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Abstract 
A common technique for bounding the 

runtime required to solve a constraint satisfaction 
problem is to exploit the structure of the prob­
lem's constraint graph [Dechter, 92]. We show 
that a simple structure-based technique with a 
minimal space requirement, pseudo-tree search 
[Freuder & Quinn, 85], is capable of bounding 
runtime almost as effectively as the best expo­
nential space-consuming schemes. Specifically, if 
we let n denote the number of variables in the 
problem, w* denote the exponent in the com­
plexity function of the best structure-based tech­
niques, and h denote the exponent from pseudo-
tree search, we show h < {w* + 1) (lg(n) + 1) . 
The result should allow reductions in the amount 
of real-time accessible memory required for pre­
dicting runtime when solving CSP equivalent 
problems. 

1 Introduction 

The constraint satisfaction problem (CSP) is a combinatorial 
search problem whose occurrence in AI and other domains is 
well documented. Briefly, a CSP consists of a set of vari­
ables to which values must be assigned without violating 
constraints that disallow certain value combinations. In the 
general case, the CSP is NP-hard, and worst-case runtime of 
a CSP algorithm is typically exponential in the number of 
variables. Improved bounds arc achieved on some problems 
by algorithms that exploit problem specific features. A com­
mon technique is to exploit the structure of the problem's 
constraint graph [Dechter, 92]. The constraint graph of a 
CSP graphically depicts constraint relationships by repre­
senting each variable with a vertex and each constraint with 
edges connecting the restricted set of variables. In general, 
the more sparse the constraint graph, the tighter the bound on 
runtime. For instance, problems with noncyclic constraint 
graphs can be solved in time linear in the size of the problem 
[Dechter & Pearl, 87; Bayardo & Miranker, 94]. 

This paper investigates the extent of a space-time 
trade-off in solving the CSP. It is often assumed that exten­
sive use of space is necessary to reduce the potentially r̂ ad 
behavior of backtrack search [Seidel, 81]. We show here that 
this assumption may be ill-founded. We compare the effec­
tiveness of pseudo-tree search [Freuder & Quinn, 85], a 
polynomial space-consuming technique for solving the CSP, 
to that of the best structure-based schemes. Dechter 
[Dechter, 92] has demonstrated that the best structure-based 
techniques all have worst-case time and space bounds expo­
nential in a parameter known as induced width (w*). While 
the exponent in the runtime complexity function of pseudo-
tree search (pseudo-tree height, or h ) is always greater than 
induced width for any particular instance, we show that it is 
always within a logarithmic factor of induced width despite 
its low space requirement. Specifically, we demonstrate that 
h< (w*+ 1) (lg(n)+l). 

We foresee the result having applications in real-
time AI. Runtime prediction in production systems is some­
times accomplished by improving the complexity of the rule 
match phase [Barachini, 94]. Tambe and Rosenbloom [1994] 
show that complexity of the production match phase can be 
improved using structure-based constraint satisfaction tech­
niques. Our result could allow reductions in the amount of 
real-time accessible memory required for predicting runtime 
in hard real-time systems solving problems equivalent to the 
CSP. Such reductions could prove critical in systems operat­
ing on large knowledge bases where domain size (the base of 
the exponent) is proportional to the amount of knowledge. 

The paper begins with a more formal definition of 
the CSP and constraint graph, and provides a description of 
backtrack search for solving the CSP. We then review the 
concepts of pseudo-tree search and pseudo-tree arrange­
ments of a constraint graph. The next section presents the 
definitions of induced graph and relates it to partial k-trees. 
Finally, we establish the above-mentioned relation between 
pseudo-tree height and induced width and close with con­
cluding remarks. The paper assumes the reader is familiar 
with elementary graph concepts and terminology [Even, 79]. 

This research was partially supported by an AT&T Bell Labora­
tories Ph.D. fellowship. 
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2 Constraint Satisfaction Problems and Back­
tracking 

A constraint satisfaction problem (CSP) is a set of variables 
and a set of constraints. Each variable is associated with a 
finite value domain, and each constraint consists of a subset 
of the problem variables called its scheme and a set of map­
pings of domain values to variables in the scheme. An 
assignment is a mapping of values to a subset of the problem 
variables where any value mapped to a particular variable 
belongs to the domain of the variable. An assignment A sat­
isfies a constraint C with scheme X if A restricted to the 
variables in X is a mapping in C. A partial solution to a 
CSP is an assignment that satisfies every constraint whose 
scheme consists entirely of variables mentioned in the 
assignment. A solution to a CSP is a partial solution men­
tioning every variable. 

The constraint graph of a CSP has a vertex for each 
variable and the property that the variables in the scheme of a 
constraint are completely connected. This is referred to as 
the primal-constraint graph in [Dcchter, 92] when there are 
constraints with more than two variables in their schemes. 
Without loss of generality, we assume problems have con­
nected constraint graphs. If it were otherwise, we could sim­
ply view the disconnected instance as a set of instances, one 
for each connected component. 

A naive method for solving constraint satisfaction 
problems is chronological backtrack. Chronological back­
track maps values to variables along an ordering of the vari­
ables until some constraint is violated by the working 
assignment. When a constraint is violated, the variable most 
recently to have been assigned a value is assigned another 
value from its domain. If ever the values in the domain of a 
variable are exhausted, a backtrack takes place to the previ­
ous variable along the ordering. The procedure continues 
until either the last variable is successfully assigned a value 
(in which case a solution has been found), or until all values 
from the domain of the initial variable are exhausted (in 
which case no solution exists). If we let k bound the number 
of values in any domain and n denote the number of vari­
ables, then chronological backtrack has a runtime complex­
ity of 0(exp(w)) because a variable can be assigned a value 
up to k times. 

3 Pseudo-tree Arrangements and Pseudo-tree 
Search 

Freuder and Quinn [1985] introduce the concept of a pseudo-
tree arrangement of a graph. A pseudo-tree arrangement of a 
graph is a rooted tree with the same set of vertices as the 
original graph and the property that adjacent vertices from 
the original graph must reside in the same branch of the 
rooted tree (hereafter called the pseudo tree). A branch is 
simply a path from the root to some leaf. The concept is 
illustrated in Figure 1, where a vertex in the rooted tree cor­
responds to the vertex directly above it in the original graph. 

The original edges from the graph appear dashed in the 
pseudo tree to illustrate that adjacent vertices always appear 
within the same branch. Note that while a depth-first search 
tree is a pseudo tree, a pseudo-tree is not necessarily a depth-
first search tree. For instance, the pseudo tree appearing in 
the figure is not a depth-first search tree. 

FIGURE 1. A height-3 pseudo-tree arrangement of a chain 
with 7 vertices. 

Pseudo-tree search [Freuder & Quinn, 85] exploits 
pseudo-tree arrangements, and has a worst-case complexity 
function that is exponential in the height of the pseudo tree 
(h ). Rather than explain pseudo-tree search in its full detail, 
we instead describe how to modify chronological backtrack 
so that it exploits pseudo trees in a similar fashion. Given a 
pseudo-tree arrangement of the problem's constraint graph, 
we order the variables of the problem according to a depth-
first traversal of the pseudo tree.1 Now, whenever a back­
track is necessary, instead of backing up to the previous vari­
able in the ordering, we backtrack to the pseudo-tree parent 
of the current variable, possibly skipping over many vari­
ables in the process. This backtrack policy does not sacrifice 
completeness because, due to the structure of the pseudo 
tree, the assignments made to the skipped variables are irrel­
evant with respect to the current failure. We call this algo­
rithm pseudo-tree backtrack. 

Given the pseudo-tree arrangement, pseudo-tree 
backtrack has runtime complexity 0(exp(h)) since each 
variable can be assigned a value a maximum of kh times. 
The space requirement of this technique is a mere 0(n) 
beyond the size of the problem input to maintain domain 
value iterators and the variable ordering. 

In order for pseudo-tree backtrack to be effective at 
bounding runtime, it requires a pseudo-tree arrangement 
with shallow height. An efficient algorithm for finding the 

Note that the variable ordering need not be static since there are 
typically many different depth-first orderings. Dynamic variable 
ordering involves modifying the unassigned portion of the 
ordering during backtrack, and can improve average-case per­
formance [Haralick & Elliot, 80; Frost & Dechter, 94], 
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minimum-height pseudo-tree is not known. Though a proof 
eludes us, we suspect the problem is NP-hard due to its simi­
larity to various well-known NP-hard problems including 
minimizing depth-first search tree height. 

Freuder and Quinn [1985] provide the following 
method for heuristically constructing a pseudo-tree arrange­
ment: Find a small set of vertices S whose removal from the 
constraint graph disconnects it (such a set is called a cutset). 
These vertices will form the first \S\ levels of the tree. The 
remaining levels are formed by recursively applying the pro­
cedure to the remaining graph components in order to spawn 
branches (one for each component) beginning at level 
|5| + 1 . It is easy to verify that the resulting structure is 
indeed a pseudo-tree arrangement. The pseudo-tree from 
Figure 1 can be constructed in this manner by selecting the 
middle vertex in each chain at each step to disconnect the 
remaining graph. 

Depth-first search can also be regarded as a heuris­
tic technique for pseudo-tree arranging a graph. Although, 
we have found it unlikely to find an arrangement with small 
height even when additional heuristics are applied. For 
example, consider an n vertex chain graph. Any depth-first 
search tree has height at least !~, whereas a pseudo-tree 
arrangement always exists with neight at most lg(n) + 1 
(e.g. as implied by Figure 1). 

4 Induced Width 

Dechter [1992] demonstrates that the best structure-based 
algorithms for solving the CSP are exponential-in both time 
and space—in a constraint graph parameter called induced 
width (w*). The actual exponent in the complexity function 
of these schemes, e.g. adaptive consistency [Dechter, 92], is 
w* + 1 . The parameter is obtained from the constraint graph 
after imposing a variable ordering on which the algorithm 
operates. A child of a vertex in a graph with an ordering of 
its vertices (an ordered graph) is an adjacent vertex that fol­
lows it in the ordering. A parent is an adjacent vertex that 
precedes it. The induced graph of an ordered graph G is an 
ordered graph with the same ordered set of vertices as G and 
the smallest set of edges to contain the edges of G and 
enforce the property that any two vertices sharing a child are 
adjacent. We can build the induced graph of G by iteratively 
connecting any nonadjacent vertices that share a child. 
Finally, the induced width of an ordered graph G is the max­
imum number of parents of any vertex in the induced graph 
of G. 

Figure 2 illustrates the process of creating the 
induced graph. The ordering is assumed to be from top to 
bottom. Edges added to form the induced graph are dashed. 
Note that the graph has an induced width of 3. 

Like schemes exploiting pseudo trees, the effective­
ness of techniques exponential in induced width depends 
upon the quality of the constraint graph arrangement. Mini­
mizing induced width is NP-hard [Arnborg, 85], so heuristic 
techniques are typically applied to produce the ordering. 

We can always order a graph so that its induced 
width is less than the height of any pseudo-tree arrangement. 
Given a pseudo-tree arrangement of a graph G with height 
h, ordering the vertices of G according to a depth-first tra­
versal of the pseudo tree produces an ordered graph with 
induced width w* < h - 1 . This is because when creating the 
induced graph from such an ordering, no edge can be added 
between vertices in different branches of the pseudo tree. 
The number of parents of any vertex in the induced graph is 
thus bounded by the number of its pseudo-tree ancestors. 

The above establishes that techniques exponential 
in induced width can always be made as effective in bound­
ing runtime as techniques exploiting pseudo trees. In fact, for 
certain classes of problems, induced width is usually better. 
For instance, any noncyclic graph can be ordered to have an 
induced width of 1, but pseudo-tree arrangements of chain 
graphs must increase at least logarithmically with the num­
ber of vertices. 

In the next section, we bound how much more 
effective induced width techniques are in the general case. 
Before proceeding, we review a useful fact relating induced 
width to k-trees. A graph is a k-tree [Beineke & Pippert, 71] 
if: 

• the graph has k vertices and is complete (said to be a 
trivial k-tree), or 

• there is a vertex of degree k whose neighborhood 
induces a complete graph, and the graph obtained by 
removing the vertex is a k-tree. 

Note that a connected noncyclic graph is a 1-tree. A partial 
k-tree is a partial graph of a k-tree. The following is due to 
Freuder[1990]: 

THEOREM 4.1: An ordered graph with induced 
width w* is a partial w* -tree. 
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5 Relating Pseudo-Tree Height and Induced 
Width 

We now show that given an ordered graph, we can construct 
a pseudo-tree arrangement of the graph where h is within a 
logarithmic factor of w*. This implies that no matter how 
effective we can make induced width techniques solve par­
ticular classes of problems, we can make pseudo-tree search 
solve them almost as effectively without the added burden of 
an exponential space requirement. 

The idea behind our approach is to generalize the 
case for 1 -trees to that of general graphs by making use of k-
tree embeddings. It is easy to establish that a 1-tree of n ver­
tices can be split into components that contain at most u 
vertices by removing a single vertex. We can therefore gen­
erate a pseudo-tree arrangement with h < lg(n) + 1 of any 1 -
tree using the heuristic arrangement method from Section 3. 
The idea is to always select for the cutset a vertex whose 
removal splits the remaining graph into components whose 
sizes (number of vertices) are at most half that of the origi­
nal. Since such a vertex always exists, splitting recurses at 
most lg(rt) + 1 levels deep, generating a pseudo-tree 
arrangement with height at most \g{n) + 1 . 

We now generalize to arbitrary graphs. Consider an 
ordered graph G with induced width w*. We know from 
theorem 4.1 that this graph can be embedded into a w* -tree 
with the same number of vertices. We establish how to find 
the appropriate vertices for splitting k-trees, thereby allow­
ing us to generalize the previously described algorithm for 
pscudo-tree arranging 1-trees. 

A clique of size /' is said to be adjacent to another 
clique of size / if they share /' - 1 vertices. Define depth-
first search on a non-trivial k-tree to traverse adjacent k + 1 
cliques instead of adjacent vertices. Figure 3 illustrates a 
depth-first search tree resulting from traversing a 2-trec in 
such a manner. We refer to such a depth-first search tree as 
the clique tree of the k-tree. While there may be more than 
one clique tree depending on where the depth-first search 
begins and what tie-breaking rule is applied, any clique tree 
is sufficient for the upcoming claims. 

Each node of the clique tree corresponds to some 
clique in the k -tree, and the edges represent their intercon­
nection. We now state two properties of clique trees, leaving 
the proofs as exercises. Given a non-trivial k-tree G with n 
vertices and a clique tree T of G : 
• T has exactly n-k vertices. 
• Given a vertex v whose removal from T leaves behind 

connected components of size j, the clique represented 
by v, when removed from G, leaves behind components 
of size at most j. 

We next use these properties to establish the following 
lemma: 

LEMMA 5.1: Given a non-trivial k -tree G with n 
vertices, there exists k + 1 vertices in G whose removal 
leaves behind connected components of size at most 2. 

Proof: We have already noted that a 1-tree can 
always be broken into components of a size at most half that 
of the original graph by removing a single vertex. From a 
clique tree T of the k -tree, we can therefore find a vertex v 
whose removal splits T into components of size n-k/2 < n. 
The k + 1 vertices in the clique represented by v, when 
removed from the k -tree, must therefore leave behind con­
nected components of size at most n. D 

This method for breaking apart k-trees allows us to 
bound the size of the cutset required for splitting arbitrary 
graphs and the size of the resulting components: 

COROLLARY 5.2: Given an ordered graph G with 
induced width w*, n > w*, there exists w* + 1 vertices in 
G whose removal leaves behind components with size at 
most n/2. 

Proof: Theorem 4.1 tells us we can embed the 
graph into a w* -tree with the same number of vertices. 
Because n > w*, the w* -tree is non-trivial and the claim 
thus follows immediately from lemma 5.1. D 

We lastly apply the above fact to define a pseudo-
tree arrangement procedure, thereby allowing a bound on 
pseudo-tree height. 

THEOREM 5.3: Given an ordered graph with 
induced width w*, there exists a pseudo-tree arrangement of 
the graph with h < (w* + 1) (lgw + 1) . 

Proof: For n - w*, the claim is trivially satisfied 
by linearly arranging the vertices. Otherwise, by Corollary 
5.2, we can find w* + 1 vertices whose removal leaves 
behind components with less than half the vertices of the 
original graph. We can use such a set to form the first w* + 1 
levels of a pseudo-tree. The resulting components must have 
induced width of w* or less (they are simply subgraphs of 
the original graph). Thus, the remaining variables can be 
pseudo-tree arranged by applying the procedure recursively 
on each component. A new pseudo-tree branch is thereby 
spawned for each remaining component as is done by the 
heuristic pseudo-tree arrangement procedure from Section 2. 

Now, each stage of the recursion leaves behind 
components whose size are at most half that of the previous 
graph. Therefore, recursion depth can be bounded by 
lg(n) + 1 . Since each level of the recursion adds at most 
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w* + 1 new levels to the tree, the resulting pseudo tree has 
height at most (w* + 1) (lg(n) + 1) . D 

Theorem 5.3 tells us we can always make the expo­
nent in the complexity function of pseudo-tree backtrack 
within a logarithmic factor of that of the best exponential 
space-consuming schemes. Our proofs are constructive and 
describe a polynomial time-bounded procedure for accom­
plishing the task. While we did not describe a (polynomial 
time) procedure for finding the k-tree embedding, such a 
procedure appears in [Freuder, 90]. 

6 Conclusions 

We have demonstrated that while the best structure-based 
techniques require exponential space, they are capable of 
bounding worst-case performance only slightly better than 
pseudo-tree search, a simple polynomial space-bounded 
scheme. Attempting to trade space for time is therefore of 
limited benefit. Interestingly, we have a similar case with 
respect to average case performance as well. For example, 
Frost and Dechter [1994] have found that algorithms per­
forming unlimited constraint recording during search 
(thereby consuming exponential space) barely outperform 
polynomial space-bounded constraint recording algorithms. 

We lastly note the open problem of either (a) find­
ing a polynomial space algorithm that runs in time exponen­
tial in induced width, or (b) proving no such algorithm 
exists. Current approaches for achieving the runtime bound 
fundamentally require exponential space since they record 
high-arity constraints or generate all solutions to certain sub-
problems. On the other hand, proving no such algorithm 
exists seems like a P = NP related task. We therefore feel 
that solving the problem will be difficult if not impossible. 
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