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Abstract

Based on the research done in the last decade,
attempts have been made to propose descrip-
tion logics as unifying formalisms for the var-
ious class-based representation languages used
in different areas. These attempts have made
apparent that sound, complete, and decidable
description logics still suffer from several lim-
itations, regarding modeling classes of aggre-
gate objects, expressing general inclusion ax-
ioms, and the ability of navigating links be-
tween classes. In this paper we make descrip-
tion logics accomplish the necessary leap in or-
der to become suitable for the new challenging
applications they are faced with. In particular,
we propose a powerful description logic over-
coming the above limitations and we show that
its reasoning tasks are decidable in worst case
exponential time.

1 Introduction

Description logics are Al formalisms that allow one to
represent domain knowledge by focusing on classes of ob-
jects [Brachman, 1977] and their relationships [Woods,
1975], and by offering specialized inferences on the class
structure.

The research developed in the last decade offers a quite
complete picture of several issues related to the expres-
sive power of the logics and the computational complex-
ity of the reasoning tasks (see [Woods and Schmolze,
1992]). Based on the outcome of this research, attempts
have been made to propose description logics as unifying
formalisms for the various class-based representation lan-
guages used in different areas, such as semantic networks,
feature logics, conceptual and object-oriented database
models, type systems, and other formalisms used in
software engineering [Bergamaschi and Sartori, 1992;
Piza et a/., 1992; Borgida, 1992; Calvanese et a/., 1994;
Schreiber et ai, 1993]. However, these attempts have
made apparent that description logics that are equipped
with sound, complete, and terminating reasoning pro-
cedures still suffer from several limitations that are not
acceptable when representing complex domains in the
different fields mentioned above. Here is a list of the
most important limitations.

* The domain of interpretation is flat, in the sense that
the logics consider the world as constituted by elemen-
tary objects (grouped in concepts) and binary relations
between them. One consequence of this property is that
N-ary relations are not supported (an exception is the
logic proposed in [Schmolze, 1989], for which no com-
plete decision procedure was proposed). In fact, N-ary
relations have been shown to be important in several
contexts (see [Catarci and Lenzerini, 1993]), especially in
databases and in natural language. For example, exam
is correctly modeled as a ternary relation over student,
professor and course. Note that supporting N-ary rela-
tions means that the logic offers suitable mechanisms for
their definition and their characterization. For example,
one has to ensure that no pair of instances of exam ex-
ist connecting the same triple of objects; also, one may
want to assert that students linked to graduate courses
by the relation exam are graduate students. These kinds
of properties cannot be represented by simply modeling
the N-ary relation in terms of N binary relations.

* Usually, general inclusion axioms are not supported.
Although inclusion axioms are essential when we want
to assert properties of classes and relations, as required
in complex domains, most of the research on descrip-
tion logics either deals with class descriptions only, or
impose severe restrictions, such as acyclicity, on axioms.
Exceptions are, for example, [Nebel, 1991; Baader, 1991;
Schild, 1991; De Giacomo and Lenzerini, 1994; Buchheit
et ai, 1993]. An important outcome of this research
is that reasoning with axioms is computationally hard,
even for the simplest description logics (weaker than
TCT [Woods and Schmolze, 1992]). All these works,
however, limit their attention to axioms on concepts,
and do not consider the problem of expressing inclusion
axioms on relations.

* Relationships between classes are generally described
by means of poor representation mechanisms. Indeed,
when trying to use description logics for capturing repre-
sentation formalisms used in different fields, one realizes
that three features are essential: the ability of navigat-
ing relationships (say of a semantic network or of an
entity-relationship schema) in both directions. The abil-
ity of stating cardinality constraints of general forms on
relationships. The possibility of conceiving a relation-
ship like a set, thus applying set theoretic operators on
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them (including the notorious role value map [Woods
and Schmolze, 1992]).

The aim of the present work is to devise a description
logic, called CATS, that finally addresses the above is-
sues. The basic ingredients of CATS are classes and
links. Differently from traditional description logics,
classes are abstractions not only for a set of individu-
als (corresponding to the usual notion of concept, called
simple class here), but also for sets that have aggregates
as instances (called aggregate classes). There are two
types of aggregates: property aggregates and instance
aggregates. A property aggregate is an abstraction for
an object that is considered as an aggregation of other
objects, one for each attribute belonging to a specified
set [Smith and Smith, 1977]. A typical example of such
an aggregate is a date, which is seen as an aggregation of
three objects, one for the attribute day, one for the at-
tribute month, and one for the attribute year. Another
example of property aggregate is an exam, which again
is seen as an aggregation of three objects (one professor,
one student and one course). This makes it clear that N-
ary relations can be modeled as classes whose instances
are aggregates. An instance aggregate is an abstraction
of a group of other objects belonging to a certain class
[Brodie and Ridjanovic, 1984]. A typical example of such
an aggregate is a team, which can be seen as a group of
players. Like any other description logics, CATS allows
one to form complex classes by applying suitable con-
structors to both simple and aggregate classes. Notably,
CATS includes a form of role value map, and the most
general form of number restrictions (called qualified).

Links are abstractions for atomic, basic, and complex
relationships between classes. An atomic link (denoted
simply by a name, and also called attribute) is the most
elementary mean for establishing a relationship between
classes. A basic link is formed by applying certain con-
structors (like inverse, union, intersection and difference)
to atomic links, and a complex link is formed by apply-
ing more complex constructors (like chaining, transitive
closure, and identity) to basic links.

A knowledge base in CATS is simply a set of inclu-
sion axioms. We point out that CATS allows inclusion
assertions to be stated on classes of all kinds (simple,
aggregate, and complex), and on basic links, with no
limitation (for example on cycles). A particular care is
put in devising CATS so that its reasoning tasks remain
decidable and even with the same computational com-
plexity as the simplest description logics where inclusion
axioms are allowed. Indeed, we describe a technique
for computing logical implication in CATS, and show
that this problem is both EXPTIME-hard, and decid-
able with exponential time in the worst case.

The paper is organized as follows. Section 2 briefly re-
calls the description logics CXT [De Giacomo and Lenz-
erini, 1994], which is the basis of the present work. Sec-
tion 3 presents our logic CATS, which adds to CXT suit-
able constructors for representing aggregations, complex
links, and qualified number restrictions. In Section 4,
we show examples of knowledge bases built using CATS,
and compare the expressive power of the logic with other
similar formalisms for knowledge representation. Sec-
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tion 5 illustrates the salient features of the technique
we use for computing logical implication in CATS, and
discusses the computational complexity of this problem.
Finally, conclusions are drawn in Section 6.

2 Preliminaries

Traditionally, description logics allow one to represent a
domain of interest in terms of concepts and roles. Con-
cepts model classes of individuals, while roles model bi-
nary relations between classes. Starting with atomic con-
cepts and atomic roles, which are concepts and roles de-
scribed simply by a name, complex concepts and roles
can be build by means of suitable constructors.

In the following, we focus on the description logic CXT
studied in [De Giacomo and Lenzerini, 1994], whose lan-
guage has the following syntax:

c AlCL NG | ~CIYRC | (S 1 PY| (<1 P)
R PRy URy | RioRy | B | R | id(C)

if

where A denotes an atomic concept, C (possibly with
subscript) a generic concept, P an atomic role, R (pos-
sibly with subscript) a generic role.

In description logics, an interpretation X = {A%,.T)
consists of a nonempty domain of interpretation AI,
and an interpretation function - satisfying the follow-
ing conditions (#({} denotes the cardinality of a set, and
a = p\p-y.

Af C A7

(C:n Cz}z = Ci{ n Cg

(ﬁC)I =AT -7

(YR.C)* = {d € AT |Vd'.(d,d") € RF D d' € CT)
($1a) ={de A |f{d |{dd) €’} < 1}
PEC AT x AT

(Rl U R?}I =RIUR

(R] ORQ)I = Rl =] R{

(8)F = (RYy

(R7)" = {{d1,ds) € & x 87T | (d2, dh) € BT}
d{C)F = {(d.d} € AT x AT |d € GT).

Note that CXT has a very expressive language, compris-
ing all usual concept constructs, and a rich set of role
constructs, namely: union of roles R;lLJ.R, chaining of
roles R; o R, reflexive-transitive closure of roles R* in-
verse roles R’, and the identity role id(C) projected on
C. Moreover CXT supports the simplest form of cardi-
nality constraints, namely functional restrictions of the
form (< 1P), interpreted as the set of individuals for
which the role P is functional. Notably, functional re-
strictions can be applied to both atomic roles and inverse
of atomic roles. In fact, in CXT there is a perfect symme-
try between roles and inverse roles, that will be the basis
for the extensions of the logic discussed in this paper.
Let C be any description logic. An £ TBeg! K is a
finite set of axioms of the form C\ ; C2, called inclu-
sion assertions, where C\ and Ci are C concepts. An
interpretation X satisfies an inclusion assertion C\ E Ci

'"TBox is the term traditionally used for naming the set
of axioms constituting the intensional level (schema level) of
a knowledge base.



if CF € €F. An interpretation T is a mode! of a Thox
K if Z satisfies each inclusion assertion in X,

The most important form of reasoning in a TBox is
logical implication: a TBox X logically implies an asser-
tion O3 C Cg, written K E O/ C Gy, if C, C o is
satigfied by every mode! of K, It is well known that all
basic reesoning tasks can be glinearly) reformulated as
logical implication in a TBox.

In [De Giacomo and Lengerini, 1994], it is shown that
logical implication in CIF TBoxes, is an EXPTIME-
complete problem. This result was devised in the aet-
ting of the correspondence between description logics
and propositionat dynamic logics, originally pointed out
in [Schild, 1991]. One consequence is that logical im-
plication in CIF can be decided by means of the deci-
sion procedures designed for satisfiability checking in dy-
namic logics, This is the first decidability result for a de-
scription logic including axioms, inverse roles, and func-
tional restrictions, a fundamental combination as aeen
in the introduction, and also contributed to the research
on modal logics of programs, since the decidability of
the propositional dynamic logic corresponding to CIF
was not known. Note that, CIF is one of the very few
description logics that lacks the finite model property,
which means that certain CZF TBoxes admit only in-
finite models. This is one of reasons why proving the
above result required a quite sophisticated technique.

In the following, we will refer to a further descrip-
tion logic, called CIQ, which is obtained from CIF by
extending functional restrictions to gualified number re-
strictions (< ka.C), whose meaning in ah interpretation
I is (k is any integer® > 1):

(< ka.C)T = {de Al |{d)(d,d) ¢ d’Ad &€ CF} < k).

3 The description logic CATS

In this section, we provide the formal definition of
CATS. As we said in the introduction, the language
of CAT S supports classes and links. Classes are parti-
tioned into simple classes and aggregate classes, which
are further distinguished in property aggregate and in-
stance aggregate classes. Links are partitioned into
atomic {also called attributes), basic, and complex.

Let a nonempty finite alphabet A4 of atomic classes
{classes denoted simply by 2 name, no matter if simple
‘or aggregate) and a nonempty finite alphabet I of at-
tributes be available. We use A for a generic element
of A, U (possibly with subscript) for a generic element
of U, C (possibly with subscript) for a generic class, b
(possibly with subscript] for & generic basic link, and L
{possibly with subscript) for a generic complex link. The

zActuaIIy, in description logics having a language rich
enough, logical implication can in turn be (polynomially) re-
duced to satisfiability of a single concept. This is basically
due to the ability of expressing reflexive-transitive closure of
roles, together with the "connected model property”, i.e. if
a TBox has a model, it has a model which is connected (see
[Schild, 1991; De Giacomo and Lenzerini, 1994]).

% We assume that integers are coded in unary.

language of CATS has the following syntax {n,k > 1}:

C u= A|r(Uy,....U) | x(C.UL,....U) | e(C) ]
C]”C:|-\C]VLC]{Ekb.C)I(Skb_C)f
(bs Cbg) | (b7 C b3}

b u= U|3|biuby | b\ b2

L = b|Lioly|LiULs | L* | L™ [#d(C)

We use a {possibly with subscript) for & and b~ , and we
adopt the following sbbreviations: T = A=A, 1L = T,
r = iU Ur(Un) (where {T7,... . Un} = U),
g =a(T), CyUC; = =(=C, N=Cy), 3L.C = -¥L.-C,
=3\ 3 (> kal) =< k+1aC), arNag =
a \ (a1\02), and (ﬂl = 83) = [31 g ag) n(ﬂg g Cll).
Parentheses are used to disambiguate expressions.

The semantics for the language of C.AT S is based on
an interpretation I = (OF, *), where OF is the unsverse
of the interpretation, and I is the interpretation func-
tion over such a universe. Differently from the usual
notion of interpretation, % is a nonempty set of poly-
morphic objects, which means that every object in O
haa nobe, one, ot both of the following two forme:

1. The form of tuple: when an object has this form, it
can be considered as a property aggregation, which
is formally defined as & partial function from If to
O*. We use the term tuple to dencte an object in
OF that has the form of tuple, and we write (U :
o1,...,0y 1 on}? to denote any tuple { such that,
for each i € {1,...,n}, t{L;) is defined and equal
to o; (which is called the U;-component of ¢). Note
that the tuple ¢ may have other components as well,
besides the I/;-componenis.

2. The form of set: when an object ¢ has this form, it
can be considered as an instance aggregate, which
18 formally defined as a nonempty finite collection of
objects in O, with the following proviso: the view
of ¢ as a set is unigue, in the sense that there is
only one finite collection of objects of which o can
be considered an aggregation, and no other object
o' is the aggregation of the same collection. We use
the term set to denote an object in OF that has the
form of set, and we write {lo, ..., 0, ]} to denote the
callection whose members are exactly o04,...,0,.

Objects having none of these forms are called elementary
objects - 1.e,, individuals with no structure.

The interpretation function -I is defined as follows:

o It assigns to 3 a subset of OF x OF such
that for each {...,0,...}€ %, we have that
(.-.,0-..1 o) €3~

o It assigns to every attribute U & subset of OF x
O% such that, for each {....U : 0,..}) € OF,
({...,U:0,..3,0) € UT, and there is no o’ € OF
different from o such that ({..., U/ :0,...},0') € UT.
Note that this implies that every U in a tuple is
functional for the tuple.

“This notation makes it clear that a tuple is indeed a
function assigning one element of O’ to some of the elements
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» It assigns to every bagic link a subset of OF x OF
such that the following conditions are satisfied:

bUb)® = sTubd
PRSI
(o) = {{o,0) | {0',0) € b*}.

# 1t assigns to every complex link a subset of O x 97
such that the usual conditions for o, U, *, ~, and id
are satisfied (see Section 2).

o It assigns to every class & subset of OF in sach a
way that the following conditions are satisfied:

-ATCOF

- 1-([;’1,...,!3!,,)’:E = {ly :0f,...,Un : 05) € OF |
o;,u“onEO

- x(C.Ul,‘..,Un)I =5C T(Ul,,,,,Un] N €T and
no distinct 8,5 € S have the same Uy,... Up-
components

- {0V = {{o1,-. ., o€ T | 04,...,00 € CF}
-{CinCF =CEncE

-(~CPF =0T

S (YLCY = {oceO? (v (0,0} e RE Do e LT}
;ig kaCPF ={oe O o, oY eadfAd €eCT) <

~{m C ﬂ'zz]z ={o€ O | {d' | (0,0) €al} C{o]
(0,0") € a3}}-

A CATS TBox X is a finite set of inclusion assertions
of the form ) C C,, where ) and Cy are classes in
CATS (we write Gy = Ca for €y, C €y, C; C 4). As
usual, an interpretation I satisfies C;, C Cy if CF C €7,
and X | G, € Gy, if €, C C: is satisfied by every
model of K, i.e. by every interpretation that satisfies all
assertions in K.

4 Examples and discussion

The goal of this section is to discuss, by means of exam-
ples, the most important modeling capabilities of CATS,
and to compare our logic with other representation for-
malisms.

Example 1: Propositional formulae

Figure 1 shows a simple TBox H defining several well
known classes of propositional conjunctive normal form
formulae. This example basically shows the power of
instance aggregates and qualified number restrictions.
None of the decidable description logics that we are
aware of is rich enough to express the TBox in the figure.
Note that PosLit C x(PosLit, letter) imposes that no
two positive literals have the same variable (the same for
Neglit). As an example of inference, M correctly classi-
fies o{Clause) MV 5 .((< 2 3.7T)N3 3 .Neglit) under
both Horn and Krom.

Example 2: Families, persons, and cities

Figure 2 shows a TBox K medeling a world with persons,
families and cities. The following observations help un-
derstanding the expressive power of CATS.
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Formula = #{Clause)}

Clausa = EmptyCl L o{Literal)

EmptyClC ¥ 3 »—Literal

Literal = {(PosLitLJNeglit) M r{letter) NVlettar.Var

PosLit C x(PosLit, letter) N —NegLit

NegLit T y(NegLit, letter)

Var C (Jletter™ .HeglLit) M {3letter ,PosLit)n
(€ Zletter—.T}

KornCl = Clausaf{< 1 3 .PoslLit)

TwoClause = Clause (<2 3.7)

Horn = Fermulam ¥ 3 .HornCl

Krom = Formulaf¥ 3 .TroClause

Figure 1: Propositional formulae

T C (fatherNmether C #)N
{father M children C @}N
{childrenn mothaer C #)
T C ¥father™ Umother™ Uchildren™.Family
Date = x{Date, day, nonth, year)
ddate”.T C Date
3day~.T L Day
Swonth™, T C Month
Jyear™.T C Year
Jcity™.T C City
Day UMonthU Year C ~r Mo
Mayor = Jmayor™.T
Imayor. T C City
City C r{name, atate, country,mayor)r
x(City name, state, country) M x{City, zayor)
Family C o(Perscn) N r{father, nother, date, city)n
x{Family, father, mother, date)r
{>= father U mother U children)
StillFamily C Family M x{5tillFamily, father mother)
PhdFamily = (> 3 3 .PhdPerson) M (< t 3 .-PhdPaersaon)
Person C (Jchildren”.T)M (< 1 children™.T)
ChildDfMayer = 3children™ o father.Mayer
VeryPhd = ¥{children™ o [father ! mother))’.PhdPerson

Figure 2: Families, persons, and cities

» Objects are polymorphic. For example, every in-
stance of Family (representing families resulting
from a marriage) can be seen both as a set of per-
sons, and as a tuple with attributes father, mother,
date (of marriage) and ¢ity {of marriage). Note,
however, that assertions can be used io impose that
the instances of a certain class (Day, Month and Year
in our exampie) can only be seen as elementary ob-
jects.

» Inclusion assertions on classes are used with no lim-
itation. In particular, they can be stated for all
kinds of classes, and cycles are allowed in the TBox.
Notably, inclusion assertions can also be stated for
basic links: indeed, T L (#; C bp) forces b, to a
subset of b2 in every model of X. Inclusion asser-
tions of this kind are used in the example to specify
the properties of the attributes tather, mether and
children.

o N-ary relations are supported. Any instance of



Family can indeed be considered as a relation with
four arguments. The x constructor is used to de-
fine keys for (N-ary) relations: for example, the
fact that every instance of Family is an instance
of x(Family, lather, mother, date) implies that the
three attributes form a key for the class. On
the other hand, StillFamily, representing families
whose father and mother are still married, has a
more specialized key, constituted by the attributes
lather and mother. Observe that several keys can
be defined for a class (see City).

* Qualified number restrictions and role value maps
on basic links can be used without any limitation.
Indee [3:3 therUmotherU children) is a role
value map on basic links.

*« Complex links can be used for modeling interest-
ing relationships. For example, the relationship
haslather between a person and her/his father
is captured in K by children" o lather (sim-
ilarly for hasmother). Also, ancestor is cap-
tured by (haslather U hasmother) o (haslather U
hasmother)* (see the definition of VeryPhd).

As an example of inference that can be draw from /C,
observe that:

K |z dchildren™.T L PersonM3 3~ ,3father.T.

Indeed, note that every instance of Jchildren=.T 1s
also an instance of Ifather~ Umother™ Uchildren™.T
and therefore is an instance of Family. This means
that X | Jchildren .T C 3c¢hildren~.Family. Ob-
serve that K |= Family C (children C3), and, since
X | Family C ¥ 3 .Pereon (because X |= Family C
c{Person}), we have that X | dchildren™.T C
Jehildren .{Vchildren.Person), which implies that
X £ Jchildren~.T C Pereon. The fact that K |
Jechildren™.T C 3 3~ .3father.T easily follows from
the fact that every Family is a tuple with attribute
father.

Relationship with other formalisms

It is easy to see that we obtain CI/IQ from CATS
by simply ignoring tuples, sets, and basic links (other
than atomic ones). As another example of description
logic supporting general inclusion assertions, the logic
ACCNR, studied in [Buchheit et a/., 1993], can be ob-
tained from CATS by ignoring tuples, sets, complex
links, the (a; C a;) constructs, and by allowing only
basic links of the form by n by, andnumber restrictions
of the form (< k#b.T). Also the formalism in [Schmolze,
1989] supporting N-ary terms can be easily expressed
in our logic. More generally, it can be shown the vast
majority of decidable description logics proposed in the
literature are captured by CATS.

Space limitation prevents us from showing how
database models can be captured by CATS. We simply
observe that we obtain the Entity-Relationship model by
allowing one level of nesting in tuples, and by partition-
ing elementary classes in entities and attributes. Anal-
ogously, the nested relational model, as well as complex

objects data models are expressed in CATS by imposing
suitable limitations on tuples and sets.

As a final observation, we would like to note that
CATS can also be used for expressing knowledge bases
that go beyond classes and links. In [De Giacomo and
Lenzerini, 1995], we show that a weak version of CATS
can be used as a sort of monotonic propositional sit-
uation calculus extended with complex and concurrent
actions. Roughly speaking, states are modeled by el-
ementary objects, and atomic actions are modeled by
atomic links. A propositional fluent then simply becomes
a class (whose instances are those states where the flu-
ent is true), and preconditions, postconditions, effects of
actions, as well as frame axioms are expressed by inclu-
sion assertions. Finally, basic links, complex links, and
qualified number restrictions are used to model complex
properties of actions, including concurrency. For exam-
ple, a; n a, denotes the concurrent execution of the ac-
tions a; and a2), while an inclusion assertion of the form
TC{< 1 {UhV---UU,)".T) (where Uy, ..., Uy are all
the atomic actions) can be used to impose that the past
is backward linear -i.e., that every state as at most one
predecessor.

5 Decision procedure for CATS

We investigate the decidability and the complexity of
CATS, showing that logical implication in CATS is
polynomially reducible to logical implication in CIF,
which is decidable and EXPTIME-complete. The re-
duction is done in two steps: first, we "reify" basic links,
tuples and sets, so that objects in the interpretations are
elementary objects; then, we reduce qualified number re-
strictions to functional restrictions.

We define a mapping 4" form CATS basic links to
CZQ concepts defined as (Ty, T3 are new atomic con-
cepta):

§"(U) =Ty d7(byUby) = 8"(by) L " (bg)
8"(3) = T35 8"(b1\ ba) = &"(81) M =6" (b2},

a mapping 6’ form CATS links to CIQ roles defined as
{Vy, Vi are new atomic roles):

8(b) = Vi o id(8"(8)) o Vi

F(L U L) = 8 (L) U (L) &(L~)=d(L)

#(LioLa) =8(I1)0d'(Ly) 8(id(C)) = id(6{C)},
and a mapping § form CAT 5 classes to CTQ concepta de-
fined as (T,qtr,.... Ua)» Tx(CU,,..Ua)s 1o 8Fe new stomic
concepts):

5(4) = A
dr(th, - Un)) = Trw,... 00

§(e(C)) = T, MYV 0id(T3) ¢ V5).6(C)
a{x(C\ Uy, ., Un)) = Tx{C,U,,,___U.)

3{C1 N Cy) = 8(C1)NH{CY)

§(~C) = =5(C)

§(YL.C) = V&' (L}.4(C)

6({< k5.C)) = (< R V. (6" (8) nVVA.S(C)))
< kb=.CN=(<k ‘fg_-(&"(b) nyv.é(C)))
a((b1 C b3)) = ¥V (8" (b)) L "(b2))

6({bT € 57)) = ¥Vau{=6"(b1) L 67 (b2)).

§(L) = 8Ly
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Making use of §, we define the so called reified cour-
terpart of 8 CATS TBox, which is, in fact, a CIQ
TBox. We use the following abbreviations: Py =
V" cidiTy) o Vo, memb = V[ o0id(Ty) e Vo, (£
kPy.C) = (€ kVy Ty N¥V5.C)) and (< & Py.C) =
(€ kVy (TeN¥WL.O)).

Definition Let X be a CATS TBox. We call its reified
counterport the TBox p(K)} defined as p(K) = g (K) U
p2(K} U pa(K), where:

e p(K)={8{C1)Co(C2) I(CLE G2 €K

® p2(K) is the set constituted by:
- Tr(Ui,...,U.) = AR, TN{L 1P, T)A...1N
EPU'..T n [S ].PU,..T) fOl' each TT[U:.‘--.U-;)! with
nz 1, in 1 [K)
- Tyewy E 3P TN (€ 1F.T)N (YPy.(<
1 Py 4{C})) Nd(C) for each T,y in g1(K)
- Tyewn,. o) E Tty 1 8(C) for each
Tyictn,... Uy With 1.2 2, in pg(K)
- T, = Imemb. T

- TeM (£ 1membT) £ Ymemb.(< 1 memb™.(<
1memb. T));

$a{K) is the set constituted by (T¢, T¢ are new
atomic concepts): T C T U Tg, Te C ¥Wi.L D
¥a.l, Te C 3N Te N(< 1W.TINAR. T N(<
1V5.T}, one Ty C T foreach Ty in py (K)Up2(K),
T3 C Tc,one AE T¢ foreach Ain py [K)Up2(K),
one Triy,, . Ua) C T¢ for each A in py {K) U p2(K},
and Te ; Te. O

Observe that p(X) has size which is polynemially related
to the size of X, and is interpreted over usual interpre-
tations 7 = (Ai, 2}, where A% in a set of individuals.
However, to represent the intended meaning of the con-
structs x(C, U1, ...,U,} and #(C), p(K} must be inter-
preted ovet a special kind of interpretations.

Definition We call a model 7 of a p(X) an aggregate-
descriptive model, if for all distinct individuals d, d' the
fallowing conditions hold:

ddeTio

q((d: dl} € Vl.I A (d'r dl) € ‘GIA
y {ql'_,__rdz) eVF A(d,d3) € VF)

€T, D

3d* EIAI.-'([d, d”) € memb® A (d',d") € memb®)
d,d'€Tycpy, vy >

~((d, 1) € PE, A (&, dy) € PE,A

(d',do) € PE A (d'.da) € PE‘I,,)_

for every Tyiov,,.. ULy Withn > 2, in p(X) O

Theorem 1 Let K be ¢ CATS TBoz, and p(K) its rei-
fied counterpart. Then there is o mapping from the mod-
els of K io the aggregate-descriptive models of p(K) and

vice versa.
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A consequence of Theorem 1 is that X | €y C Cy®
is equivalent to p(K) E p({C1 C Cz}). However, this
does not directly yields a reasoning procedure for CATS,
since it is not known how to reason with a p(K) inter-
preted over aggregate-descriptive models.

Thecrem 2 below ie the fist substantial step towards
devising such a reasoning procedure. If guarantees
that on one hand we can interpret p{X) on aggregate-
descriptive models only, and on the other hand, we can
forget about aggregate-descriptive models when comput-
ing logical consequence in p{K}. The proof of Theorem 2
is based on the disjoint union model property: let K be
2 CIQ TBox and I = {A%,%) and J = (A7,-7) be
two models of K, then also the interpretation Z W J =
(ATwAY, . Tw-7) made up by the disjoint union of Z and
J, 18 a mode) of X. We remark that most description
logics have such a property, which is, in fact, typical of

L

Modal Logica. :
Theorem 2 Let K be a CATS THor and p(K} its rei-
fied counterpart. If p(K) has a model, then it has an
aggregate-descriptive model.

The reified counterpart p(K) of a CATS TBox K 1s not
yet a CIF TBox, because it containe qualified number
restrictions. In order to deal with them, we represent
the role ¥~ (i = 1,2), which is not functional {while V;
is 80), by the role Fy, o F},, where Fy  F'y, are new
functional rojes. The main point of such transformation
is that now qualified number restrictions can be encoded
as constraints on the chain Fy o F*}, . Formally, we define
the CIF counterpart of a CAT'S TBox as follows.

Definition Let X be a AT S TBox and @(K) its reified
counterpart, We define the CIF counterpart 1{K) of KX
as u(K) = v (K) A v2(X), where:
» v1(K) is obtained from p(K) by recursively replac-
ing:
- every occurrence of V; with (Fy, o F'}, )™, where
Fy,, F'y, are new atomic roles,
-every (< 1Vi.T) with T,
- every (€ kV,7.C) with V{Fy, o F'y, o (id{C} o
F$3%,~C, where r* stands for ;= and r* stands
for ro...or (k times};
¢ uy{K) is the set constructed by one T L (< 1 Fy, )M
(€LFy)MH L F)N(K 1 Fiy)N-{E3F;. TN
3F'y,.T) for each Fy, ¢ F'y in v {(K). O
Note that, the inclusion assertions in v2(K)} constrain
the roles Fy,, F'y,, Fy, F'y. to be functional, and im-
pose that each individual cannot be linked to other indi-
viduale through both Fy; and F'y , thus implying that
(Fy, o F'y. )~ is Tunctional. Observe also that the size of
u(K) is polynomiaily retated to the size of X.
Theorem 3 Let X be a CATS TBoz, p(K) its resfied
counterpart, and u(X) its CIF counterpart. Then there

SWithout loss of generality, we assume that in a logical
implication K |z €, C Ca, the atomic concepts and links, as
well as the r{l/|,... Up) and x{C,U1,...,Us) occutring in
) C ¢4, also occur in K.



is a mapping from the models of (K) to the models of
v(K), and vice verss.

Now we can establish the decidability and the com-
putational complexity of logical implication in CATS
TBoxes. Indeed, by Theorem 3, K = ¢, C Gy is
reducible to v(K) | v({Ci C C3}). Since the size
of v{K) Uv({Cy T Cs}) is polynomially related to
KU {Cy £ €2}, we get the following result.

Theorem 4 Logical
EXPTIME-complete.

CATS s

implication  in

6 Conclusions

It is our opinion that the work described in this paper
makes description logics accomplish the necessary leap in
order to be well equipped for the new challenging appli-
cations they are faced with. Our first investigations show
that CATS can indeed capture and extend most class-
based representation formalisms used in different areas
as Al, databases, software engineering, etc.. One main
issue still remains to be addressed, namely, the possibil-
ity of adding to CATS suitable constructs for express-
ing finiteness of nested aggregates, and, correspondingly,
suitable techniques for reasoning in finite models (in the
style of [Calvanese et al., 1994]). This will be the subject
of further research.
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