 7 - M C I , ID2-of -3 , 
and our a lgor i thm CI [Zheng, 1992] CI creates new 
at t r ibutes for decision trees by using conjunct ions of 
condit ions f r om p roduc t ion rules generated by C4 5rules 
[Qu in lan , 1993] T h e defaul t op t ion set t ing of CI is used 
here To create a new a t t r i bu te , CI chooses two con­
di t ions, wh ich are near the root of a tree, f rom a rule 
W i t h this set t ing , CI constructs new a t t r ibu tes based 
on two p r im i t i ve a t t r i bu tes , and identif ies relevant at ­
t r ibutes [Zheng, 1992] The results of C4 5 are given for 
reference 

4 1 E x p e r i m e n t a l d o m a i n s a n d m e t h o d s 

Three Monks domains [ T h r u n et al, 1991] are chosen 
because they are wel l -studied There are publ ished re-
sults for more than 25 different learning a lgor i thms on 
them They represent three dif ferent types of learning 
tasks w i t h two b inary and four nomina l a t t r ibu tes To 
make the Monks2 p rob lem harder, especially for simple 
M-of-N learn ing methods, [B loedorn et al, 1993] creates 

BThere are fifty four English phonemes, but phonemes for 
"Word Boundary" and "Period" do not appear in the dataset 

BThere are six English stresses, but one for "Word Bound­
ary" does not appear in the dataset 

10The number of all possible phoneme-stress pairs that ap­
pear in the dictionary of 20008 words is 163 

the "Noisy and Irrelevant Monks2" problem by adding 
5% random classification noise (by inverting the classes) 
in the training set, and adding seven random five-value 
irrelevant attributes in both the training and teat sets 
There is no classification noise in the test set On all 
these four domains, the fixed training set (a subset of 
the whole universe) and test 6et (the whole universe) are 
given by the problem designers In our experiments we 
follow this methodology and run experiments once on 
the given training set and test set for each domain 

In addition, ten real-world domains are used, on which 
M-of-N like concepts are expected to be found [Spack-
man, 1988] They are five medical domains (Cleve­
land Heart Disease, Hepatitis, Liver Disorders, Pima 
Indians Diabetes, and Wisconsin Breast Cancer), one 
molecular biology domain (Promoters), three linguis­
tics domains (Nettalk(Phoneme) Nettalk(Stress), and 
Nettalk(Letter)), and one game domain (Tic-Tac-Toe) 
Al l are from the UCI repository of machine learning 
databases [Murph> and Aha, 1994] Table 2 gives a brief 
summary of the domains, including the data set size, the 
number of binary (B), nominal (N), continuous-valued 
(C), total (T) attributes, and the number of classes 

Phoneme and Stress are two basic subproblems of the 
Nettalk domain Letter is a combination of them Their 
tasks are mapping a letter in an English word into a 
phoneme, a stress, and a phone me-stress pair respec­
tively Following the method used in [Diettench et al, 
1990] we generate data sets by using a window of length 
7, but use the 1000 most common English words 

On each real-world domain, a 10-fold cross-validation 
[Bruman et al, 1984] is conducted In all the experi­
ments reported here, , and XofN are 
run with their default option settings, and are run on 
the same par t i t i on for all the domains No parameter-
tuning is done here Pruned trees are used for all the 
four algorithms 

4 2 Expe r imen ta l results 

The Monks domains 
Table 3 summarizes the accuracv (Acc) and complexity 
(Com) of and 
XofN on three monks problems The results of AQ17-
DCI and _ are from [Thrun et al 1991] The 
Table shows that only XofN solves all three problems 
with correct representations As we expected, XofN finds 
a perfect representation of the target concept on Monks2 

To explore how noise and irrelevant attributes affect 
the perlormance of learning algorithms on the Monks2 
domain, we give our results of C4 5, CI ID2-of-3, and 
XofN, and the results of AQ17-DCI, AQ17-HCI, and 
AQ17-MCI from [Bloedorn et al, 1993] in Table 4 Only 
XofN learns the correct concept Because of noise, the 
learned concept is not the perfect representation In­
stead, XofN finds two new attributes and 

How­
ever, it is still the most concise representation among 
those learned by these algorithms except for C4 5 and 
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Table 4 On the Noisy and Irrelevant Monks2 domain 

CI which return a tree having only one leaf This illus­
trates that XofN can, to some extent, tolerate irrelevant 
attributes under conditions of noise, but this matter re­
mains to be explored further 

T h e rea l -wor ld domains 
To demonstrate that the XofN algorithm can work well 
on real-world domains as well as artificial domains, 
Tables 5 and 6 give the performance of XofN on ten 
real-world domains It uses only C4 5, CI , and ID2-of-3 
as references, since very few directly comparable results 
of other constructive induction algorithms are available 
from publications Each value given is the average of 
a ten-fold cross-validation It is worth mentioning that 
LFC [Ragavan and Rendell, 1993] achieves higher pre­
diction accuracy (78 8%) than XofN on Pima Indians 
Diabetes domain (see section 6) 

To compare accuracies of XofN, ID2-of-3, CI , and 
C4 5, a two-tailed pairwise t-test is used In Table 5, 
boldface indicates that CI , ID2-of-3, or XofN is better 
than C4 5 with the significance level of above 95%, while 
* and # denote that XofN is better than ID2-of-3 and 
CI respectively at the 95% significance level 

On seven out of ten domains, XofN achieves a signifi­
cant improvement on prediction accuracj over C4 5 On 
the other three domains, the differences are not signifi­
cant The reason why XofN does not work well on these 
domains might be that there are no X-of-N representa­
tions in them, or there are some but XofN cannot find 
them due to the simple search strategy of the current 
implementation Table 5 also shows that ID2-of-3 is sig­
nificantly better than C4 5 on four domains, and there 
is no significant difference on the other six domains CI 
is significantly better than C4 5 on six domains, signif­
icantly worse on the Nettalk(Letter) domain, and there 
is no significant difference on the other three domains 
Compared to ID2-of-3, XofN is significantly better on 
four domains and there is no significant difference on 
the other six domains Compared to CI, XofN is signif­
icantly better on six domains The differences on the 

other domains are not significant H On seven out of 
ten domains, XofN achieves the highest accuracy among 
the four algorithms As far as the complexity is con­
cerned, on most domains, XofN can learn a more concise 
tree than C4 5, especially on those domains where XofN 
achieves a higher accuracy Compared to ED2-of-3, XofN 
learns smaller trees on seven out of ten domains 

5 Discussion 
It has been found that XofN works quite well on a set of 
artificial and real-world domains We expect that XofN 
can be applied to domains containing M-of-N concepts, 
such as biomedical domains [Spademan, 1988], linguistic 
domains, and domains containing parity concepts found 
for example in digital logic circuit design To apply XofN 
to domains containing complex DNF concepts wi th long 
terms, some mechanisms are necessary to overcome the 
"fragmentation" problem One approach is using subset-
ting of C4 5 [Quuilan, 1993] Two other possible solu­
tions are using subranging and building decision graphs 
[Oliver et ol, 1992] instead of decision trees Subrang­
ing is similar to subsetting but also considers the order of 
the values of X-of-N representations Subrangmg reduces 
the number of outcomes of an X-of-N test by combining 
some adjacent values of the X-of-N representation which 
are identical m terms of splitting data sets 

At the moment, XofN uses the cut points found by 
C4 5 to discretize primitive continuous-valued attributes 

11 On the Diabetes domain, the significance level of the dif­
ference between CI and XofN is less than 95%, although the 
significance level of the difference between CI and C4 5 is 
above 95% and the average accuracy of C4 5 is higher than 
that of XofN The reason is that the accuracy of XofN is 
higher than that of CI in some folds 
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Other discretization methods that can be used are multi-
interval discretization methods [Catlett, 1991, Fayyad 
and Irani, 1993], supervised/unsupervised methods [Van 
de Merckt, 1993], and an entropy method [Ragavan and 
Rendell, 1993] The current XofN discretizes continuous-
valued attributes statically in the sense that discretiza­
tion occurs before new attribute construction An alter­
native is dynamic discretization, l e doing discretization 
while constructing new attributes This method might 
be able to create good discretizations but with an in­
creased computational complexity 

Up to now, we have concentrated only on treat­
ing X-of-N representations as nominal attributes Be­
cause their values are ordered, however, they can also 
be treated as continuous-valued attributes Since the 
standard decision tree based learning algorithms trans­
form continuous-valued attributes into binar> tests the 
continuous-valued X-of-N should work well when the tar­
get concept requires X-of N representations with only one 
rut pomt (M-of-N concepts) However, on domains re­
quiring X-of-N representations with more than one cut 
point, the contmuous-valued X-ofN has weaker expres­
sive power than the nominal X-of-N For details on this 
issue please see [Zheng, 1995] 

6 Related Work 
The closest related work is ID2-of-3 [Murphy and Paz-
zani, 1991] It constructs nev, binary, attributes m the 
form of M-of-N representations, while XofN constructs 
Xof-N representations When building a decision tree 
both ID2-of 3 and XofN construct one new attribute for 
each decision node using the local training set Instead 
of building trees, MoN [Ting, 1994] creates M-of-N rules 

The production rule learning algorithms INDUCE 
[Michalski, 1978], [Dloedorn 
et al, 1993] use the counting operator12 #VarEQ(x) to 
construct new attributes that count the number of at­
tributes in an instance winch take the value x For 
primitive boolean attributes, a boolean counting oper­
ator takes a vector of n boolean attributes (n > 2) and 
counts the number of true values for an instance Like 
X-of-Ns, new attributes constructed by these two opera­
tors have ordered discrete values However, when used 
to generate production rules, they are treated more like 
continuous-valued attributes than nominal attributes 13 

The boolean counting attribute is a special case of the 
#VarEQ(x) attribute, while the #VarEQ(x) attribute is 
a special case of the Xof-N representation 

Most hypothesis-dnven constructive mduction al-
gonthms such as FRINGE [Pagallo, 1990], CITRE 
[Matheus and Rendell, 1989], CI [Zheng, 1992], and 
AQ17-HCI [Wnek and Michalski, 1994] construct and 
select a set of new attributes based on the entire train­
ing set This strategy has a shortcoming new attributes 
that have high values of the evaluation function for the 
entire training set might have lower values than other 
unselected new attributes for a training subset after a 

of a decision tree or a rule set has been created 
heus and Rendell, 1989] To overcome this, XofN 

constructs one new attribute using the local training set 
for each decision node Therefore, the new attribute con­
structed by XofN at each decision node is the best one in 
XofN's search space in terms of the evaluation function 
Another difference between XofN and these algorithms 
is that the latter interleave the theory learning phase 
and the process of building new attributes, and generate 
new attributes by analyzing the theory learned previ­
ously, while XofN has only one iteration and constructs 
new attributes by analyzing data 

Like ID2-of-3 and XofN, LFC [Ragavan and Rendell, 
1993] is also a data-driven constructive induction algo­
r i thm that builds multivariate tree6, but it uses negation 
and conjunction as constructive operators LFC creates 
one conjunction for each decision node by using a di­
rected lookahead search It achieved quite high predic­
tion accuracy on a couple of real-world domains such as 
Puna Indians Diabetes, but the problem is that it has a 
sensitive parameter "Lookahead Depth" which needs to 
be set when applied to a domain Another multivariate 
tree learning algorithm is L M D T [Brodlev and Utgoff, 
1992] that generates a linear machine at each decision 
node when building a tree 

7 Conclusions and Future Work 

Selective induction algorithms budd their theories by 
selecting primitive attributes and are thus limited for 
hard tasks whose primitive attributes are not sufficient 
for, or drrectly relevant to, representing the theories 
To overcome this problem, constructive induction algo­
rithms use various methods to generate powerful new 
attributes However, most algorithms construct only bi­
nary attributes, while domain experts use binary, nom­
inal, and continuous-valued attributes to describe their 
tasks From this point, we first proposed a nch knowl­
edge representation means, namely X-of-N representa­
tions, and then gave a new constructive induction algo­
r i thm XofN It generates X-of-N representations as new 
nominal attributes for decision trees using a data-driven 
constructive strategy 

The experiments Ulustrate the learning power of the 
XofN algorithm on some artificial and real-world do­
mains in terms of both higher prediction accuracy and 
lower theory complexity In addition, it has been shown 
that XofN can achieve higher accuracy on some domains 
than other contruct ive induction algorithms that con­
struct, as new attributes, conjunctions or M-of-N repre­
sentations 

However, the current XofN is a preliminary imple­
mentation A lot of research is worth doing and some 
is in progress Examples are exploring more appro­
priate evaluation functions for comparing and selecting 
X-of-Ns, other search methods, other discretization meth­
ods for continuous-valued attributes, and implement­
ing subranging and decision graph algorithms In addi­
t ion, examining XofN's ability to tolerate missing values, 
noise, and irrelevant attributes should be interesting 
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