
C o m p o s i t i o n i n H i e r a r c h i c a l C L P 

Michael Jampel and Sebastian Hun t 
{ jampel , seb}@cs. c i t y .ac.uk 

Department of Computer Science, 
City University, Northampton Square, 

London EC1V OHB, UK. 

Abst rac t 

We propose a variant of the Hierarchical Con­
straint Logic Programming (HCLP) scheme of 
Borning, Wilson, and others. We consider 
compositionality and incrementality in Con­
straint Logic Programming, introduce HCLP, 
and present Wilson's proof that it is non-
compositional. We define a scheme for compos­
ing together solutions to individual hierarchies 
and show that hierarchy composition can be 
expressed very simply using filtering functions 
over bags (multisets); we present some proper­
ties of these functions, and define and explain 
an alternative to bag intersection which is also 
used in our scheme. We present an example in­
volving three strength levels and show that we 
can achieve a close approximation to the solu­
tions produced by standard HCLP. 

1 In t roduc t i on 
The HCLP (Hierarchical Constraint Logic Programm­
ing) scheme [Borning et al, 1989; Wilson and Borning, 
1993] greatly extends the expressibility of the general 
CLP scheme [jaffar and Lassez, 1987]. There is also 
related work by Satoh [1990]. A semantics has been de­
fined for HCLP [Wilson and Borning, 1989] and some 
instances of it have been implemented [Menezes et a/., 
1993]. However, the semantics is not as natural as one 
might hope, and the implementations are inherently less 
efficient than those of CLP. We believe that these two is­
sues may be related, and suggest that an equally expres­
sive scheme which gives similar but not identical answers 
may go some way to overcoming both of them. 

Therefore we propose a weakening of the semantics 
of HCLP, in which the results of composing solutions 
to individual hierarchies approximate the solutions that 
would be obtained from combining the programs and 
starting from scratch. Our semantics are adequate for 
some of the standard examples in the literature. They 
are definitely not sufficient to solve some of the other 

examples exactly, but our approximations are very rea­
sonable. 

2 Incrementa l i ty and composi t ional i ty 
An important difference between logic programming lan­
guages and, say, theorem provers, is that the former 
are more efficient; expressibility and completeness are 
traded-off against efficiency. Standard HCLP is beauti­
fully expressive, but the efficiency of its implementations 
may be poor, and its semantics lacks certain desirable 
properties. Our proposal in this paper involves tradirig-
off completeness to gain efficiency and more tractable 
semantics. In constraint logic programming, efficiency is 
discussed with reference to 'incrementality', and seman­
tics can be discussed with reference to compositionality, 
which is what we will do in the rest of this section. 

Compositionality is a desirable property for a system 
to have because it shows that the semantics of the system 
can be modelled by a mathematical system with formal 
properties, and because it suggests that implementations 
will be efficient. This is because compositionality implies 
decomposition ality, i.e. we can solve a complex problem 
by splitting it into simpler parts, solving them, and then 
composing the results into a complete solution. 

Whereas compositionality is a property of formal sys­
tems, incrementality is a (desirable) property of Con­
straint Logic Programming implementations. There is 
no precise definition, but what it means is that the work 
required to add an extra constraint to the solution of 
a large set of constraints and check its satisfiability is 
proportional to the complexity of the addition, and not 
related to the size of the initial set. If a system is not 
incremental, then adding one more constraint to the so­
lution of, say, 20 constraints, involves as much work as 
solving the system of 21 constraints from scratch. 

In fact, even in an 'incremental' system the amount 
of work required to deal with an additional constraint 
will probably depend on more than just the constraint 
itself: the number of variables in the original set may be 
relevant, as well as other factors. 

We wish to suggest that compositionality is weaker 
than incrementality. a theory which has compositional 

640 CONSTRAINT SATISFACTION 



semantics may have a non-incremental implementa­
tion, but a truly incremental implementation of a non-
compositional formalism is not possible. What is more 
important than the distinction between incrementality 
and compositionality is the distinction between having 
both these properties and having neither, which is re­
lated to the distinction between 'sufficiently efficient' and 
'unusably inefficient'. Both logic programming and con­
straint logic programming are in principle sufficiently ef­
ficient, and they have compositional theories (see next 
section), and so compositionality is assumed to hold in 
general, almost without being mentioned. Therefore, the 
focus in previous CLP work has tended to be on in­
crementality alone, rather than on its relationship with 
compositionality. 

2.1 Query composition in logic 
programming and CLP 

Figure 1: Composing queries in logic programming 

Consider the two programs in Figure 1. They may be 
logic programs or constraint logic programs. The sub­
scripts 1,2,3 are not part of the predicate names; they 
indicate that the query ?- p(X) will have up to three so­
lutions {P1, P2, P3}, one from each of the three clauses 
of p. The composed query ?- p(X) & q(X) will have up 
to six solutions, arising from ®, the composition, in some 
sense, of the elements of the cartesian product of the two 
sets of solutions. We could treat each of the {P1, ® Qj] 
combinations independently, and make a distinction be­
tween this multiplicity and multiple solutions all arising 
from one branch, but we will just consider the collection 
of solutions as a whole, ignoring how they arose. 

In standard logic programming, the composition of the 
solutions to two or more queries is the most general uni­
fier (m.g.u.) of those solutions. Calculating the m.g.u. 
of two solutions takes time related to the size of the solu­
tions, and not related to the size of the original programs. 
Similarly, in constraint logic programming, solving the 
conjunction of two output sets of constraints will depend 
on the size of the output, not on the size or complexity 
of the input constraints. 

Hierarchical CLP is not compositional, and so in­
cremental implementations have to make assumptions 

which may then need to be retracted [Menezes .et 
a/., 1993]. But before we can demonstrate this non-
compositionality, it is necessary to provide an overview 
of HCLP. 

3 Hierarchical Constraint Logic 
Programming 

A good introduction to HCLP can be found in Molly 
Wilson's PhD thesis [1993, chapter 4] or in the early ref­
erence [Borning et al., 1989]; here is a brief overview. 
Just as Logic Programming can be extended to CLP, so 
CLP can be extended to a Hierarchical CLP scheme in­
cluding both 'hard' and 'soft' constraints. The HCLP 
scheme is pararneterised not only by the constraint do­
main V but also by the comparator C, which is used to 
compare and select from the different ways of satisfying 
the soft constraints. 

An HCLP rule has the form 

where t is a list of terms, p,q1,.. .,qm are atoms and 
l1cl,... ,/ncn are labelled constraints. A program is a 
bag (multiset) of rules, and a query is a bag of atoms. 
The strengths of the different constraints are indicated 
by a non-negative integer label. Constraints labelled 
with a zero are required (hard), while constraints la­
belled j for some are optional (soft), and are 
preferred over those labelled k, where (A pro­
gram can include a list of symbolic names, such as re­
quired, strongly-preferred, etc., for the strength labels, 
which will be mapped to the natural numbers by the in­
terpreter. If the strength label on a constraint is omitted, 
it is assumed to be required.) 

Goals are executed as in CLP, except that initially 
non-required constraints are accumulated but otherwise 
ignored1. If a goal is successful but with a non-unique an­
swer, the accumulated hierarchy of optional constraints 
is then solved, which refines the valuations in the solu­
tion. The method used to solve the non-required con­
straints will vary from domain to domain, and for differ­
ent comparators within a given domain. 

The constraint store sigma (a set) is partitioned into the 
set of required constraints So and the set of optional ones 
Si. The solution set for the whole hierarchy is a subset of 
the solution set of So, such that no other solution could 
be 'better', i.e. for all levels up to k, Sk is completely sat­
isfied, and for level Sk_1 this solution is better, in terms 
of some comparator, than all others. Backtracking and 
incomparable hierarchies give rise to multiple possible 
solution sets, each a subset of the solution to So. (So­
lutions in standard HCLP are generally described using 
sets, not bags.) 

Certain comparators can be used with any domain. 
For example, a 'predicate' comparator prefers one solu­
tion to another if it satisfies more constraints at some 

'Menezes et al. use an alternative strategy [1993]. 

JAMPEL AND HUNT 641 



6 4 2 CONSTRAINT SATISFACTION 



will use them in the next section to define rules for hi­
erarchy composition; particular examples are discussed 
later, but in general filter functions will be denoted by 
f. Note that the guard operator // is concerned with 
the relationship between different strength levels in a hi­
erarchy, whereas filter functions select solutions within 
a given level. (Similarly, in standard HCLP the com­
parators compare solutions within a given level.) More 
details can be found in Section 6, where we examine one 
particular filter at length. 

5 Two-level hierarchy composi t ion 
We now come to the main interest of the paper. In this 
section we define an operation o which combines bags 
and sets in a certain way to form new bags. Our in­
terpretation of these rules is that o approximates the 
solutions to a composition of hierarchies. 

Let P and Q be two programs, and p and q be queries 
with respect to each of those programs. We will also 
use capital letters to refer to the entire hierarchy (i.e. 
program, query, and solutions). Let So(p) be the set of 
valuations which are solutions to the required constraints 
in the hierarchy, and let S1(p) be the set of valuations 
satisfying both the required and the (one level of) op­
tional constraints. Note that S\(p) So(p). Similarly 
S1(q) C So(q). Define the solution set for the query p as 
a tuple containing the solution sets for each level of the 
hierarchy: S(p) = (S0(p), S1(p)). 

Note that the solutions to a single (branch of a) query 
are assumed to form a set (or, rather, a set-like bag). 
The multiplicities will arise when the solutions to sepa­
rate queries are composed using bag union. (Treating so­
lutions to a single query as bags would give more weight 
to duplicated solutions from one hierarchy, rather than 
treating equally all the hierarchies to be composed.) 

Later we will use lp & q' to refer to a standard HCLP 
query, solved by starting from scratch, and compare it 
to po q, which has solutions defined as follows: 
Definition (ComposeOl): 

The reason for guarding the two Si's with So(p 0 q) is 
to remove solutions for p which are inconsistent with q's 
required constraints and vice versa, although remember 
that at this stage we should not really be discussing hi­
erarchies and solutions, because we are still merely ma­
nipulating bags. (In fact, as S1(p) C So(p), it is enough 
just to guard S1(p) with S0(q) and vice versa, as can 
be shown using absorption and distributivity properties, 
but this does not generalise neatly to compositions of 
more than two hierarchies.) 

Note that we type-coerce sets to be set-like bags when­
ever we wish to do bag operations on them. Note also 
that in the definition of S1(p0 q), we have not included 
an application of set. We consider it to be the very last 

Although o is commutative (i.e. poq — qop), it is not 
associative, because of the filter functions, i.e. po(qor) = 
(p o q) o r = p o q o r. Only p o q o r is 'correct' for 
our purposes, which implies the following: if we have 
calculated the composition poq but suspect that we may 
later need to compose with another hierarchy, we cannot 
discard the solutions to p and q, but must store them to 
be able to calculate poqor subsequently. Thus we trade 
space against time compared to standard HCLP. 

If there are no constraints at the required level, the 
solution set is the entire domain (the cartesian product 
of the domains of all the variables) i.e. It can 
be seen that guarding any bag with this universal set 
using // will not have any effect: —A. If 
there are no constraints at one of the optional levels, the 
solutions for that level will just be the same as for the 
next higher level i.e. . Therefore the 
rules we have defined here will work for hierarchies with 
arbitrarily many or few constraints at any given level. 

In HCLP, the key difference between required and non-
required constraints is that the former can cause failure 
to occur. In other words, the required constraints may 
have an empty solution set, but no weaker constraints 
can cause a failure if stronger constraints have been sat­
isfied. In our composition rules, in A represents 
the solutions for a weaker level than B, and yet the def­
inition of allows the possibility of being empty 
even if B is not (in the case that . Thus 
our rules appear to allow failure to arise from optional 
constraints. In fact, as we define the solution S to be the 
tuple (So, S1,..., Sn) and not just its final element Sn, 
it is not a problem if one of the elements of S is empty: 

JAMPEL AND HUNT 643 



the solution that is offered to the user is no longer the 
final element of the tuple, but the final non-empty ele­
ment. Thus this aspect of HCLP is not present in our 
logic, but is left until the interpretation. 

6 The filter fmax 

The rules defined in the previous section are parame-
terised by filter functions. We now define one particular 
filter function fmaX, which is the most interesting when 
compared to HCLP's 'locally-predicate-better' compara­
tor [Wilson and Borning, 1993]. fmax removes those el­
ements of a bag which do not occur a maximal number 
of times. In other words, if some elements occur once in 
a given bag, and some elements occur twice, fmax defines 
the bag containing only those elements occurring twice. 

Consider some hierarchy (program, query, and solutions) 
formed from twenty constraints. Consider the amount 
of work needed to augment it with a hierarchy resulting 
from one extra constraint: the two S0 levels must be 
intersected, the S1 levels must be unioned, filtered, then 
guarded by the combined So. Calculating an intersection 
requires work bounded by the size of the smaller of the 
two sets or bags, as does set-union. Creating a bag-union 

644 CONSTRAINT SATISFACTION 

could take constant time, or at worst time related to 
the size of the smaller of the two bags. Filtering and 
guarding will, admittedly, take time bounded by the size 
of the union of the two bags. But all these operations 
(intersection, union, filtering, etc.) are computationally 
very cheap compared to constraint solving. They may be 
considered unit time operations when measured on the 
scale of constraint solving. Therefore, when compared 
to the cost of composing the two programs and queries 
and starting from scratch, it is reasonable to say that 
our scheme is incremental. 

7 Example and comparison w i t h H C L P 
The Multi-Compose definitions from Section 5 can be 
unfolded as follows: 



ing {0 < X < 10} as short-hand for the uncountably in­
finite set-like bag {(X = 0), (X = 1), (X = 2),..., (X = 
0.1), (X — 0.01),...}, but it is obvious within this no­
tation that the bag union of, say, {0 < X < 10} and 
{5 < X < 15} has 0 < X < 5 and 10 < X < 15 with 
multiplicity 1, and 5 < X < 10 with multiplicity 2.) 

Secondly, if we initially apply Compose012 to p and q 
and then apply it again to poq and r, S2((po q) o r) will 
be the same as S2 (p o g o r) (with different muliplicities 
at the S1 level). But if instead we compose p with qor, 
then S2(po(qor)) = {(X = 4),(X = 16)5, which differs 
from S2 ((p o q) o r) and is a worse approximation to the 
result given by standard HCLP. This non-associativity 
gives rise to multiple possible composition orders and 
hence solutions, which is why we define the only correct 
answer to be the one based on composing all three sub-
solutions simultaneously. 

Thirdly, and most importantly, if we apply Com-
pose012 all at once, we get an answer which differs from 
the standard HCLP solution, because it omits the valu­
ation which maps X to 8. Any system which calculates 
exactly the same answers as HCLP will be vulnerable to 
Wilson's proof of non-compositionality (discussed ear­
lier in Section 3.1), so the question is whether Com-
pose012 gives a reasonable approximation. We believe 
that it does; in this example, the only valuation omitted 
is one which was not present in the original sub-solution 
containing the constraint which gave rise to it. In R, 
the X = 8 possibility for X div 8 was dominated by 
the strong constraint X > 15. In standard HCLP, this 
domination is weakened by other strong constraints from 
completely separate hierarchies. In other words, the only 
solution not calculated by Compose012 is one which we 
probably do not want anyway! 

8 Conclusions and Fur ther Work 
We have seen that by storing the intermediate solutions 
to a hierarchy in a tuple (S0,S1 ,.. ., Sn), we can find an 
approximate solution to its composition with other hier­
archies. We use simple filtering functions and bag oper­
ations, with clear mathematical characterisations, which 
avoids the need to invoke the constraint solver and start 
from scratch calculating a solution to the combination of 
the constraints. The non-associativity of filter functions 
means that the method is not truly compositional, but 
it does avoid the need to invoke the constraint solver. 
In general, constraint satisfaction is of exponential com­
plexity, compared to which filtering and set operations 
are very cheap indeed. Therefore we feel justified in call­
ing this scheme 'incremental'. 

Thus we have developed a variant of Hierarchical CLP 
in which the solution to a composed problem is defined 
in terms of the solutions to its sub-problems. The op­
erations involved are simple to understand and efficient 
and closely approximate the answers we would obtain 
from standard HCLP, while avoiding its computational 

expense and complex semantics. 
In the future we wish to extend this scheme to take 

account of error sequences, and hence bring different 
comparators within the scope of our filtering scheme. 
We would like to investigate constraint deletion and dy­
namic constraint satisfaction, which are difficult in most 
formalisms but should be made easier by the modular 
nature of our tuple representation of solutions. 

More generally, we are investigating inconsistencies 
arising from the composition of CLP programs i.e. pro­
grams without hierarchical strength labels. We wish to 
explore the parallels between composition of these unla­
beled systems and composition of the labelled systems 
discussed in this paper. 

Acknowledgements 
Thanks to Rob Scott, David Gilbert, Steven Eker and 
Bernie Cohen for helpful discussions on CLP and HCLP. 

References 
[Borning et a/., 1989] A. Borning, M. Maher, A. Mar-

tindale, and M. Wilson. Constraint hierarchies and 
logic programming. ICLP'89. 

[Gries and Schneider, 1994] D. Gries and F. Schneider. 
A Logical Approach to Discrete Math. Springer. 

[Jaffar and Lassez, 1987] J. Jaffar and J.-L. Lassez. 
Constraint Logic Programming. POPL'87. 

[Jampel and Hunt, 1995] M. B. Jampel and L. S. Hunt. 
A compositional theory of constraint hierarchies. 
Technical Report TCU/CS/1995/5, Department of 
Computer Science, City University, London. 

[Knuth, 1969] D. Knuth. The Art of Computer Pro­
gramming. Addison-Wesley. Volume 2: Seminumerical 
Algorithms. 

[Menezes et a/., 1993] F. Menezes, P. Barahona, and P. 
Codognet. An incremental hierarchical constraint 
solver. PPCP'93. 

[Satoh, 1990] K. Satoh. Formalizing soft constraints by 
interpretation ordering. ECAI'90. 

[Wilson and Borning, 1989] M. Wilson and A. Borning. 
Extending Hierarchical Constraint Logic Programm­
ing: Nonmonotonicity and inter-hierarchy compari­
son. NACLP'89. 

[Wilson and Borning, 1993] M. Wilson and A. Borning. 
Hierarchical Constraint Logic Programming. Journal 
of Logic Programming, 16(3) :277—318. 

[Wilson, 1993] M. Wilson. Hierarchical Constraint Logic 
Programming. Technical Report 93-05-01, University 
of Washington, Seattle. (PhD Dissertation). 

JAMPEL AND HUNT 645 


