Proposing Measurements

Johann Gamper
Universitat Hannover
Rechnergestiitzte Wissensverarbeitung
Lange Laube 3
30159 Hannover, Germany

Abstract

Proposing measurements in diagnosis systems
for static systems is a well understood task.
Usually, entropy based approaches are used,
sometimes extended by cost and other consid-
erations. How to do the same task in dynamic
systems is less clear, and so far measurement
proposal algorithms have been ignored in the
recent approaches advanced for dynamic sys-
tems. In this paper we will describe a set
of techniques and algorithms suitable for mea-
surement proposal in a temporal diagnosis for-
malism discussed in our previous work. This
formalism is based on qualitative Allen con-
straints. The current paper introduces a mea-
surement proposal algorithm and improves it
in several ways. Finally an entropy-based com-
putation method is described for this temporal
setting.

1 Introduction

Most current diagnosis systems are able to propose use-
ful/optimal measurements to discriminate among com-
peting hypotheses. Several methods have been proposed,
mainly based on entropy computations as described in
[de Kleer and Williams, 1987]. Recently, some systems
for diagnosis of dynamic systems have been proposed
[Console et al., 1992; Nejdl and Gamper, 1994]. [Con-
sole et al., 1992] is based on a time-slice approach, which
considers the system dynamics as a sequence of static
states. While this approach restricts expressiveness, it
allows to use the same measurement proposal algorithms
as in static systems. On the other hand, these static al-
gorithms are insufficient to be applied in the more gen-
eral approach described in [Nejdl and Gamper, 1994]. In
[Gamper and Nejdl, 1994] we discussed first results on
how to propose measurements in our diagnosis system,
and this paper extends these results by proposing a set
of techniques which propose measurements able to dis-
tinguish hypotheses described by qualitative temporal
constraints.

In section 2 we summarize our diagnostic approach
described in [Nejdl and Gamper, 1994J. Section 3 ex-
plains the concept of measurement proposals and dis-
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Figure 1: {a) Positive findings in variantd and variant{
of hepatitis B, (b} IA-networks representing the tempo-
ral behavior of varianty and variani.

aussses the general techniques used to incorporate mea-
surements into temporal networks. We improve these
techniques in section 4 by exploiting the concept of tem-
poral difference and in section 5 by using the concept
of predicted patterns. Section 6 generalizes the entropy
computation framework in [de Kleer and Williams, 1987]
for our approach. Section 7 discusses related work.

2 Example and Basic Framework

Example 1 (Diagnosis of hepatitis B) In routine test-
ing of hepatitis B the findings hbs.ag, anti-hbs, hbe.ag,
anti-hbe, anti-hbc and igm.anttJxbc are tested, where
each of them can assume the value positive (p) or neg-
ative (n). A hepatitis B virus infection is characterized
by a typical sequence of these findings: 4 acute vari-
ants (two of them are shown in figure la where lines
denote the periods of positive findings), and 4 persisting
variants. In this paper we do not consider the different
stages, e.g. incubation.

All variants look similar, involving basically the same
findings. What distinguishes these variants is the order
in which these findings occur. In [Nejdl and Gamper,
199%4] we described a diagnosis framework which uses a
subset of Aliens interval algebra to explicitly represent
such temporal relationships.



Temporal Framework. A well known framework to
represent qualitative temporal information is Allens n-
terval Algebra IA [Allen, 1983), which is based on 13
basic mutually exclusive relations between two intervals:
before, meels, overlape, storis, during, finishes, their in-
verses and equal, abbreviated as 7 = {b, m, 0, d, s, [, bi,
mi, oi, di, &, fi, e}. Indefinite knowledge is expressed
as disjunction of basic relations and represented as a
set, e.g. (A before B) v (A meets B) is represented as
A{b,m}B. We use a graphical representation for a set
R of assertions in TA, called f4-nefwork and denoted by
R. The nodes represent intervals and the directed arcs
are labeled with the relation between the connected in-
tervals. A missing arc is implicitly labeled with I (no
knowledge). Given an [A-network, finding a consistent
scenario and finding all feasible relations are basic tem-
potal reasoning tasks. A consistent scenario is a labeling
of the 1A-network, where every label consists of a single
basic relation and it is possible to map the nodes to a
time line such that these relations hold. A basic relation
is feasible iff there exists a consistent scenario containing
this relation {for more details see [van Beek, 1992]).

Qualitative Temporal Behavior in a Diagnosis
Framework. In [Nejdl and Gamper, 1994] we de-
scribed a model-based framework for diagnosing dy-
namic systemns by explicitly representing qualitative tem-
potal information a la Allen. Given a system wilh com-
peonents COMPS each component has associated a set of
behavioral modes. The temporal behavior of each niade
iz described by a set B of [A-relations between manifes-
tations assuming that B contains only the feasible rela-
tions. A manifestation m(v,¢} denotes the fact that the
parameter m assumes the value v over lime interval f.
This allows to represent the consequences of a behavioral
mode as a complex pattern of temporally overlapping
manifestations, The temporal behavior B can be rep-
resented as an lA-network B. The nodes represeni the
manifestations, the arcs are labeled with the IA-relation
between the connected manifestations. Figure 1b shows
the network representation of the temporal behavior for
vartanty and variant{ of hepatitis B. For clanity not all
relations are shown. In the diaghostic process we gener-
ate an abductive and/or consistency-based explanation
in terms of behavioral mode assumptions for a sct of
observations at arbitrary time poinis and the temporal
relations between these observations. Usually, several
explanations exists, and to distinguish between them we
take additional measurements and continue the diagno-
sis process. As measurements produce cosis we want to
perform as few measurements as possible.

In this paper we will discuss how to propose maasure-
ments in our temporat diagnosis framework using Lhe
consistency based approach. We will refer to a sel HYP
of competing explanations as hypotheses h;. We focus on
their qualitative temporal behavior By, except when de-
scribing how quantitative constraints can improve nea-
surement proposals. Each parameter has a finite set of
possible values. All of them might be used in the descrip-
tion of the tempotal behavior and a parameter assuming
the same value might oceur more than once.

3 Measurements in Temporal Networks

As dynamic systems are characterized by a complex pat-
tern of manifestations over long time periods one might
expect that measurements should be made in a similar
way in a specific order at different times.

Definition 1 {Measurement Proposal) A Measurement
Proposof is defined as a formula M A C, where M is a
conjunction of expressions m(V, t) suggesting to measure
patatneter m at time ¢, and C is a conjunction of qual-
itative and quantitative temporal relations constraining
time ¢ of the measurements.

A measurement proposal 1s a suggestion to perform
the measurements in M in the temporal order indicated
by the relations in C. The above definition is very gen-
eral including measurements at time points and measure-
ments over time intervals. The relations in C allow to
specify the (possibly indefinite) temporal order in which
the measurements should be performed, to constrain the
measurements relative to the real time line as well as to
constrain the duration of measurements. In particular
measurements over time intervals are important in do-
mains like medicine, e.g. did you have headache for at
least two hours.

Performing a measurement proposal M A C results in
an instantiation of the variables V' to the value actually
observed, which we call the Qulcome O of a measure-
ment proposal.

Example 2 The measurement proposal hbsag(Vy,4) A
hbe.ag(Vy, i) A hbs_ag(Va, ty) A £y < ta A 1g < I3 sug-
gests to measure first fibs_ag, alter some time hbe_ag, and
later again hbs_ag. One of the 8 possible oulcomes of
this measuremnent proposal is hbsag{p, ;) A hbeag(p,ta)
A hbs_ag(p,ta) A 8 < tz Atz < t3. Another example
is hbs_ag{Vy,t1) A hbeag{Vy 13) A 1) = 12 suggesting to
measure hbs.ag and hbe_ag at the same time point with
4 possible cutcomes, e.g. hbs_ag(p,t1) A hbe_ag(n, t2) A
{; = 13, The measurement praposal hbs_ag(V,) At = 2
suggests to tneasure hbs_ag at time 2.

In this paper we only consider measurements per-
formed at time points and restrict the relations in C to
the basic relations {<, =, >} hetween two time points. In
particular, we do not consider quantitative information
exceld for a short discussion on how to improve measure-
ment proposals by exploiting guantijtative constraints.
For clarity we will leave oul the constraiuts € in mea-
surement proposals and their cutcomes, use the same
time parameter for all measurements related by “=" and
assume ¢ < {3 if i < j. If a measurement proposal
contains only concurrent measurements we leave out the
time parameter as well, Then the first measurement pro-
posal in the above example and its outcome are repre-
sented as hbs_ag(V), 1) A hbe_ag(Va, tp) A hbs_ag(Va, ta)
and hbs_ag{p,t,} A hbeag(p,ts) A hbs_ag(p, ts) respec-
Lively, the second oue as hbs_ag{V]) A hbe_ag{Vz) and
the outcomne as hbs_ag{p} A hbe_ag(n).

Depending on the outcome of a measurement proposal
some hypotheses remain consistent and some other hy-
potheses are refuled. The aim of a measurement pro-
posal algorithm in a diagnosis system is to find proposals
which reduce the hypothesis space.
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3.1 A Measurement Proposal Algorithm

We have to find a measurement proposal with a possi-
ble outcome which supports one hypothesis and refutes
another one. The outcome of a measurement proposal
supports a hypothesis if we can fit each observed value
into the temporal behavior of the hypothesis and the
temporal relations of the measurement proposal are sat-
isfied; otherwise, the hypothesis is refuted. As we do not
have time points in our temporal framework we assume
that the measured value holds over a small time inter-
val "around" the measurement time point. It is easy to
show that this assumption does not influence the results.
The following procedure ME AS PRO implements a
measurement proposal strategy. For each hypothesis
hi £ HYP we maintain a set Si of IA-networks initially
containing the corresponding temporal behavior network
Bi. For each hypothetical measurement with outcome
m(vi) we insert a measurement outcome node onode
representing the small time interval around t into each
IA-network N in Si, and constrain it as follows:

* For each other measurement outcome node
onode' at time point t' we add the |A-relation
onode{b}onode if t < t', onodefe}onode'if t = t'
and onode {bi} onode ift > t'.

» We constrain the onode to occur within a manifes-
tation node mnode in the temporal behavior repre-
senting the same parameter m and the same value
v by adding the relation onodef{s,d,f,e] mnode. If

several such mnodes (same parameter and value) are

related by before (after) the onode can only occur in
one of them at a time. In this case we construct for
each such mnode a copy of the actual N to represent
the different possible constraints of onode.

We constrain onode to occur outside each mnode
representing parameter m and value v' not= v by
adding the relation onode{b, m, bi, mi} mnode.

Finally we test consistency for each IA-network in Si us-
ing known temporal reasoning algorithms [Allen, 1983;
van Beek, 1992] and remove inconsistent networks. Situ-

*

ations, where we have Si, Sjsuch that Si, not=0and Sj=0

characterize possibly discriminating measurement pro-
posals for the hypotheses hi, and hj.

Example 3 We choose the measurement hbs.ag(Vi,t)
with a positive outcome, insert the measurement out-
come node o-hbs.ag into the IA-networks for variant3
and variant 4 and constrain it to be within the tem-
poral extent of hbs.ag, i.e. o-hbs-ag{s,d,j,e}hbs.ag.
The positive hbs.ag is consistent with both variants,
and we continue with a new hypothetical measure-
ment at the same time point, e.g. anti-hbe(V2,<)
with a positive outcome. Adding o-antLhbe{e}o-hbs.ag
and o-anti.hbe{s,d,f,e}antidibe (figure 2) and prop-
agating these relations yields an inconsistency in
variant3 (due to hbs-ag{b}anti-hbe), but it is con-
sistent in variant4- Thus the measurement pro-
posal hbs.ag(Vi,t) A anti.hbe(V2,t) has an outcome
hbs.ag(p,t) A anti.hbe(p,t) which can distinguish be-
tween the two variants.

The algorithm ME AS PRO makes no assumptions
about whether measurements are proposed in the past
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Figure 2: Proposing measuremenis using MEASPRoO.

or in the future. In some domains measurements in the
past make sense, e.g. in the medical domain.

Definition 2 (Confirmation, Refutation) The outcome
€} of a measurement proposal M AC confirms hypothesis
h iff the [A-network consisting of the temporal behavios
B extended by the outcome O according to the strategy
of algarithm MEASPRO is consistent. Otherwise, the
outcome O refutes hypothesis k. *

Definition 3 (Possibly-Discriminating) A measure-
ment proposal M A C is Possibly-Discriminating for a
set HYP of hypotheses iff it has a possible outcome G
and there exists h;, h; € HYP such that O confirms A,
and refutes A;.

This definition ensures that a possibly-discriminating
measurement proposal has at least one possible outcome
which allows to reduce the hypothesis space.

Example 4 The measuretnent proposal hbs_ag(V}) A
hbe_ag(V2) is not a possibly-discriminating one as the
temporal relationship between hbs.ag and hbe ag is
{di} in both hypotheses and thus the possible out-
comes in bolth hypotheses are the same, i.e. hbs_ag{p)
A hbe_ag(n), hbs.ag(p) A hbe_ag(p) and hbs_ag(n) A
hibe_ng(n). Another measurement proposal which is not
possibly-discriminating is anti_hbs{Vy] A anti_hbe{V3)
although Lhe corresponding relation is {f} in wverient$
and {d} in wartant{. Both relationships allow all pos-
sible outcomes except anii_hbs{p} A anti_hbc(n). An
example of & possibly-discriminating measurement pro-
posal is hbs_ag(Vy) A anti_hbe(V>). As the temporal re-
lationship is {#} in varianty and {o} in vartant{ the out-
come hbs_ag(p) A anti_kbe(p) occurs only in vartantf.
Another possibly-discriminating measurement proposal
is hbs_ag(Vy, ;) A anti_hbs(Va, 1) A hbs_ag{Vs,t2) A
anti_kbs(Va, t2) A hbs_ag{Vs, ts) A anti_kbs(Vg, t3). The
outcome hbs_ag(p,t,} A anti_hbs(n, t;} A hbs_ag(n, i}
A anti_hbs(n, tz} A hbs_ag(n, t3) A anti_hbs(p,ta} con-
firms variantd, which has hbs_ag {b} anti_hbs, and re-
futes varianif, which has hbs_ag {m} anti_hbs,

MEASPRO represenis a very general method but it has
some drawbacks. First, implementing a nondetermin-
istic procedure represents some difficulties, and can be
very inefficient if implemented as a simple generate and
test procedure. Second, it performs temporal constraint
propagation [Allen, 1983; van Beek, 1952] for each hy-
pothetical measurement, which can be very costly since
it depends on the whole network. Moreover, consistency
testing in A is exponential, and we have to use approx-
imation algorithms which in general are not complete.
[n the following we will show how we can improve upon
our measurement proposal algorithm.
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Figure 3: Difference graphs — (a) DGyaua, (b} DGpq 3.

4 Exploiting the Temporal Difference

The generation of measurements can be focused by ex-
ploiting the difference in the predicted behavior of hy-
potheses. In the simplest case this can be a parameter
predicted only in one hypothesis, which is trivial and
thus not considered here. As each hypothesis is charac-
terized by a typical sequence of temporally overlapped
manifestations we will rather focus on the temporal dif-
ference of hypotheses (assuming that each hypothesis is
described by the same parameters).

Definition 4 (Temporal Difference) Given are 2 hy-
potheses hy and ks and their qualitative temporal be-
havior By and By. The Temporal Difference between h,
and R, is defined by the two sets of 1A-relations

Dy 2= {mRiymy|

m,-R:J-mj (= Bq_,m.-R,-zjmj € Bz, Ri; = R}j \ R?j}
D3y = {m;Ri;my|

miRj;m; € By, miRj;m; € By, Rij = R, \ R};}

The difference set D) 2 (D2 ;) between by and ho con-
tains those relations which occur only in By (B2] but not
in A2 {B1). For each pair of hypotheses these two sels
capture the difference in their temporal behavior. An
empty relation R;; = Bin D » means that H{,- C Rl e
all basic relations between my; and my in iy are alljowed
in fig. In D2, however, we might still have a aonempty
set. The temporal difference £}y 2 cak be represented as
a graph DG 3, called Temporal Difference Groph. The
nodes tepresent manifestations, the directed arcs are la-
beled with the relations in I}y 2. Arcs labeled with the
emply set need not be drawn. Figure 3 shows the tem-
poral difference graphs for variantd and vartanif.

As the two difference graphs for two hypotheses cap-
ture all differences in the temporal bekavior we use them
to focus the generation of measurement proposals. The
following proposition helps to reduce the measurements
to be considered.

Propaosition 1 Given are two hypothesis &, and hz. A
necessary condition for a possibly-discriminating mea-
surement proposal M A C suggesting to measure my to
My, is that there exist m;, m; such that m; and m; are
connected in DGy 2 or DGy .

Example 5 Let us consider the difference graphs for
varient$ and varientd in figure 3. Applying the above
proposition we never propose measurements consisting
of & subset of hbs_ag, hbe_ag, igm_anti_hbc and anti hbe.
Indeed, looking at figure 1 we recognize that the quali-
tative temporal relations between these manifestations
do not differ from each other in both variants. For
concurrent measurements of two parameters we have

to consider only 6 measurement proposals instead of
15 without difference graphs. We have the 3 possibly-
discriminating measurement proposals hbs-ag(V;) A
anti_hbe{V3), anti_hbs{¥1) A igm_anti_hbc(V,)and
anti hbe(Vi} A fgm_anti_hbec(Vy). Examples of two con-
nected manifestations in the difference graphs which do
not provide a possibly-discriminating measurement pro-
posal are hbs-ag(V1) A anti_hbs(V;) and anti-hbs(V)
A anti-hbe(V,). However, these parameters provide
possibly-discriminating measurement proposals if mea-
sured 3 times as we have seen in the last example for
hbs.agand anti_hbs.

Temporal difference graphs tell us more. Suppose we
can only perform measurements at the current time point
and in the future. The temporal difference graph can be
used to avoid measurements which only would provide
discriminating information if performed in the past. For
instance, if we measured antLhbe to be positive then it
makes no sense to measure hbe.ag at the current time
point or in the future. The relation between hbe.ag and
antLhbe is {b} and {m} in the corresponding difference
graphs indicating that the temporal extent of hbe.ag al-
ready terminated. Another example is when the differ-
ence graphs containm; {s}mz and my {o}m;. Ifwe mea-
sure m, to be positive then measuring m¢ at the same
time or later provides no discriminating information.

5 Predicted Patterns

Difference graphs give us a means to reduce the num-
ber of measurement proposals which have to be consid-
ered as possibly-discriminating. However, the test for
possibly-discriminating itself still has to be done using
constraint propagation on temporal networks. To avoid
this second source of complexity, we introduce the con-
cept of predicted pattern tables, which basically compile
the result of testing measurement proposals for consis-
tency. The basic idea we use is that temporal relations
can be characterized by predicted patterns. For the sake
of simplicity we introduce an alternative representation
for measurement proposals and their outcomes. As we
allow only the basic point relations the manifestations in
a measurement proposal can be partially ordered.

Definition 5 (Measurement Tuple/Sequence) A Mea-
surement Proposal M A C can be represented as a
Measurement Sequemts = & mij{;},..., min(t,) >>,
where t; < ¢; for i < j. Each mt,is called a Measure-
ment Tuple mt(t) — (mi, ...,m,) and is a suggestion to
measure the parameters m- at time point ¢

Definition 6 (Pattern/Pattern Sequence) The
outcome of a measurement tuple mt(t)=(mi,..., m,) is
called a Measurement Pattern mp(t)=(v;..., v, Where
each V; is a possible outcome for parameter m;. The out-
come of a measurement sequence is a sequence of mea-
surement patterns mps = & mpy (1), ..., mp,{ta) >,
called a Measurement Pattern Sequence.

We will leave out the time parameter in measurement
tuples and patterns. Measurement sequences suggest-
ing to measure the same tuple mt n times are abbre-
viated as (mt)". For instance, the measurement pro-
posal hbs_ag{Vy,t1) A anti.hbe(Va,t)) A hbs-ag(Vsty)
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Table }: 1A-relations and predicted pattern sequences.

A anti_hbe(V4,t;) can be represented by the measure-
ment sequence (hbs.ag, anti-hbe) . One possible out-
come of this measurement sequence is the pattern se-

quence < (p, n),(p,p) >.

5.1 Predicted Pattern Sequences

Obviously, there is a strong relationship between pattern
sequences and the qualitative temporal relations in | A.
Let us consider the meets-relation between hbs.ag and
anti-hbs in variant4 (figure 1). It can be characterized by
two consecutive time slices: in the first time slice hbs.ag
is positive and antt-hbs is negative and in the second
time slice hbs.ag is negative and antLhbs is positive.

Definition 7 (Predicted Pattern Sequence) Each basic
relation in 1A is characterized by a specific pattern se-
quence, called Predicted Pattern Sequence.

Table 1 shows the basic relations (without the inverse
relations) in |A and their predicted pattern sequences, x
and y denote that the property associated with the cor-
responding interval holds, ~x and y denote that the corre-
sponding property does not hold. As the basic relations
are mutually exclusive the predicted pattern sequences
are too. We therefore get the following proposition:

Proposition 2 Given are two hypothesis h7 and h2. A
sufficient condition for a possibly-discriminating mea-
surement sequence (mi, rnj)” for h1and h2is that n > 5
and m, and mj are connected in both difference graphs.

It is important that the two parameters are connected
in both difference graphs stating that both hypotheses
have a unique relation, which can be recognized by a
sequence of length 5. If we assume a measurement rate
which recognizes each value change of the parameters we
can give stronger conditions.

Proposition 3 Given are two hypothesis h\ and h2 and
the assumption that each value change of a parame-
ter is recognized. A sufficient condition for a possibly-
discriminating measurement sequence {m;,,mj)" for hi
and hy is that n > 4 and that m, and m; are connected
in at least one of the two difference graphs.

This proposition ensures that whenever two hypothe-
ses differ in their qualitative temporal behavior there
exists a possibly-discriminating measurement sequence
suggesting to measure two parameters 4 times. Of
course, in some cases even smaller sequences are suffi-
cient. In the next section we look at sequences of length
one, i.e. measurement tuples.
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Table 2: 2-tuple table.

5.2 Predicted Pattern Tuples

Sequences of measurements postpone a distinction be-
tween several hypotheses into the future. Sometimes it
is better to choose a measurement consisting of a set of
concurrent measurements (even if they are more expen-
sive} rather than a sequence of measurements.

A set R of lA-relations between n manifestations
can be represented by two tuples: a tuple {m;, ..., my,)
of manifestations and a relation tuple Ry, w4 =
<R1g, sy R]n, Rzg, . Rzn yreey R{n-l}n) of length n(n —
1)/2 corresponding to the number of manifestation
pairs,.  For instance, the relations {hbs_ag(p) (b}
antt_hbs(p), hbs_ag(p) {di} hbe_ag(p}, hbs_ag(p) {4}
anti_hbe(p), anti_hbs(p) {bi} hbe_ag(p), anti_hbs(p)
{of} anti_hbe(p), hbe_ag(p) {0} anti_hbe(p)}, between
the positive hbs_ag, anti_hbs, hbe_ag and anii_hbe in vari-
antican be represented by m = (hbs_eg(p), anii_hbs{p),
hbe.ag(p), anti_hbe(p)} and R, = {b, di, b, bi, of, b).

Definition 8 (Predicted Pattern) Given is a set R of
TA-relations between the manifestations my, ..., my as-
suming ibe values vy, ..., v,. A pattern pp={v],..., v/},
where each o is a possible value of m;, is called a Pre-
dicted Pattern by the relation luple Ry,
following set of 1A-relations is consistent:

R U A{ppls.d, [ e}milv =1}
U {pp{b, m, b, mi}m;|e; £ v}

The hasic idea of this definition is the same as
the one used in algorithm MEASPRO. The pattern
node is constrained to be within ({s, d, f, e}) or outside
{{b, m, b, mi}) the corresponding manifestation nodes.
This tells us that the pattern pp appears somewhere in
the temporal behavior specified by A. More formally,
there is a consistent scenario of R containing a time slice
corresponding to the pattern pp.

We use the definition above to generate all relation tu-
ples which predict a specified pattern {v;,..., v5). Given
a measurement tuple {m,, ..., m,}, we apply this defini-
tion for each possible pattern {outcome) mp initializing
the relations between the m;'s in K to the set [ of all
basic 1A-relations and construct a lable with relation tu-
ples and predicted patterns. Table 2 shows all relation
tuples and the predicted patterns for a measurement tu-
ple of length 2. In [Gamper and Nejd], 1994] we describe
in mote detail how to construct the tables.

Using table 2 to find a measurement of length 2 turns
out to be a simple table lookup. A measurement tuple is
possibly-discriminating for two hypotheses h; and ho iff
the corresponding relation tuples from H; and By pre-
dict different sets of patierns. For disjuactions of basic



. tu%les Predicted Patterns
{b, 81, b1 (p,n,p; {n,p,my {m,m,m) (pn,n
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Table 3: Part of the 3-tuple table.

relations we take the union of the patterns predicted by
the basic relations, e.g. for {s, e) we take the union of
the patterns predicted by (s) and (e), which is the set of
all possible patterns. Again we use the difference graphs
to reduce the number of tuples to be considered.

Example 6 Let us consider the measurement tuple
(hbs-ag, anti-hbe) where we have a {b}-relation in vari-
ants and an {o}-relation in variant4. The corresponding
relation tuples (6) and (o) predict different sets of pat-
terns. The pattern (p.p) is only predicted by (o). Thus,
{hbs.ag, anti-hbe) represents a possibly-discriminating
measurement tuple. A measurement which is not a
possibly-discriminating one is (anti-hbs,.anti-hbc)  with
the corresponding relations (/) and (d).

Obviously, if we use only the 2-tuple table, no infer-
ences are compiled over more than two measurements.
If we want to propose a measurement tuple of length 3,
the table tells us only about the pairwise consistency of
the measurements included in this tuple. If we want to
get better discriminating power, we have to construct
similar tables for larger tuples of relations and patterns.
Table 3 shows a part of the relation tuples and the pre-
dicted patterns of length 3.

Example 7 In this example we assume that the pos-
itive hbs-ag and hbe.ag start at the same time, i.e.
hbs.ag{si}hbe.ag. The measurement tuple (hbs_ag,
anti-hbe) is a possibly-discriminating tuple, as it allows
a distinction in the case of (p,p) as seen from table 2.
If we look at the measurement tuple (hbs-ag, anti-hbe,
hbe-ag) (i.e. adding the additional measurement hbe.ag),
we get no additional distinguishing patterns from the
2-tuple table. However, the 3-tuple table gives us an
additional distinguishing pattern for the whole 3-tuple
measurement, i.e. (p, n, n), which excludes variant4.

Proposition 4 Given are two hypothesis h1 and h2
with temporal behavior B\ and B2. A sufficient con-
dition for a possibly-discriminating measurement tuple
(mi,..., my) for h1, h, is that the corresponding relation
tuples from B1, B, predict different sets of patterns.

Generating the predicted pattern tables requires to
find all consistent scenarios for sets of IA-relations which
is in general intractable. However, we can precompile
these tables, and the set of relations depends only on the
length of the measurement tuples and not on the size of
the temporal behavior of the hypotheses asin MEAS PRO.

6 Evaluating Measurements by Entropy

So far, we have only checked for possibly-discriminating
measurement tuples. What we will do now is to gener-
alize the entropy computation framework from [de Kleer
and Williams, 1987] to our case. We have to use whole

measurement tuples instead of single measurements and
we have to deal with hypotheses which predict more than
one value for a measurement tuple.

Given are a set HYP of hypotheses h1, and their tem-
poral behavior B1,. For a measurement sequence mts =
(mt\,..., mt,) we represent the corresponding relations
in Bi as relation tuple Rimtsand the set of predicted pat-
tern sequences as Pi s The set of possible pattern se-
quences of mts is MPS mts. We construct for each pattern
sequence mps 6 MPS,:s the set HYP,, of hypotheses
which predict the pattern sequence mps. These sets pro-
vide the basis of our analysis. Obviously, each hypothesis
hi appears in at least one HYP,, The measurement
sequence mts is possibly-discriminating iff there are at
least two different sets HYPmpg =/ HYPmpsz, where at
least one of these sets is neither the empty set nor the
set of all hypotheses.

Now the expected entropy for the hypothesis proba-
bilities given a measurement sequence mts is given by

He(mts) = E

mpsEMPE g

pimts=mps)H{mts=mps)

p(mts-mps) is the probability that the outcome of mis
is mps and H(mts—mps) is the entropy of the hypothesis
probabilities given the hypothetical measurement result
mps. The best measurement sequence mits is the one
which minimizes the expected entropy He(mts) of hy-
pothesis probabilities [de Kleer and Williams, 1987].
The probability p(mts=mps) is given by the formula
plmts=mps} = 3, . pyp p{mts=mps/hi)p{ki), where
p(hi) is the probability that hi is the actual hypothesis,
and p(mts=mps/hi) is the conditional probability that
the outcome of mts is mps assuming hi, is the actual hy-
pothesis. In dynamic systems this probability depends
on the duration of mps appearing in hi,-. If we do not
have quantitative information concerning the temporal
extent of intervals in B, we can use the approximation
p(mts:mpsfh,—] = Zmps'ep' mpsC mps! Fl_ assum-
ing that each measurement pattern sequend® predicted
by hi has equal probability (mps C mps' means that
mps is a subsequence of mps!). Note, that this is a case
where using quantitative information really helps.

The entropy H(mts—mps) of hypothesis probabili-
ties under the assumption that mits is measured to
be mps is _given by the formula H(mts=mps) =
= S n.enve Pllifmis=mps} logp(h; /mts=mps), where
p(hi/mts=mps) is the probability that hi, is the hypoth-
esis given that mts has been measured to be mps, and
can be computed using the Bayes rule.

Example 8 We consider the hypotheses variants and
variant4  and the measurement tuple (hbs.ag, anti-hbe)
with the possible patterns (p,p), (p, n), (n,p) and (n, n).
(p,p) is only predicted by variant4 whereas all other
patterns are predicted by both variants and variant4.
In table 4 we summarize the results of calculating the
expected entropy. As the pattern (p,p) distinguishes
between both hypotheses its entropy is 0. For the other
patterns the entropy is 0.98. The overall expected en-
tropy for the measurement tuple (hbs.ag, anti-hbe) is ap-
proximately 0.87. For the other possibly-discriminating
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mps p(mta=mps) | plvd/mea=mps} | plvd/mts=mpr]
{p.7) [ ] 1
{p. n} 7/24 47 a7

Table 4: Calculation of the entropy.

measurement tuples of length 2 we get the same value,
since they also have exactly one measurement pattern
which allows to distinguish among the two variants.
Hence, all three measurement tuples of length 2 are ex-
pected to distinguish equally well, if we cannot exploit
quantitative information. If we have quantitative infor-
mation as in figure 1, then the best measurement tu-
ple would be (anti-fibs® igm-anti-hbc), because the inter-
val corresponding to the discriminating pattern is larger
than for all other measurement tuples.

7 Discussion

Proposing measurements which discriminate between a
set of hypotheses is an important issue in diagnostic rea-
soning. For model-based diagnosis of static systems sev-
eral algorithms has been developed, mostly variations
of the entropy-based algorithm described in [de Kleer
and Williams, 1987]. Mcliraith [Mcliraith, 1994] re-
cently examined the problem of test generation for hypo-
thetical reasoning in general including diagnosis. While
some of the concepts are similar to ours, e.g. a rele-
vant test in [Mcllraith, 1994] corresponds to a possibly-
discriminating test in our framework, Mcllraith charac-
terizes test generation as an abduction problem, while we
start with a nondeterministic algorithm and end up with
efficient table lookup techniques. The major difference,
however, is that we investigate measurement proposal for
dynamic system and hence focus on the different tempo-
ral behavior of the hypotheses.

As far as we know no work has been done in propos-
ing measurements in reasoning about dynamic systems.
Most closely related to our work are situation recogni-
tion systems. Nokel [Nokel, 1989] describes a system for
generating measurement sequences in order to recognize
dynamic situations, which also uses a subset of Aliens
interval algebra. The main difference to our approach
is that we propose measurements to distinguish among
several hypotheses characterized by a dynamic behav-
ior which is different from recognizing such hypotheses.
Distinguishing among several behaviors is based on their
difference, while recognizing them involves observing all
their characteristics. Indeed, Nokel proposes at least one
measurement for each manifestation. While Nokel plans
sequences of measurements allowing only one measure-
ment at a single time point and does neither discuss en-
tropy based algorithms nor efficiency improvements like
we do, we investigate concurrent measurements as well
as measurement sequences, including entropy based pro-
posal algorithms and give a set of efficiency improving
techniques to check for distinguishing measurement tu-
ples. Another situation recognition system similar to
Nokels approach is described in [Dousson et al, 1993].
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8 Conclusion

In contrast to static model-based diagnosis systems,
current model-based formalisms for temporal diagnoses
have not yet investigated the issue of proposing mea-
surements in a dynamic setting. In this paper we in-
vestigate techniques and algorithms for proposing new
measurements in the temporal diagnosis framework de-
scribed in [Nejdl and Gamper, 1994] which represents
explicitly qualitative temporal behavior using a subset of
Allen relations. We discuss a general (nondeterministic)
algorithm based on constraint propagation for proposing
possibly-distinguishing measurements. We show how the
efficiency of this method can be improved by using tem-
poral difference graphs and table lookup in precompiled
predicted pattern tables. Finally, we generalize the en-
tropy based measurement proposal algorithm defined in
[de Kleer and Williams, 1987] to our temporal setting.
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