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Abst rac t 

Proposing measurements in diagnosis systems 
for static systems is a well understood task. 
Usually, entropy based approaches are used, 
sometimes extended by cost and other consid­
erations. How to do the same task in dynamic 
systems is less clear, and so far measurement 
proposal algorithms have been ignored in the 
recent approaches advanced for dynamic sys­
tems. In this paper we will describe a set 
of techniques and algorithms suitable for mea­
surement proposal in a temporal diagnosis for­
malism discussed in our previous work. This 
formalism is based on qualitative Allen con­
straints. The current paper introduces a mea­
surement proposal algorithm and improves it 
in several ways. Finally an entropy-based com­
putation method is described for this temporal 
setting. 

1 In t roduc t i on 
Most current diagnosis systems are able to propose use­
ful/optimal measurements to discriminate among com­
peting hypotheses. Several methods have been proposed, 
mainly based on entropy computations as described in 
[de Kleer and Williams, 1987]. Recently, some systems 
for diagnosis of dynamic systems have been proposed 
[Console et a/., 1992; Nejdl and Gamper, 1994]. [Con­
sole et a/., 199-2] is based on a time-slice approach, which 
considers the system dynamics as a sequence of static 
states. While this approach restricts expressiveness, it 
allows to use the same measurement proposal algorithms 
as in static systems. On the other hand, these static al­
gorithms are insufficient to be applied in the more gen­
eral approach described in [Nejdl and Gamper, 1994]. In 
[Gamper and Nejdl, 1994] we discussed first results on 
how to propose measurements in our diagnosis system, 
and this paper extends these results by proposing a set 
of techniques which propose measurements able to dis­
tinguish hypotheses described by qualitative temporal 
constraints. 

In section 2 we summarize our diagnostic approach 
described in [Nejdl and Gamper, 1994J. Section 3 ex­
plains the concept of measurement proposals and dis-

cusses the general techniques used to incorporate mea­
surements into temporal networks. We improve these 
techniques in section 4 by exploiting the concept of tem­
poral difference and in section 5 by using the concept 
of predicted patterns. Section 6 generalizes the entropy 
computation framework in [de Kleer and Williams, 1987] 
for our approach. Section 7 discusses related work. 

2 Example and Basic Framework 
Example 1 (Diagnosis of hepatitis B) In routine test­
ing of hepatitis B the findings hbs.ag, anti-hbs, hbe.ag, 
anti-hbe, anti-hbc and igm.anttJxbc are tested, where 
each of them can assume the value positive (p) or neg­
ative (n). A hepatitis B virus infection is characterized 
by a typical sequence of these findings: 4 acute vari­
ants (two of them are shown in figure la where lines 
denote the periods of positive findings), and 4 persisting 
variants. In this paper we do not consider the different 
stages, e.g. incubation. 

All variants look similar, involving basically the same 
findings. What distinguishes these variants is the order 
in which these findings occur. In [Nejdl and Gamper, 
1994] we described a diagnosis framework which uses a 
subset of Aliens interval algebra to explicitly represent 
such temporal relationships. 
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3.1 A Measurement Proposal Algor i thm 
We have to find a measurement proposal with a possi­
ble outcome which supports one hypothesis and refutes 
another one. The outcome of a measurement proposal 
supports a hypothesis if we can fit each observed value 
into the temporal behavior of the hypothesis and the 
temporal relations of the measurement proposal are sat­
isfied; otherwise, the hypothesis is refuted. As we do not 
have time points in our temporal framework we assume 
that the measured value holds over a small time inter­
val "around" the measurement time point. It is easy to 
show that this assumption does not influence the results. 

The following procedure ME AS PRO implements a 
measurement proposal strategy. For each hypothesis 
hi £ HYP we maintain a set Si of IA-networks initially 
containing the corresponding temporal behavior network 
Bi. For each hypothetical measurement with outcome 
m(vft) we insert a measurement outcome node onode 
representing the small time interval around t into each 
IA-network N in Si, and constrain it as follows: 

• For each other measurement outcome node 
onode' at time point t' we add the lA-relation 
onode{b}onode if t < t', onode{e}onode' if t = t' 
and onode {bi} onode if t > t'. 

• We constrain the onode to occur within a manifes­
tation node mnode in the temporal behavior repre­
senting the same parameter m and the same value 
v by adding the relation onode{s,d,f,e] mnode. If 
several such mnodes (same parameter and value) are 
related by before (after) the onode can only occur in 
one of them at a time. In this case we construct for 
each such mnode a copy of the actual N to represent 
the different possible constraints of onode. 

* We constrain onode to occur outside each mnode 
representing parameter m and value v' not= v by 
adding the relation onode{b, m, bi, mi} mnode. 

Finally we test consistency for each IA-network in Si us­
ing known temporal reasoning algorithms [Allen, 1983; 
van Beek, 1992] and remove inconsistent networks. Situ­
ations, where we have Si, Sj such that Si, not= 0 and Sj = 0 
characterize possibly discriminating measurement pro­
posals for the hypotheses hi, and hj. 
Example 3 We choose the measurement hbs.ag(Vi,t) 
with a positive outcome, insert the measurement out­
come node o-hbs.ag into the IA-networks for variant3 
and variant 4 and constrain it to be within the tem­
poral extent of hbs.ag, i.e. o-hbs-ag{s,d,j,e}hbs.ag. 
The positive hbs.ag is consistent with both variants, 
and we continue with a new hypothetical measure­
ment at the same time point, e.g. anti-hbe(V2,<) 
with a positive outcome. Adding o-antLhbe{e}o-hbs.ag 
and o-anti.hbe{s,d,f,e}antiJibe (figure 2) and prop-
agating these relations yields an inconsistency in 
variant3 (due to hbs-ag{b}anti-hbe), but it is con­
sistent in variant4- Thus the measurement pro­
posal hbs.ag(Vi,t) A anti.hbe(V2,t) has an outcome 
hbs.ag(p,t) A anti.hbe(p,t) which can distinguish be­
tween the two variants. 

The algorithm ME AS PRO makes no assumptions 
about whether measurements are proposed in the past 
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to consider only 6 measurement proposals instead of 
15 without difference graphs. We have the 3 possibly-
discriminating measurement proposals hbs-ag(V1) A 

igm_anti_hbc(V2) and 
. Examples of two con­

nected manifestations in the difference graphs which do 
not provide a possibly-discriminating measurement pro-
posal are hbs-ag(V1) A anti_hbs(V2) and anti-hbs(V1) 

anti-hbc(V2). However, these parameters provide 
possibly-discriminating measurement proposals if mea­
sured 3 times as we have seen in the last example for 
hbs.ag and anti_hbs. 

Temporal difference graphs tell us more. Suppose we 
can only perform measurements at the current time point 
and in the future. The temporal difference graph can be 
used to avoid measurements which only would provide 
discriminating information if performed in the past. For 
instance, if we measured antLhbe to be positive then it 
makes no sense to measure hbe.ag at the current time 
point or in the future. The relation between hbe.ag and 
antLhbe is {b} and {m} in the corresponding difference 
graphs indicating that the temporal extent of hbe.ag al­
ready terminated. Another example is when the differ­
ence graphs contain If we mea­
sure m2 to be positive then measuring m1 at the same 
time or later provides no discriminating information. 

5 Predicted Patterns 
Difference graphs give us a means to reduce the num­
ber of measurement proposals which have to be consid­
ered as possibly-discriminating. However, the test for 
possibly-discriminating itself still has to be done using 
constraint propagation on temporal networks. To avoid 
this second source of complexity, we introduce the con­
cept of predicted pattern tables, which basically compile 
the result of testing measurement proposals for consis­
tency. The basic idea we use is that temporal relations 
can be characterized by predicted patterns. For the sake 
of simplicity we introduce an alternative representation 
for measurement proposals and their outcomes. As we 
allow only the basic point relations the manifestations in 
a measurement proposal can be partially ordered. 
Definition 5 (Measurement Tuple/Sequence) A Mea­
surement Proposal M C can be represented as a 
Measurement Sequence ,..., mtn(tn) >>, 
where Each mt1 is called a Measure­
ment Tuple mt(t) — (mi, ...,mn) and is a suggestion to 
measure the parameters m,- at time point t. 
Definition 6 (Pattern/Pattern Sequence) The 
outcome of a measurement tuple mt(t)=(mi,..., mn) is 
called a Measurement Pattern mp(t)=(v1..., vn where 
each V1 is a possible outcome for parameter mi. The out­
come of a measurement sequence is a sequence of mea­
surement patterns 
called a Measurement Pattern Sequence. 

We will leave out the time parameter in measurement 
tuples and patterns. Measurement sequences suggest­
ing to measure the same tuple mt n times are abbre­
viated as (mt)n. For instance, the measurement pro­
posal A hbs-ag(V3t2) 
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A anti_hbe(V4,t2) can be represented by the measure­
ment sequence (hbs.ag, anti-hbe) . One possible out­
come of this measurement sequence is the pattern se­
quence < (p, n),(p,p) >. 

5.1 Predicted Pattern Sequences 
Obviously, there is a strong relationship between pattern 
sequences and the qualitative temporal relations in I A. 
Let us consider the meets-relation between hbs.ag and 
anti-hbs in variant4 (figure 1). It can be characterized by 
two consecutive time slices: in the first time slice hbs.ag 
is positive and antt-hbs is negative and in the second 
time slice hbs.ag is negative and antLhbs is positive. 

Definition 7 (Predicted Pattern Sequence) Each basic 
relation in IA is characterized by a specific pattern se­
quence, called Predicted Pattern Sequence. 

Table 1 shows the basic relations (without the inverse 
relations) in IA and their predicted pattern sequences, x 
and y denote that the property associated with the cor­
responding interval holds, ~x and y denote that the corre­
sponding property does not hold. As the basic relations 
are mutually exclusive the predicted pattern sequences 
are too. We therefore get the following proposition: 

Proposition 2 Given are two hypothesis h1 and h2. A 
sufficient condition for a possibly-discriminating mea­
surement sequence (mi, rnj)n for h1 and h2 is that n > 5 
and m, and mj are connected in both difference graphs. 

It is important that the two parameters are connected 
in both difference graphs stating that both hypotheses 
have a unique relation, which can be recognized by a 
sequence of length 5. If we assume a measurement rate 
which recognizes each value change of the parameters we 
can give stronger conditions. 

Proposition 3 Given are two hypothesis h\ and h2 and 
the assumption that each value change of a parame­
ter is recognized. A sufficient condition for a possibly-
discriminating measurement sequence {mi,,mj)n for hi 
and h2 is that n > 4 and that m, and mj are connected 
in at least one of the two difference graphs. 

This proposition ensures that whenever two hypothe­
ses differ in their qualitative temporal behavior there 
exists a possibly-discriminating measurement sequence 
suggesting to measure two parameters 4 times. Of 
course, in some cases even smaller sequences are suffi­
cient. In the next section we look at sequences of length 
one, i.e. measurement tuples. 
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relations we take the union of the patterns predicted by 
the basic relations, e.g. for {s, e) we take the union of 
the patterns predicted by (s) and (e), which is the set of 
all possible patterns. Again we use the difference graphs 
to reduce the number of tuples to be considered. 

Example 6 Let us consider the measurement tuple 
(hbs-ag, anti-hbe) where we have a {b}-relation in vari­
ants and an {o}-relat ion in variant4. The corresponding 
relation tuples (6) and (o) predict different sets of pat­
terns. The pattern (p.p) is only predicted by (o). Thus, 
{hbs.ag, anti-hbe) represents a possibly-discriminating 
measurement tuple. A measurement which is not a 
possibly-discriminating one is (anti-hbs,.anti-hbc) with 
the corresponding relations ( / ) and (d). 

Obviously, if we use only the 2-tuple table, no infer­
ences are compiled over more than two measurements. 
If we want to propose a measurement tuple of length 3, 
the table tells us only about the pairwise consistency of 
the measurements included in this tuple. If we want to 
get better discr iminat ing power, we have to construct 
similar tables for larger tuples of relations and patterns. 
Table 3 shows a part of the relation tuples and the pre­
dicted patterns of length 3. 

E x a m p l e 7 In this example we assume that the pos­
itive hbs-ag and hbe.ag start at the same time, i.e. 
hbs.ag{si}hbe.ag. The measurement tuple (hbs_ag, 
anti-hbe) is a possibly-discriminating tuple, as it allows 
a dist inction in the case of (p ,p) as seen from table 2. 
If we look at the measurement tuple (hbs-ag, anti-hbe, 
hbe-ag) (i.e. adding the addit ional measurement hbe.ag), 
we get no addit ional distinguishing patterns from the 
2-tuple table. However, the 3-tuple table gives us an 
addit ional distinguishing pattern for the whole 3-tuple 
measurement, i.e. (p, n, n), which excludes variant4. 

P r o p o s i t i o n 4 Given are two hypothesis h1 and h2 
with temporal behavior B\ and B2. A sufficient con­
dition for a possibly-discriminating measurement tuple 
( m i , . . . , m n ) for h1, h2 is that the corresponding relation 
tuples f rom B1, B2 predict different sets of patterns. 

Generating the predicted pattern tables requires to 
find all consistent scenarios for sets of IA-relations which 
is in general intractable. However, we can precompile 
these tables, and the set of relations depends only on the 
length of the measurement tuples and not on the size of 
the temporal behavior of the hypotheses as in ME AS P R O . 

6 Evaluating Measurements by Entropy 
So far, we have only checked for possibly-discriminating 
measurement tuples. What we wi l l do now is to gener­
alize the entropy computat ion framework from [de Kleer 
and Wi l l iams, 1987] to our case. We have to use whole 

measurement tuples instead of single measurements and 
we have to deal wi th hypotheses which predict more than 
one value for a measurement tuple. 

Given are a set HYP of hypotheses h1, and their tem­
poral behavior B1,. For a measurement sequence mts = 
(mt\,..., mtn) we represent the corresponding relations 
in Bi as relation tuple Ri mts and the set of predicted pat­
tern sequences as Pi mts. The set of possible pattern se­
quences of mts is MPS mts. We construct for each pattern 
sequence mps 6 M P S m t s the set HYPmps of hypotheses 
which predict the pattern sequence mps. These sets pro­
vide the basis of our analysis. Obviously, each hypothesis 
hi appears in at least one HYPmps. The measurement 
sequence mts is possibly-discriminating iff there are at 
least two different sets HYPmp$l =/ HYPmpS2, where at 
least one of these sets is neither the empty set nor the 
set of all hypotheses. 

Now the expected entropy for the hypothesis proba­
bilities given a measurement sequence mts is given by 

p(mts-mps) is the probabil i ty that the outcome of mts 
is mps and H(mts—mps) is the entropy of the hypothesis 
probabilities given the hypothetical measurement result 
mps. The best measurement sequence mts is the one 
which minimizes the expected entropy He(mts) of hy­
pothesis probabilities [de Kleer and Wi l l iams, 1987]. 

The probabil i ty p(mts=mps) is given by the formula 
] where 
p(hi) is the probabil i ty that hi is the actual hypothesis, 
and p(mts=mps/hi) is the conditional probabil i ty that 
the outcome of mts is mps assuming hi, is the actual hy­
pothesis. In dynamic systems this probabil i ty depends 
on the duration of mps appearing in hi,-. If we do not 
have quantitative information concerning the temporal 
extent of intervals in B, we can use the approximation 

assum­
ing that each measurement pattern sequence predicted 
by hi has equal probabil i ty (mps C mps' means that 
mps is a subsequence of mps'). Note, that this is a case 
where using quantitative information really helps. 

The entropy H(mts—mps) of hypothesis probabil i­
ties under the assumption that mts is measured to 
be mps is given by the formula H(mts=mps) = 

where 
p(hi/mts=mps) is the probabil i ty that hi, is the hypoth­
esis given that mts has been measured to be mps, and 
can be computed using the Bayes rule. 

Example 8 We consider the hypotheses variants and 
variant4 and the measurement tuple (hbs.ag, anti-hbe) 
with the possible patterns (p,p), (p, n), (n,p) and (n, n). 
(p,p) is only predicted by variant4 whereas all other 
patterns are predicted by both variants and variant4. 
In table 4 we summarize the results of calculating the 
expected entropy. As the pattern (p,p) distinguishes 
between both hypotheses its entropy is 0. For the other 
patterns the entropy is 0.98. The overall expected en­
tropy for the measurement tuple (hbs.ag, anti-hbe) is ap­
proximately 0.87. For the other possibly-discriminating 
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Table 4: Calculation of the entropy. 

measurement tuples of length 2 we get the same value, 
since they also have exactly one measurement pattern 
which allows to distinguish among the two variants. 
Hence, all three measurement tuples of length 2 are ex­
pected to distinguish equally well, if we cannot exploit 
quantitative information. If we have quantitative infor­
mation as in figure 1, then the best measurement tu­
ple would be (anti-fibs^ igm-anti-hbc), because the inter­
val corresponding to the discriminating pattern is larger 
than for all other measurement tuples. 

7 Discussion 

Proposing measurements which discriminate between a 
set of hypotheses is an important issue in diagnostic rea­
soning. For model-based diagnosis of static systems sev­
eral algorithms has been developed, mostly variations 
of the entropy-based algorithm described in [de Kleer 
and Williams, 1987]. Mcllraith [Mcllraith, 1994] re­
cently examined the problem of test generation for hypo­
thetical reasoning in general including diagnosis. While 
some of the concepts are similar to ours, e.g. a rele­
vant test in [Mcllraith, 1994] corresponds to a possibly-
discriminating test in our framework, Mcllraith charac­
terizes test generation as an abduction problem, while we 
start with a nondeterministic algorithm and end up with 
efficient table lookup techniques. The major difference, 
however, is that we investigate measurement proposal for 
dynamic system and hence focus on the different tempo­
ral behavior of the hypotheses. 

As far as we know no work has been done in propos­
ing measurements in reasoning about dynamic systems. 
Most closely related to our work are situation recogni­
tion systems. Nokel [Nokel, 1989] describes a system for 
generating measurement sequences in order to recognize 
dynamic situations, which also uses a subset of Aliens 
interval algebra. The main difference to our approach 
is that we propose measurements to distinguish among 
several hypotheses characterized by a dynamic behav­
ior which is different from recognizing such hypotheses. 
Distinguishing among several behaviors is based on their 
difference, while recognizing them involves observing all 
their characteristics. Indeed, Nokel proposes at least one 
measurement for each manifestation. While Nokel plans 
sequences of measurements allowing only one measure­
ment at a single time point and does neither discuss en­
tropy based algorithms nor efficiency improvements like 
we do, we investigate concurrent measurements as well 
as measurement sequences, including entropy based pro­
posal algorithms and give a set of efficiency improving 
techniques to check for distinguishing measurement tu­
ples. Another situation recognition system similar to 
Nokels approach is described in [Dousson et al, 1993]. 

7 9 0 KNOWLEDGE BASE TECHNOLOGY 

8 Conclusion 
In contrast to static model-based diagnosis systems, 
current model-based formalisms for temporal diagnoses 
have not yet investigated the issue of proposing mea­
surements in a dynamic setting. In this paper we in­
vestigate techniques and algorithms for proposing new 
measurements in the temporal diagnosis framework de­
scribed in [Nejdl and Gamper, 1994] which represents 
explicitly qualitative temporal behavior using a subset of 
Allen relations. We discuss a general (nondeterministic) 
algorithm based on constraint propagation for proposing 
possibly-distinguishing measurements. We show how the 
efficiency of this method can be improved by using tem­
poral difference graphs and table lookup in precompiled 
predicted pattern tables. Finally, we generalize the en­
tropy based measurement proposal algorithm defined in 
[de Kleer and Williams, 1987] to our temporal setting. 
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