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Abstract

We present a optimization formulation for discrete
binary CSP, based on the construction of a
continuous function A(P) whose global maximum
represents the best possible solution for that
problem. By the best possible solution we mean
either (i) a solution of the problem, if it is
solvable, or (ii) a partial solution violating a
minimal number of constraints, if the problem is
unsolvable. This approach is based on relaxation
labeling techniques used to enforce consistency in
image interpretation. We have used a projected
gradient ascent algorithm to maximize A(P) on the
rqueens problem obtaining good results but with
a high computational cost. To elude this problem,
we have developed a heuristic for variable and
value selection inspired in the direction in which
A(P) is maximized. We have tested this heuristic
with forward checking on several dasses of CSP.

1 Introduction

The purpose of this paper is to show how discrete constraint
satisfaction problems (usually abbreviated as CSP) can be
effectively analyzed and solved as a kind of optimization
problems. This is not a strictly new approach; other authors
have used it to solve specific problems [Sosic and Gu,
1991; Minton et al, 1992; Selman et a!., 1992; Morris,
1993]. The novel aspect we present here consists in the
following: we provide a way to construct, for any instance
of CSP with binary constraints, a continuous function

CSP. LP and CSP have many points in common: both deal
with a finite number of variables {X}, which take values on
discrete domains {D;} under a set of binary constraints
{Ry}. They differ in two main aspects: (i) in the problem
formulation and (ii) in what they consider as a solution.
With respect to the problem formulation, in CSP
assignments and constraints are purely boolean (the
assignment (X v)) is true or false, the constraint R{v*, v/)
allows variables X; and X; to take the values vk and v/ or
not), while in LP assignments can be weighted (assign
several values with different positive weights to the same
variable is a legal assignment, providing the sum of weights
is equal to 1), and constraints can express a graded level of
consistency (for a given pair of variables different pairs of
values can be consistent, but some more consistent —and
therefore preferred—than others). With respect to a
solution, both approaches look for a consistent assignment
but they differ in the level of consistency required. In CSP,
a solution must be globally consistent, that is, it must
satisfy all the constraints (or a maximal number of
constraints in the case of maximal constraint satisfaction).
In LP different criteria for a consistent solution have been
proposed; in this paper we will follow the proposal of
[Hummel and Zucker, 1983 which, for a LP with
symmefric constraints, identifies consistent solutions with
local maxima of A(P), the average local consistency
function. Local maxima of A(P) are not guaranteed either to
satisfy every constraint or to restrict the assignment weights
to {0,1}, so they are not feasible solutions for CSP. After
this description, we can see a CSP as a particular instance of
LP, but with more demanding requirements for a solution.
We will show that the necessary and sufficient condition for

whose global maximum represents the best possible solutiofie best solution of a CSP is to be a global maximum of

for that problem. By the best possible solution we mean
cither (i) a solution of the problem, if it is solvable, or (ii) a
partial solution violating a minimal number of constraints,
if the problem is unsolvable. Therefore, a CSP can be
solved constructing such a function and using any kind of
optimization techniques to compute its global maximum.
This function, A(P), is the average local consistency
function associated with the problem.

The present work is the result of applying relaxation
labeling techniques, used to enforce consistency in image
analysis, to CSP. Relaxation labeling considers labeling
problems (LP), which can be seen as a generalization of

A(P), and in this case it is always possible to restrict the
assignment weights to {0,1}.

This paper is organized as follows. In section 2, we
revise some of the previous work on CSP and relaxation
labeling. In section 3, we introduce the concepts needed to
analyze a CSP as a LP. In section 4, we provide the results
relating solutions with local and global maxima of A(P). In
section 5, we discuss some approaches to compute a global
maximum. In section 6, we discuss a heuristic approach for
variable and value selection. Finally, in section 7 we
summarize the main confributions of this work.
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2 Related Work

A significant amount of work has been made on CSP in the

last twenty years (for an wide overview see [Tsang, 1993)).

The most common approach to solve CSP has been a

systematic search algorithm with backtracking. A consistent
partial solution is formed by a subset of variables and it is

extended by adding variables one by one until a complete

solution is found. When no consistent value exists for the

variable being added, backtracking occurs changing the

value of a previously assigned variable. This approach is

complete, it always finds a solution if it exists, but is has

an important drawback: backtracking is extremely

inefficient. To prevent this problem, several refinements and

additions to this approach has been developed, such as local
consistency pre-processing, backirack-free problems, look-

ahead and look-back algorithms, heuristics, and

combinations of these strategies.

In the last years, a new iterative approach to solve CSP
has been proposed. Starting from an inconsistent global
assignment, each iteration modifies this assignment using
local information in such a way that the number of violated
constraints decreases (or in some cases, remains unchanged),
until global consistency is achieved [Sosic and Gu, 1991;
Minton et al., 1992; Selman et al, 1992]. This approach
can be seen as a hill-climbing procedure, where the number
of violated constraints is minimized. Given that it can be
stuck in local minima (where some constraints are still
violated), a way to escape from them is needed [Moirris,
1993]. This approach is not complete. When a given limit
of iterations is achieved without reaching a solution, the
process is restarted from another initial assignment. In
practice and for some kind of problems, a few restarts are
enough to reach a solution, with less computational effort
than systematic search with backtracking.

On the other hand, image interpretation considers the
problem of assigning labels to image parts to produce a
global consistent interpretation. Given that the presence of a
particular object may impose constraints on other objects in
its neighbourhood, a common approach uses local
contextual information to obtain the most adequate label for
each image part. This process is iterated to allow local
information to propagate, until a stable state is reached
[Davis and Rosenfeld, 1981]. An early example of this
technique is the Waltz's work on interpretation of line
segments [Waltz, 1975]. This work allowed unambiguous
interpretations only. In general this is too restrictive, so
ambiguous interpretations where several labels are assigned
to the same image part with different weights are also
allowed. In this context a number of techniques, called
relaxation labeling, have been developed [Kittler and
lllingworth, 1985; Torras, 1989]. A relaxation procedure is
an iterative and parallel process which, starting from an
initial weighted assignment (weights in [0,1]), performs a
synchronous weight updating until it does not cause further
changes in the current weighted assignment (it converges to
a fixed point). Many updating formulas have been proposed
[Rosenfeld et al, 1976], some of which have been proved
as approximations of a gradient ascent algorithm and their
fixed points are local maxima of a continuous function.
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3 CSP as Labeling Problems

In this section we introduce the basic concepts for CSP and
LP, and we formulate a generic CSP as a LP. To keep the
maximum of clarity in our exposition, we use different
notations for CSP and LP. The real differences will become
apparent at the end of the section.

A discrete binary CSP is defined by a finite set of
variables {X;} taking values on discret¢ and finite domaing
{D;} under a set of binary constraints {R;}. A constraint R
is a logical expression which evaluates to true or false on
cach pair of potential values for X; and X;. An assignment of
values 1o variables is esp-consistent if it satisfies every
constraint. A solution for the CSP is a csp-consistent global
assignment. The number of variables is # and, withoul loss
of generality, we will assume a common domain D for all
the variables, m being its cardinality.

A general LP is characterized by a finite set of gnits
{U/;}, a set of labels for each unit {A;}, a neighbour relation
over the units, and a constraint relation over wples of
neighbouring units. In this paper we will assume that the
sets of labels are discrete and finite, and that all the
neighbour relations are binary, which imply binary
constraints {r;}. The number of units is » and, without loss
of generality, we will assume a common set of labels A for
all the units, m being its cardinality. A constraint is a real-
valued function, r,;: A X A — R; a positive value of ri(2,,
Ap) indicates that the assignment of A; lo £/; is consistent
with the assignment of A; 10 U, while a nepative value
indicates an inconsisten! assignment, The magnilude of
r,}-(.lk, A;) represents refative importance of r; in the set of
constraints, as well as the relative preference for the pair of
values {4, Ap) for this constraint. From now on, we will
assume that consiraints are symmetric, 7, (A, 4 = r;,(41,
A, forij=1,.nandL k=1, .m.

An unambiguous labeling is 2 mapping from the ynits
into their corresponding sel of labels, associating each unit
with exactly one label. For each vnit U;, this mapping can
be represented by a vector of m bits, p,, defined as follows,

pilde] = 1, if unit U, maps to label A,
0, if unit U, does not map to label A

Obviously, p, has 1 in ong position only and the remainder

m
positions contain zeroes, so ¥, pildx] = 1. Concatenating
k=1

the vectors py, pa, ... Pn. One can obtain an assignment
vector Pe R™™. The space of unambiguous labelings X'* is,

K*= (PeR™ | P = [pj,... o) pi=[pdAs], il AmllE R,
m

pilad =00 i T plAd = 1,i=1,.,m)
=1

A weighted labeling is obtained by replacing the condition
pilAs] = 0 or 1 by the condition 0<p,|A,]<1 for all i, k. The
space of weighted Iabelings X is defined as,

K={PER™ | P=[p1,... pak: P= PilA1]...BilAm]]ER™:
m
0sp A<l T pdid = 1, i=L,...m)
=1



An ambiguous lobeling is 2 weighted assignment which is
not unambiguous. Given an assignment P, we define the
support for label A; at unit U; by the assignment P as,

H M

s{An P) = Zl : ]’y'(;-k- A piIAL
Jol e

Given a labeling P, we define the average local consistency
function as,

T m
APY=Y, T si(A, P pilAul m
=] k=1

If P is an enambiguous labeling which maps each unit U; to
the label A/, the expression of A(P) is specialized as follows,

" n

APy = Ei fi (2, X 2
=] f=

The unambiguous labeling P is ip-consistent provided,

s, Py 2 sdAx, 1),

In other words, P is Ip-consistent if the suppont that each
label obtains from P is higher or equal than the support that
any other label can obtain from P. Notice thal the above
expression involves the maximization of »# quartities, the
supports of the corresponding label on each unit. This
definition can be extended to weighted labelings as follows:
let £ be a weighted labeling, P is [p-consistent provided,
m

3 pilA] 542, PY 2 Y, wildi s{AP) =1, n all We K
it k=1

Given a CSP, we can formulate it as a LP in the
following way; cach variable X, corresponds to a unit U,
and the common domain of values D corresponds (0 the
common set of labels A. The sel of binary constrainis {R,;}
is transformed into the set of constraints {r,} over binary
neighbour relations in the following form:

for i=1,....m, k=1,..m.

for every pair of variables (i, /), ij=1,..n,
for every pair of values (v, v), k.F=1,..on
if Ry {vi, v) exists then
ifﬂu‘(\’b V{) then rﬂ(vk, v = 1
clse ru{vh v =-1 endif
clse 1,(v;. v)) =0 endif
endfor
endfor

A solution for this CSP will be an unambiguous
labeling with the condition of being csp-consisient. Now, a
natural question arises: what is the relation between csp-
consistency and Ip-consistency? A precise answer will be
provided in section 4, but now we can show that they are
ot equivalent because there are Ip-consistent labelings
which are not csp-consistent. We can see this in a very
simple example using the 3-queens problem, where we have
to locate three queens on a 3 x 3 chessboard in such a way
that they are not atlacking each other. The problem is
formulated as follows,

Units: {U}, U, U3}, U; represents the queen at the row i,
Labels: A={1, 2, 3}, label & represents a queen located at
column £,

Constraints: ry(k, ¥’} = 1 if queen i at column & docs not
attack queen at column &', -1 otherwise.

12 3
Yy 1
U, Q
Uy Q

Figure 1. A labeling for the 3-quesns problem which is Ip-
consistent bul net csp-consistent.

It is well known that this problem has no solution {the
general problem of n-queens has solutions for n24), so no
unambiguons labeling can be csp-consistent. However, there
are unambiguous labelings which are lp-consistent, For
instance, the unambiguous labeling P = [[1,0,0] [0,0,1]
[0.1,0]} ¢{see Figure 1) is Ip-consisient; computing the
supports we have,

s(l,Py=12 {2, Py=-2 5,03, P)y=0
sAl, Py=-2 5L P =2 53,P)=0
st Py=0 55(2, Py=0 513, Py=-2

From these figures we can see that, s;(1, P) 2 5{i, P),
i=2,Y, 523, P 2 sy, P, j=L.2; 55(2, P) 2 550k, P), =13,
so P is Ip-consistent although obviously P is not csp-
consistent. In consequence, these two notions of consistency
are not equivalent. Lp-consistency is just a kind of partial
consisiency, as we will see in the next section.

4 Consistency as Optimization of A(P)

In this section we provide several resulis refating Ip-
consistency and csp-consistency witk local and global
maxima of the A(P) function.

Theorem 1 [Hummel and Zucker, 1983; Bancrjee, 1989}
Let us consider a labeling problem with symmetric binary
constraints. A labeling P is Ip-consistent if and only if it is
a local maximum of A{P) over K.

This first result establishes the equivalence between Ip-
consistent labelings and local maxima of 4(P). These
labelings can be ambiguous, and therefore unfeasible when
considering CSP (remember thal only unambiguous
labelings are meaningful as potential solutions for CSP).
The following theorem relakes ambiguous and unambiguous
Ip-consistent labelings.

Theomm 2 [Sastry and Thathachar, 1994); Let us consider a
labeling problem with symmetric binaty constraints. If there
exists an ambiguous Ip-consistent labeling P, there exists
an unambiguous Ip-consistent Iabeling P; such that A(Py) =
A(P}). Further, Pp is a convex combination of some
unambiguous Ip-consistent labelings, all sharing the value
A(Pg) for the average local consistency function.

This theorem guaraniees the existence of an
unambiguous Ip-consistent 1abeling for each ambiguous Ip-
consistent labeling with the same value of A(P). Therefore,
this theorem allow us 1o ignore —at least in theory— the
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existence of ambiguous Ip-consistent labelings and to
consider only unambiguous ones.

Theorem 3: Let us consider a binary CSP formulated as a
labeling problem, and let Py be an unambiguous labeling.
Py violates a minimal number of constraints if and only if
Ppis a global maximum of A(P}.

Proof, L¢t us assume that Py violates a minimal number of
constraints but it is not a global maximum of A(P). There
exist a P e X such thal APy < A(P;). By Theorem 2, there
exists Py K* such that A(P;) = A(P3). Using (2) A{Pg) ad

n

A(P) are,
nn n
APg) = E ):i ryfAd. Ady AP = E: Ein,{iz". i)
=1j= =)=

where A5 and At are the labels assigned 1o unit & by the
labelings Py and P respectively. The summands ri(4, 17
can be 1, 0, or -1, and A(Pp) and A(P ;) have the same zero
summands (r;{4, 1) = 0 for every pair (X;, X;) of variables
which do not constraini cach other). Thercfore, if
A(P2) > 4(Pg) it implies that A(P;) has more positive
summands than 4{Pg). This means that P, satisfies more
const@ints than Py, what contradicts the initial assumption
on Pp. So Py is a plobal maximum.
Conversely, if Pp is a global maximum of A(P),
A(Pg) 2 A(P)), for all Pye K. In particular, A(Pg) 2 A(P3),
for all #ye K*. Then, by construction of A(P} it is casy to
sec that Py violates a minimal number of constraints. +

This theorem gives a necessary and sufficient condition
for the best possible solution of 3 CSP: it must be a global
maximum of A(P). The theorem is restricted to
unambiguous labelings, because ambiguous glebal maxima
can exist. Theorem 2 assures the existence of unambiguous
global maxima which are the vertices of a convex hull in
which the ambiguous giobal maximum is located. It can be
seen that every poinl in this convex hull has the same value
for the function 4(P), that is, every point in this set is a
global maximum including the edges forming the border.
Then, if an ambiguous labeling is reached {a non-venex
point of the convex hull) one can find an unambiguous
labeling (a vertex) after some exploration around the reached
labeling.
Lemma 1: Lei us consider a CSP formulated as a labeling
problem. Let Apay be twice the number of constraints {R;}
with i<f. Ay, is an upper bound of A(P).
Proof. Let Py be an unambiguous labeling. Using (2),

APg) = X, T ry(Ag, Agf), where Ak is the label assigned
fu]ym]

to unit k by P The summands ry{de!, A9') different from
zero are those corresponding to existing constrained pairs of
variables. For a given R;; the maximum value of riAg, Agh
is 1, so the maximum value for A{Py) is twice the number
of existing constraints, which is the value of 4,4, This
proofs that A, ., is an upper bound of A(P) for unambiguous
labelings. The cxtension to ambiguous labelings is
straightfarward, using Theorem 2. +

Corollary 1: Let us consider a hinary {SP formulated as a
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labeling problem. An unambiguous labeling PQ is csp-
consistent if and only if A(Po)= Amax-

Proof. This corollary is a trivial specialization of Theorem 3
using Lemma 1 when the global maximum satisfies all the
constraints. ¢

5 Solving CSP by Gradient Ascent

Using the resullts of section 4, given a CSP we can compute
a solution in the following steps: (i) construct the A(P)
function, (ii) compute a global maximum P,, and (iii) if
A(Py) = Amax then we can compute a solution from Py,
otherwise no solution exists. Steps (i) and (iii) are trivial
but step (ii) is very difficult. Computing a global maximum
of a continuous function which in general is not convex is a
very difficult task [Horst and Tuy, 1993]. When possible,
this issue is solved looking for a local maximum satisfying
an additional condition which guarantees that it is a global
one. In our case, we know that PQ is a global maximum
when A{PQ) - Anax, for solvable CSP. To look for a global
maximum of A(P) we take a very simple approach: starting
from a random point, we look for a maximum using a
continuous gradient ascent algorithm. If the value of A(P)
on this maximum is Ap.y, the point is a global maximum.
Otherwise, we discard this local maximum and restart the
process starting from another random point.

The maximization of A(P) is subjected to a set of

constraints, given that 0<p,]4;]<1 and Ig,.':’,-[/l;z] =1, for
1

i=1, _,n That is, A(P) should bc maximized without
leaving the set K. The pure continuous gradicnt ascent
algorithm is not disectly applicable, because the gradient
may point out of X and in this case, this algorithm will
compule a new point oul of X. To prevent this, we have
used the projected gradient ascent algorithm [Gill er of.,
1981], which uses the projection of the gradient on X as the
direction of maximum increase of A(P). The gradient of
A(P) at the point Pe K is the vector Qe R™™, such that () =
(1. n). g1 = [ilAs].....q{Ap]]. Each component g;1d,]
has the following form,

a1 = 2 5(A. P) 3

The projection of ¢ on X is obtained using the operator
Proj, which is built from the constraints defining X [Gill et
al., 1981]. The new point P’ is computed as,

P =P+ Proj(() O]

where a is the length of the step taken in the direction
Prej(()). Given that A(P) is a quadratic form, the optimal
value of & can be exactly computed.

We have implemented this algorithm to solve the n-
gueens problem. For a<50 the algorithm achieves a
maximum in approximately » iterations, and it needs
between 2 to 4 restarts to achieve a global maximum (a
solution). The number of restarts does nol depend on a, the
problem dimension. The local maxima reached present a
low number of conflicts (1 or 2 pairs of attacking queens).
The algorithm starts from a random unambiguous labeling.
These resulls are reasonably good but the algorithm requires
significant computational efforts when n increases, due to



the dimension of vectors P and Q increases as n>.

We have also implemented a discrete hill-climbing
algorithm, which starts from a random configuration of
queens (a queen for row), selects a row at random and
performs a change in the position of its queen if the number
of conflicts decreases. When the algorithm stops on a local
minimum, the process restarts from another random
configuration. For n<50, the algorithm reaches a minimum
in approximately n iterations, and it needs between 10n to
100n restarts to achieve a solution. The number of conflicts
in local minima commonly ranges from 2 to 4. Regarding
computational cost, this approach is globally less expensive
than the projected gradient algorithm described above. The
reason is simple: an iteration of the projected continuous
gradient is far more costly than an iteration of hill-climbing,
and this cost is not compensated by the lineal number of
restarts needed by hill-climbing with respect to the constant
number of restarts of the projected gradient.

6 A Heuristic for Variable / Value Selection

While using the projecied gradient algorithm to optimize
A(P) is not cost-effeclive with respect 1o previous
approaches, intermediate results of this algorithm are still of
interest for CSP solving. This algorithm computes the
direction in which A(P) increases more, and updates weights
accordingly. At this poinl, we can use weights as a heuristic
source for variable and value selection in a systematic search
algorithm. In this way we obtain completeness (by
systemnatic search), taking advantadge of the information
coming from (he optimization approach. With this idea, we
have developed two optimization-inspired heuristics for
variable and value sclection inside forward checking.

In this new view, we have 10 relale systematic search
with label updating. At a given time, the current siate of
past and future variables is reflected in a labeling P in the
Tollowing form. If U/, is a past variable with value A2, p,[A/]
=landpfd]=0,4€ A, A=A ITU;is 2 future variable,
plAl = Um; , A€ feasibie(A, Uyand p;[A) =0, € A -
Seasible(A, U;), where the sel feasible(A, U,) is the sct of
remaining values for variable U; at this state of the search,
amd m,; = card (feasibie(A, U;)). In other words, the labeling
of past variables is unambiguous and the labeling of future
variables is ambiguous with an even distribution of weights
ameng remaining values. To update weights, we substitule
(4) by the following updating formula for relaxation
labeling [Rosendeld ef al., 1976],

2Tl = plAdn + gl Ay / kg:]pf-mlfzﬂ +g{Ady (5

which is an approximation of the projected gradient
|Hummel and Zucker, 1983]), but less expensive to
compute. Formula (5) does nol cause any change for values
with initial weights either | or 0, Therefore, (5) is only
meaningful for remaining values of future variables, and in
this case p;A| can be simplified to,

p1A)= 2n + qld)/ 2 Wn+qlil (6)
A € feasthie(A, U))

Initially, we used updated weights p,’[A} as heuristic

source, selecting as the next variable that with the highest
weight comesponding with a value of its domain. However,
(6) is a ratio between supports (from (3)), where 2n is added
to assure a positive fraction. This ratio is sensitive to small
variations of support and it exhibits some unstable
behaviour. Looking for robustness in variable selection, we
moved to another criterion: select the variable with the
lowest sum of supports for its remaining values, and order
its values by decreasing support. We will refer to this
heuristic as the lowest-support heuristic. It is obviously
related to the optimization approach: it means to select a
variable with a low denominator in (6) which implies that
this variable will have high values of Pi[A] although not
necessarily the highest.

The lowest support heuristic is computed each time a
new variable has to be selected. Assignment is performed
as in standard forward checking. When a new variable is
assigned, future domains are filtered, a new labeling is
constructed and the heuristic is computed again to select the
next variable. WWhen backtracking occurs (a future domain
becomes empty), the last assigned variable is reassigned
using the value ordering set when it was selected.

This heuristic is expensive to compute. To simplify
computation, we have considered two approximations.
First, restrict heuristic computation to the set of variables
with minimal domains, because there is a high chance that
the selected variable will belong to this set. Second, after
assigning a variable we still use the computed supports for
further assignments if the next lowest sum of supports is
dose enough fo the initial one. We have sum of
old supports when they have become smaller (due to
domain pruning) than the initial one.

We will refer to forward checking with lowest-support
without approximations as fc-Is, and with approximations
as fcls-app. We will refer to the standard forward checking
with first-fail (selecting variable with the smallest domain,
breaking ties randomly and selecting values randomly) as fc-
ff. We have tested these algorithms on two problems:
random solvable graph colouring, and random problems.
Empirical results are given in the following.

Graph colouring. Following [Minton et al. 92], we tested
our heuristic on graph 3-colourability problems.
Specifically, we have considered solvable random graphs
with n nodes and m arcs, forming two classes: sparsely-
connected graphs (m = 2n) and densely-connected graphs (m
=n (n-1)/4). We generated graphs on the range from n =
10 to n = 180, incrementing n by 1. For densely-connected
graphs, fc-Is does not bring any real improvement to fc-ff.
Almost all problem instances were solved without
backtracking for both algorithms, and regarding CPU time,
fc-Is took a bit longer than fc-ff, because the time required
by support computing. For sparsely-connected graphs, both
fc-Is and fcls-app outperformed clearly to fc-ff in
backtrackings and CPU time. Results are given in Table 1.

| #inst. | algorithm #oacks | CPU time
| fo-fT 18,719,163 12.693
170 | fc-ls 4 503 564
fe-ls-apo 13,988 64

Table 1. Sparsely-connecied graph 3-calourability problems.
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a m |#inst. |algorithm | #acks | CPU time
fe-ff 9,466 7.0
10, 10} 300 |fcds 4,446 19.3
fc-ls-a 3,124 13.0
fo-f 156,540 127.7
20, 10| 200 ) fols 53,258 435.3
fe-Is-app 64,000 91.3
fefT 686,247 752.3
30,101 50 |fcls 285965]  3.204.5
fe-ls-app 320,752 497.9

Table 2. Sparsely-connected random prohlems.

Random problems. We tested our heuristic on random
problems following [Prosser, 1994]. We worked on problem
instances on the peak by choosing the appropriate tightness
(P2) for a given connectivity (p1) and problem size (n, m).
We considered two types: sparsely-connected instances,
(with p1; = 0.4) and densely-connected instances (with p1 =
1). To select problems on the peak, we used the Prosser's
formula to compute the appropriate tightness. Around this
value, we varied p2 by steps of 0.001, in the interval where
a fifty percent of problems happened to be solvable. Ten
instances of each p2 setting were used for testing. The
results are given in Tables 2 and 3. For sparsely-connected
problems, fc-Is saves around half number of backirackings
required by fc-ff, although it needs more CPU time.
Including approximations, fcs-app is slightly worse than
fc-Is in backtrackings, but it requires less time than fc-ff
(except in the 10, 10 case). For densely-connected problems,
although the heuristic decreases the number of backirackings
performed by fc-ff, it is not cost-effective regarding time.

Our results on graph colouring and random problems
show that the proposed heuristic provides good advice (fc-Is
always performs less backtrackings than fc-ff in every
problem type), although it may not be cost-effective for
some problem classes. It seems to be appropriate for
sparsely-connected problems with a high number of
variables relative to the number of values. In these
problems, first fail variable selection heuristic is not enough
to reduce drastically the number of backirackings. Relation
between the usefulness of the heuristic and the shape of A(P)
requires further investigatioa

7 Conclusions

This paper offers two main contributions. On the theoretical

side we have shown that any binary discrete CSP can be

formulated as an optimization problem of a continuous

function A(P), which is constructed from the set of initial

constraints. A global maximum of A(P) comesponds to the

best possible solution of the CSP, that is, an assignment

violating @ minimal number of constraints. On the practical

side we have applied this result to solve some CSP

problems. Computing a global maximum of A(P) is quite

costly, so we moved to an heuristic approach: use the

direction of change that increases A(P) to generate a heuristic
for variable and value selection. The results on two kind of
CSP show that it causes a low number of backtrackings,

being cost-effective for sparsely-connected problems.

584  CONSTRAINT SATISFACTION

n_m_l#inst. | alporithm | #backs | CPU time
fo-if 19 500 11.8
10,10 170 [fcis 13,926 305
fols-app 14,573 17.4
fo-ff 377,867 280.6
20, 10 100 |fcds 265393 14874
fc-Is-apn 289,905 327.2

Table 3. Densely-connected random problems.
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