
On the Space-Time Trade-o f f i n Solv ing Cons t ra in t Sat is fact ion P r o b l e m s *

Roberto J. Bayardo Jr. and Daniel P. Miranker
Department of Computer Sciences and Applied Research Laboratories

The University of Texas at Austin
Austin, Texas 78712

U. S. A.

Abstract
A common technique for bounding the

runtime required to solve a constraint satisfaction
problem is to exploit the structure of the prob­
lem's constraint graph [Dechter, 92]. We show
that a simple structure-based technique with a
minimal space requirement, pseudo-tree search
[Freuder & Quinn, 85], is capable of bounding
runtime almost as effectively as the best expo­
nential space-consuming schemes. Specifically, if
we let n denote the number of variables in the
problem, w* denote the exponent in the com­
plexity function of the best structure-based tech­
niques, and h denote the exponent from pseudo-
tree search, we show h < {w* + 1) (lg(n) + 1) .
The result should allow reductions in the amount
of real-time accessible memory required for pre­
dicting runtime when solving CSP equivalent
problems.

1 Introduction

The constraint satisfaction problem (CSP) is a combinatorial
search problem whose occurrence in AI and other domains is
well documented. Briefly, a CSP consists of a set of vari­
ables to which values must be assigned without violating
constraints that disallow certain value combinations. In the
general case, the CSP is NP-hard, and worst-case runtime of
a CSP algorithm is typically exponential in the number of
variables. Improved bounds arc achieved on some problems
by algorithms that exploit problem specific features. A com­
mon technique is to exploit the structure of the problem's
constraint graph [Dechter, 92]. The constraint graph of a
CSP graphically depicts constraint relationships by repre­
senting each variable with a vertex and each constraint with
edges connecting the restricted set of variables. In general,
the more sparse the constraint graph, the tighter the bound on
runtime. For instance, problems with noncyclic constraint
graphs can be solved in time linear in the size of the problem
[Dechter & Pearl, 87; Bayardo & Miranker, 94].

This paper investigates the extent of a space-time
trade-off in solving the CSP. It is often assumed that exten­
sive use of space is necessary to reduce the potentially r̂ ad
behavior of backtrack search [Seidel, 81]. We show here that
this assumption may be ill-founded. We compare the effec­
tiveness of pseudo-tree search [Freuder & Quinn, 85], a
polynomial space-consuming technique for solving the CSP,
to that of the best structure-based schemes. Dechter
[Dechter, 92] has demonstrated that the best structure-based
techniques all have worst-case time and space bounds expo­
nential in a parameter known as induced width (w*). While
the exponent in the runtime complexity function of pseudo-
tree search (pseudo-tree height, or h) is always greater than
induced width for any particular instance, we show that it is
always within a logarithmic factor of induced width despite
its low space requirement. Specifically, we demonstrate that
h< (w*+ 1) (lg(n)+l).

We foresee the result having applications in real-
time AI. Runtime prediction in production systems is some­
times accomplished by improving the complexity of the rule
match phase [Barachini, 94]. Tambe and Rosenbloom [1994]
show that complexity of the production match phase can be
improved using structure-based constraint satisfaction tech­
niques. Our result could allow reductions in the amount of
real-time accessible memory required for predicting runtime
in hard real-time systems solving problems equivalent to the
CSP. Such reductions could prove critical in systems operat­
ing on large knowledge bases where domain size (the base of
the exponent) is proportional to the amount of knowledge.

The paper begins with a more formal definition of
the CSP and constraint graph, and provides a description of
backtrack search for solving the CSP. We then review the
concepts of pseudo-tree search and pseudo-tree arrange­
ments of a constraint graph. The next section presents the
definitions of induced graph and relates it to partial k-trees.
Finally, we establish the above-mentioned relation between
pseudo-tree height and induced width and close with con­
cluding remarks. The paper assumes the reader is familiar
with elementary graph concepts and terminology [Even, 79].

This research was partially supported by an AT&T Bell Labora­
tories Ph.D. fellowship.

558 CONSTRAINT SATISFACTION

2 Constraint Satisfaction Problems and Back­
tracking

A constraint satisfaction problem (CSP) is a set of variables
and a set of constraints. Each variable is associated with a
finite value domain, and each constraint consists of a subset
of the problem variables called its scheme and a set of map­
pings of domain values to variables in the scheme. An
assignment is a mapping of values to a subset of the problem
variables where any value mapped to a particular variable
belongs to the domain of the variable. An assignment A sat­
isfies a constraint C with scheme X if A restricted to the
variables in X is a mapping in C. A partial solution to a
CSP is an assignment that satisfies every constraint whose
scheme consists entirely of variables mentioned in the
assignment. A solution to a CSP is a partial solution men­
tioning every variable.

The constraint graph of a CSP has a vertex for each
variable and the property that the variables in the scheme of a
constraint are completely connected. This is referred to as
the primal-constraint graph in [Dcchter, 92] when there are
constraints with more than two variables in their schemes.
Without loss of generality, we assume problems have con­
nected constraint graphs. If it were otherwise, we could sim­
ply view the disconnected instance as a set of instances, one
for each connected component.

A naive method for solving constraint satisfaction
problems is chronological backtrack. Chronological back­
track maps values to variables along an ordering of the vari­
ables until some constraint is violated by the working
assignment. When a constraint is violated, the variable most
recently to have been assigned a value is assigned another
value from its domain. If ever the values in the domain of a
variable are exhausted, a backtrack takes place to the previ­
ous variable along the ordering. The procedure continues
until either the last variable is successfully assigned a value
(in which case a solution has been found), or until all values
from the domain of the initial variable are exhausted (in
which case no solution exists). If we let k bound the number
of values in any domain and n denote the number of vari­
ables, then chronological backtrack has a runtime complex­
ity of 0(exp(w)) because a variable can be assigned a value
up to k times.

3 Pseudo-tree Arrangements and Pseudo-tree
Search

Freuder and Quinn [1985] introduce the concept of a pseudo-
tree arrangement of a graph. A pseudo-tree arrangement of a
graph is a rooted tree with the same set of vertices as the
original graph and the property that adjacent vertices from
the original graph must reside in the same branch of the
rooted tree (hereafter called the pseudo tree). A branch is
simply a path from the root to some leaf. The concept is
illustrated in Figure 1, where a vertex in the rooted tree cor­
responds to the vertex directly above it in the original graph.

The original edges from the graph appear dashed in the
pseudo tree to illustrate that adjacent vertices always appear
within the same branch. Note that while a depth-first search
tree is a pseudo tree, a pseudo-tree is not necessarily a depth-
first search tree. For instance, the pseudo tree appearing in
the figure is not a depth-first search tree.

FIGURE 1. A height-3 pseudo-tree arrangement of a chain
with 7 vertices.

Pseudo-tree search [Freuder & Quinn, 85] exploits
pseudo-tree arrangements, and has a worst-case complexity
function that is exponential in the height of the pseudo tree
(h). Rather than explain pseudo-tree search in its full detail,
we instead describe how to modify chronological backtrack
so that it exploits pseudo trees in a similar fashion. Given a
pseudo-tree arrangement of the problem's constraint graph,
we order the variables of the problem according to a depth-
first traversal of the pseudo tree.1 Now, whenever a back­
track is necessary, instead of backing up to the previous vari­
able in the ordering, we backtrack to the pseudo-tree parent
of the current variable, possibly skipping over many vari­
ables in the process. This backtrack policy does not sacrifice
completeness because, due to the structure of the pseudo
tree, the assignments made to the skipped variables are irrel­
evant with respect to the current failure. We call this algo­
rithm pseudo-tree backtrack.

Given the pseudo-tree arrangement, pseudo-tree
backtrack has runtime complexity 0(exp(h)) since each
variable can be assigned a value a maximum of kh times.
The space requirement of this technique is a mere 0(n)
beyond the size of the problem input to maintain domain
value iterators and the variable ordering.

In order for pseudo-tree backtrack to be effective at
bounding runtime, it requires a pseudo-tree arrangement
with shallow height. An efficient algorithm for finding the

Note that the variable ordering need not be static since there are
typically many different depth-first orderings. Dynamic variable
ordering involves modifying the unassigned portion of the
ordering during backtrack, and can improve average-case per­
formance [Haralick & Elliot, 80; Frost & Dechter, 94],

BAYARDO AND MIRANKER 559

minimum-height pseudo-tree is not known. Though a proof
eludes us, we suspect the problem is NP-hard due to its simi­
larity to various well-known NP-hard problems including
minimizing depth-first search tree height.

Freuder and Quinn [1985] provide the following
method for heuristically constructing a pseudo-tree arrange­
ment: Find a small set of vertices S whose removal from the
constraint graph disconnects it (such a set is called a cutset).
These vertices will form the first \S\ levels of the tree. The
remaining levels are formed by recursively applying the pro­
cedure to the remaining graph components in order to spawn
branches (one for each component) beginning at level
|5| + 1 . It is easy to verify that the resulting structure is
indeed a pseudo-tree arrangement. The pseudo-tree from
Figure 1 can be constructed in this manner by selecting the
middle vertex in each chain at each step to disconnect the
remaining graph.

Depth-first search can also be regarded as a heuris­
tic technique for pseudo-tree arranging a graph. Although,
we have found it unlikely to find an arrangement with small
height even when additional heuristics are applied. For
example, consider an n vertex chain graph. Any depth-first
search tree has height at least !~, whereas a pseudo-tree
arrangement always exists with neight at most lg(n) + 1
(e.g. as implied by Figure 1).

4 Induced Width

Dechter [1992] demonstrates that the best structure-based
algorithms for solving the CSP are exponential-in both time
and space—in a constraint graph parameter called induced
width (w*). The actual exponent in the complexity function
of these schemes, e.g. adaptive consistency [Dechter, 92], is
w* + 1 . The parameter is obtained from the constraint graph
after imposing a variable ordering on which the algorithm
operates. A child of a vertex in a graph with an ordering of
its vertices (an ordered graph) is an adjacent vertex that fol­
lows it in the ordering. A parent is an adjacent vertex that
precedes it. The induced graph of an ordered graph G is an
ordered graph with the same ordered set of vertices as G and
the smallest set of edges to contain the edges of G and
enforce the property that any two vertices sharing a child are
adjacent. We can build the induced graph of G by iteratively
connecting any nonadjacent vertices that share a child.
Finally, the induced width of an ordered graph G is the max­
imum number of parents of any vertex in the induced graph
of G.

Figure 2 illustrates the process of creating the
induced graph. The ordering is assumed to be from top to
bottom. Edges added to form the induced graph are dashed.
Note that the graph has an induced width of 3.

Like schemes exploiting pseudo trees, the effective­
ness of techniques exponential in induced width depends
upon the quality of the constraint graph arrangement. Mini­
mizing induced width is NP-hard [Arnborg, 85], so heuristic
techniques are typically applied to produce the ordering.

We can always order a graph so that its induced
width is less than the height of any pseudo-tree arrangement.
Given a pseudo-tree arrangement of a graph G with height
h, ordering the vertices of G according to a depth-first tra­
versal of the pseudo tree produces an ordered graph with
induced width w* < h - 1 . This is because when creating the
induced graph from such an ordering, no edge can be added
between vertices in different branches of the pseudo tree.
The number of parents of any vertex in the induced graph is
thus bounded by the number of its pseudo-tree ancestors.

The above establishes that techniques exponential
in induced width can always be made as effective in bound­
ing runtime as techniques exploiting pseudo trees. In fact, for
certain classes of problems, induced width is usually better.
For instance, any noncyclic graph can be ordered to have an
induced width of 1, but pseudo-tree arrangements of chain
graphs must increase at least logarithmically with the num­
ber of vertices.

In the next section, we bound how much more
effective induced width techniques are in the general case.
Before proceeding, we review a useful fact relating induced
width to k-trees. A graph is a k-tree [Beineke & Pippert, 71]
if:

• the graph has k vertices and is complete (said to be a
trivial k-tree), or

• there is a vertex of degree k whose neighborhood
induces a complete graph, and the graph obtained by
removing the vertex is a k-tree.

Note that a connected noncyclic graph is a 1-tree. A partial
k-tree is a partial graph of a k-tree. The following is due to
Freuder[1990]:

THEOREM 4.1: An ordered graph with induced
width w* is a partial w* -tree.

560 CONSTRAINT SATISFACTION

5 Relating Pseudo-Tree Height and Induced
Width

We now show that given an ordered graph, we can construct
a pseudo-tree arrangement of the graph where h is within a
logarithmic factor of w*. This implies that no matter how
effective we can make induced width techniques solve par­
ticular classes of problems, we can make pseudo-tree search
solve them almost as effectively without the added burden of
an exponential space requirement.

The idea behind our approach is to generalize the
case for 1 -trees to that of general graphs by making use of k-
tree embeddings. It is easy to establish that a 1-tree of n ver­
tices can be split into components that contain at most u
vertices by removing a single vertex. We can therefore gen­
erate a pseudo-tree arrangement with h < lg(n) + 1 of any 1 -
tree using the heuristic arrangement method from Section 3.
The idea is to always select for the cutset a vertex whose
removal splits the remaining graph into components whose
sizes (number of vertices) are at most half that of the origi­
nal. Since such a vertex always exists, splitting recurses at
most lg(rt) + 1 levels deep, generating a pseudo-tree
arrangement with height at most \g{n) + 1 .

We now generalize to arbitrary graphs. Consider an
ordered graph G with induced width w*. We know from
theorem 4.1 that this graph can be embedded into a w* -tree
with the same number of vertices. We establish how to find
the appropriate vertices for splitting k-trees, thereby allow­
ing us to generalize the previously described algorithm for
pscudo-tree arranging 1-trees.

A clique of size /' is said to be adjacent to another
clique of size / if they share /' - 1 vertices. Define depth-
first search on a non-trivial k-tree to traverse adjacent k + 1
cliques instead of adjacent vertices. Figure 3 illustrates a
depth-first search tree resulting from traversing a 2-trec in
such a manner. We refer to such a depth-first search tree as
the clique tree of the k-tree. While there may be more than
one clique tree depending on where the depth-first search
begins and what tie-breaking rule is applied, any clique tree
is sufficient for the upcoming claims.

Each node of the clique tree corresponds to some
clique in the k -tree, and the edges represent their intercon­
nection. We now state two properties of clique trees, leaving
the proofs as exercises. Given a non-trivial k-tree G with n
vertices and a clique tree T of G :
• T has exactly n-k vertices.
• Given a vertex v whose removal from T leaves behind

connected components of size j, the clique represented
by v, when removed from G, leaves behind components
of size at most j.

We next use these properties to establish the following
lemma:

LEMMA 5.1: Given a non-trivial k -tree G with n
vertices, there exists k + 1 vertices in G whose removal
leaves behind connected components of size at most 2.

Proof: We have already noted that a 1-tree can
always be broken into components of a size at most half that
of the original graph by removing a single vertex. From a
clique tree T of the k -tree, we can therefore find a vertex v
whose removal splits T into components of size n-k/2 < n.
The k + 1 vertices in the clique represented by v, when
removed from the k -tree, must therefore leave behind con­
nected components of size at most n. D

This method for breaking apart k-trees allows us to
bound the size of the cutset required for splitting arbitrary
graphs and the size of the resulting components:

COROLLARY 5.2: Given an ordered graph G with
induced width w*, n > w*, there exists w* + 1 vertices in
G whose removal leaves behind components with size at
most n/2.

Proof: Theorem 4.1 tells us we can embed the
graph into a w* -tree with the same number of vertices.
Because n > w*, the w* -tree is non-trivial and the claim
thus follows immediately from lemma 5.1. D

We lastly apply the above fact to define a pseudo-
tree arrangement procedure, thereby allowing a bound on
pseudo-tree height.

THEOREM 5.3: Given an ordered graph with
induced width w*, there exists a pseudo-tree arrangement of
the graph with h < (w* + 1) (lgw + 1) .

Proof: For n - w*, the claim is trivially satisfied
by linearly arranging the vertices. Otherwise, by Corollary
5.2, we can find w* + 1 vertices whose removal leaves
behind components with less than half the vertices of the
original graph. We can use such a set to form the first w* + 1
levels of a pseudo-tree. The resulting components must have
induced width of w* or less (they are simply subgraphs of
the original graph). Thus, the remaining variables can be
pseudo-tree arranged by applying the procedure recursively
on each component. A new pseudo-tree branch is thereby
spawned for each remaining component as is done by the
heuristic pseudo-tree arrangement procedure from Section 2.

Now, each stage of the recursion leaves behind
components whose size are at most half that of the previous
graph. Therefore, recursion depth can be bounded by
lg(n) + 1 . Since each level of the recursion adds at most

BAYARDO AND MIRANKER 561

w* + 1 new levels to the tree, the resulting pseudo tree has
height at most (w* + 1) (lg(n) + 1) . D

Theorem 5.3 tells us we can always make the expo­
nent in the complexity function of pseudo-tree backtrack
within a logarithmic factor of that of the best exponential
space-consuming schemes. Our proofs are constructive and
describe a polynomial time-bounded procedure for accom­
plishing the task. While we did not describe a (polynomial
time) procedure for finding the k-tree embedding, such a
procedure appears in [Freuder, 90].

6 Conclusions

We have demonstrated that while the best structure-based
techniques require exponential space, they are capable of
bounding worst-case performance only slightly better than
pseudo-tree search, a simple polynomial space-bounded
scheme. Attempting to trade space for time is therefore of
limited benefit. Interestingly, we have a similar case with
respect to average case performance as well. For example,
Frost and Dechter [1994] have found that algorithms per­
forming unlimited constraint recording during search
(thereby consuming exponential space) barely outperform
polynomial space-bounded constraint recording algorithms.

We lastly note the open problem of either (a) find­
ing a polynomial space algorithm that runs in time exponen­
tial in induced width, or (b) proving no such algorithm
exists. Current approaches for achieving the runtime bound
fundamentally require exponential space since they record
high-arity constraints or generate all solutions to certain sub-
problems. On the other hand, proving no such algorithm
exists seems like a P = NP related task. We therefore feel
that solving the problem will be difficult if not impossible.

References
[Axnborg, 85] Arnborg, S., Efficient algorithms for combina­

torial problems on graphs with bounded decomposabil-
ity-a survey, BIT 25, 2-23, 1985.

[Barachini, 94] Barachini, F., Frontiers in run-time predic­
tion for the production-system paradigm, In AI Maga­
zine, 15(3), 47-61, Fall 1994.

[Bayardo & Miranker, 94] Bayardo, R. J. and Mi ranker, D.
P., An optimal backtrack algorithm for tree-structured
constraint satisfaction problems. Artificial Intelligence,
71,159-181, 1994.

[Beineke & Pippert, 71] Beineke, L. W. and Pippert, R. E.,
Properties and characterizations of k-trees, Mathematika
18, 141-151, 1971.

[Dechter, 90] Dechter, R., Enhancement schemes for con­
straint processing: backjumping, learning, and cutset
decomposition, Artificial Intelligence 41(3), 273-312,
1990.

[Dechter, 92] Dechter, R., Constraint Networks, Encyclope­
dia of Artificial Intelligence, Second Edition, 276-285,
1992.

[Dechter & Pearl, 87] Dechter, R. and Pearl, J., Network-
based heuristics for constraint-satisfaction problems,
Artificial Intelligence 34, 1-38, 1987.

[Dechter & Pearl, 89] Dechter, R. and Pearl, J., Tree cluster­
ing for constraint networks, Artificial Intelligence 38,
353-366, 1989.

[Even, 79] Even, S., Graph algorithms (Computer Science
Press, Rockville, MD, 1979).

[Freuder, 82] Freuder, E.C., A sufficient condition for back­
track-free search, J. ACM 29(1), 24-32, 1982.

[Freuder, 90] Freuder, E.C., Complexity of k-tree structured
constraint satisfaction problems, In Proceedings ofAAAI-
90,4-9, 1990.

[Freuder & Quinn, 85] Freuder, E.C. and Quinn, M.J., Tak­
ing advantage of stable sets of variables in constraint sat­
isfaction problems, In Proceedings ofIJCAI-85, 1076-
1078, 1985.

[Frost & Dechter, 94] Frost, D. and Dechter, R., Dead-end
driven learning, In Proceedings ofAAAI-94, 294-300,
1994.

[Haralick & Elliot, 80] Haralick, R. M., and Elliot, G.L.,
Increasing tree search efficiency for constraint satisfac­
tion problems, Artificial Intelligence 14,263-313, 1980.

[Seidel, 81] Seidel, R., A new method for solving constraint-
satisfaction problems, In Proceedings of UCAI-81, Van­
couver, B.C., Canada, Morgan-Kaufmann, San Mateo,
Calif., 338-341, 1981.

[Tarnbe & Rosenbloom, 94] Tambe, M. and Rosenbloom, P.
S., Investigating production system representations for
non-combinatorial match, Artificial Intelligence 68, 155-
199, 1994.

562 CONSTRAINT SATISFACTION

