
E x t r a c t i n g C o n s t r a i n t S a t i s f a c t i o n S u b p r o b l e m s * 

Eugene C. Freuder and Pau l D. Hubbe 
Department of Computer Science 

University of New Hampshire 
Durham, NH 03824 USA 

e-mail: ecf, pdh@cs.unh.edu 

Abs t rac t 

Given a subproblem, S, of a constraint satis­
faction problem, we can decompose the prob­
lem into a set of disjoint subproblems one of 
which will be S. This decomposition permits ex­
ploitation of problem-specific metaknowledge, 
a priori or acquired knowledge, about S. If we 
know that S is unsolvable, for example, the 
decomposition permits us to extract and then 
discard S, restricting the search for a solution 
to the remaining subproblems. A variety of 
potential uses for the decomposition method 
are discussed. A specific method that dynam­
ically discards failed subproblems during for­
ward checking search is described, and its util­
ity demonstrated experimentally. 

1 I n t r o d u c t i o n 

1.1 Overview 
Constraint satisfaction problems (CSPs) involve finding 
values for problem variables subject to restrictions (con­
straints) on what combinations of values are allowed. 
They have wide application in artificial intelligence, in 
areas ranging from planning to machine vision. 

Fig. la shows a sample CSP. The problem is to assign 
a color to each vertex of the graph satisfying the restric­
tions that vertices joined by an edge cannot be assigned 
the same color. Coloring problems are useful for illus­
tration purposes (and actually have applications, e.g. to 
scheduling). They are in general NP-complete, though 
obviously the example here is a trivial one. The CSP 
variables in this coloring problem are the vertices of the 
graph. The domain of values for each variable is the set 
of colors available for the vertex; in this case colors a, b, 
c (aquamarine, black and coral) are available at each ver­
tex. The constraints are the "not same color" (i.e. "not 
equal") restrictions corresponding to each edge. Call any 
choice of a value for each variable, e.g. a for X, b for Y, 
a for Z, a possibility. A possibility that satisfies all the 
constraints is a solution. 

*This material is based on work supported by the National 
Science Foundation under Grant No. IRI-9207633. 

At times we may have special knowledge of a CSP 
subproblem and wish to extract it from the CSP, to de­
compose the CSP in a manner that permits us to con­
sider the subproblem and the remainder of the CSP sep­
arately. This paper provides a mechanism for doing so 
for a large class of subproblems. 

For example, Fig lb shows a subproblem of the col­
oring problem. This is an example of what we call here 
a subdomain subproblem, essentially one in which the 
domains of some variables have been reduced. This par­
ticular subproblem obviously has no solution. It repre­
sents a special case of the easily inferred conclusion that 
a complete graph of n vertices (one in which each pair of 
vertices is joined by an edge) cannot be colored with n-1 
colors. The subproblem contains 8 of the 27 possibilities 
in the original problem, almost 30 per cent of the total. 
It would be nice if we could extract this subproblem, and 
then discard it. But what exactly would be left? Well, 
in fact, what is left are the three subproblems shown 
in Fig. lc. One contains 9 possibilities, one 6, one 4. 
Together they contain precisely the 19 possibilities that 
remain when the subproblem in Fig. lb is removed. 

Our general extraction procedure provides a mech­
anism for exploiting many forms of "metaknowledge" 
about subproblems; it is described in Section 2. We use 
this scheme in a specific, new method that dynamically 
factors out, extracts and removes, failed subproblems, 
repeatedly during search; this is described in Section 3. 
Section 4 evaluates the new method experimentally on 
hard homogeneous and inhomogeneous problems. Sec­
tion 5 speculates on further uses for the general mecha­
nism; Section 6 is a brief conclusion. 

548 CONSTRAINT SATISFACTION 



1.2 Relation to Previous Work 
The subproblem extraction method is a generalization of 
the IDC decomposition employed in [Freuder and Hubbe 
1993]. (Thus the IDC algorithm already provides one 
successful application of the extraction approach.) The 
IDC algorithm extracts and discard subproblems that 
may contain solutions, and thus is not appropriate when 
seeking all solutions (but is guaranteed not to discard all 
solutions). The basic decomposition step of the extrac­
tion method, dividing a problem into two subproblems, 
utilizes domain splitting [Mackworth 77; Van Henten-
ryck 89]; the extraction method combines several split­
ting operations for a specific new purpose. 

Factoring out failed subproblems provides a new ap­
proach to profiting from experience during search, which 
we will imbed in a new algorithm called FOF for "fac­
tor out failure". There has, of course, been considerable 
work on learning or remembering new constraints dis­
covered during search in the CSP literature (e.g. [Frost 
and Dechter 94, Schiex and Verfaillie 93]) with connec­
tions to the truth maintenance literature, (see [Smith 
and Kelleher 88]). The closest to FOF is probably the 
learning method of Charman [Charman 93], but FOF 
has considerably more potential for pruning. 

The failed subproblem could be recorded as a new k-
ary constraint. However, the overhead of remembering 
and employing such constraints is problematic. Initial 
experiments along this line did not demonstrate an im­
pressive performance, though this alternative approach 
may prove useful for problems with an appropriate struc­
ture [Verfaillie 93]. In fact, our approach is almost the 
opposite in spirit to traditional learning or TMS ap­
proaches. There individual "nogoods", inconsistent k-
tuples, are recorded and consulted for future pruning. 
With our approach entire subproblems are discarded, 
rather than remembered. 

2 Ex t rac t i on 
For simplicity we restrict our attention here to binary 
CSPs, where the constraints involve two variables. A 
value for variable U and one for variable V are said to 
be consistent if they satisfy the constraint between U 
and V, i.e. the pair of values is permitted by the con­
straint. Tightness is a measure of how many pairs satisfy 
a constraint, the higher the tightness, the fewer consis­
tent pairs. Density is a measure of how often there is 
a constraint between pairs of variables, the higher the 
density, the more constraints there are. 

The process that produced the decomposition of the 
example in the introduction is shown in Figure 2. The 
original problem appears at the root of the decompo­
sition tree. The decomposition consists of the leaves; 
since one of the subproblems is unsolvable here, it can 
be discarded. Problems are represented by the variable 
domains, where the variables are listed in lexicographic 
order. 

We say that the decomposition extracts the target sub-
problem S from the original problem. The method can be 
generalized to extract any subdomain subproblem from 
any CSP. S is a subdomain subproblem of P if S can be 
obtained from P by eliminating some values from some of 

FREUDER AND HUBBE 549 



FOF is implemented as an extension of forward check­
ing [Haralick and Elliott 80], itself already one of the 
most successful algorithms in the literature. Forward 
checking is a variant of backtrack search. When a ten­
tative choice of a value for a variable is made forward 
checking removes from other variable domains all values 
inconsistent with the choice. If that leaves any domain 
empty, we have a failure. Failures can lead to backtrack­
ing. After choosing color a for variables U, V and W, 
forward checking is essentially left with a subproblem, 
Figure 3b, that is identical to the problem in Figure la. 
This, as we know, has no solution, and forward checking 
will eventually discover that, after trying various pos­
sibilities, and back up to choose another color, b, for 
variable W. At that point forward checking will face the 
new subproblem shown in Figure 3c. 

The failed subproblem, F, and the new subproblem, 
N, have a lot in common, as we might expect, since the 
only changes were the ones incurred by the change of 
the choice of value for one variable. Figure 3d represents 
the intersection of the two subproblems, I; it contains 
those values, and thus those possibilities, common to 
both. Every possibility for the intersection must fail! 
We have already seen them fail in the failed subproblem 
search. What FOF does at this point is to factor the 
intersection out of new subproblem. (In terms of the 
original problem, we can view this process as factoring 
out the subproblem defined by the intersection subprob­
lem combined with the currently chosen values for the 
other variables, U, V, W.) 

Figure 3e shows the resulting decomposition. In this 
simple case two of the subproblems in the decomposi­
tion have no possibilities - at least one variable domain 
is empty - and thus can be ignored. The intersection is 
discarded. There is only one subproblem left, represent­
ing N-I. It is searched instead of N. FOF in this instance 
substitutes a subproblem of size 4 for a subproblem of 
size 8. As an extreme example of the phenomenon we 
are illustrating, consider the situation where we choose 
the first value for the first variable in a large problem, 
that choice is not inconsistent with any other value, we 
proceed with the search, and back up to the first vari­
able with failure. Forward checking would at this point 
go on to try another choice for the first variable. How-

550 CONSTRAINT SATISFACTION 

Each time we move down in the search tree, to try and 
extend the partial solution we are accumulating to an­
other variable, V, we begin keeping track of the largest 
failed subproblem, F, encountered as we try different val­
ues for V. When we try another value for v, and are faced 
with a new subproblem, S, we factor out the possibilities 
that S has in common with the failed F, to avoid retest-
ing them. They would still fail with the new value for v. 
The Agenda is maintained as a stack and the Remainder 
problem in a decomposition is placed on the stack first 
to implement a depth-first search. 

The factoring out decomposition does not require any 
more constraint checks than a forward checking decom­
position. Nevertheless, it was found to be undesirable 
to utilize the FOF decomposition all the time. FOF can 
introduce effort in two ways. First, of course, is the over­
head associated with the algorithm. Second, there is a 



certain amount of redundancy introduced by the decom­
position. While the decomposition cannot contain any 
more possibilities than the original problem, it may con­
tain partial possibilities redundantly. For example, in 
Figure 2, the partial possiblity of b for the first variable 
and a for the third variable is contained in two subprob-
lems. This can lead to some redundant effort. 

In our implementation we only employ the FOF de­
composition when the ratio of the size of the Problem 
fed to Extract to the size of the decomposition returned 
is greater than a threshold. Otherwise, we proceed with 
standard forward checking. As we have noted, forward 
checking itself can be represented within the disjunc­
tive decomposition schema; thus the schema easily ac­
comodates an integrated algorithm in which the choice 
of whether to use forward checking or FOF decomposi­
tion is determined by a threshold. The value we use for 
this threshold, 1.7, was arrived at experimentally. We 
will refer to the algorithm as FOF. 

There is some evidence that an algorithm that es­
tablishes and maintains full arc consistency can often 
be preferable to forward checking, which maintains par­
tial arc consistency [Sabin and Freuder 94]. However, 
it should be possible to apply the factor out failure in­
sight to this algorithm as well, and to other extensions 
of forward checking. 

4 Exper iments 
It is increasingly understood that CSP methods are of­
ten not competitors, but can be combined cooperatively 
[Prosser 93]. Thus the question for a new method is less 
"can it beat X" than it is "can it profitably be added 
to X". FOF it self may be viewed as a refinement of for­
ward checking (FC). Standard FC is a good benchmark 
for comparison as it has itself been compared with many 
algorithms (generally to its advantage). We have also 
added FOF decomposition to the combination of for­
ward checking and constraint-based backjumping (FC-
CBJ), a combination that has proven especially success­
ful recently [Prosser 93], and compared FC-CBJ with 
FC-CBJ-FOF. In all cases we use a proven variable or­
dering heuristic that dynamically chooses a minimal do­
main size variable to instantiate next (DMD) [Haralick 
and Elliott 80]. 

Random problems have often been used as bench­
marks. There is a well-known hard problem "ridge'' in 
"density/tightness space" for random CSPs [Cheeseman 
et al. 91, Williams and Hogg 92]. In our first experi­
ment (Figure 4) we looked at several points along this 
ridge. (Our points may not be at the precise peak of 
the ridge.) At each point we averaged ten problems. (It 
should be noted that there may be a wide variation in 
difficulty within a problem set.) The problems all have 
50 variables with 8 values. For a range of tightness values 
we looked for a density that put us on the ridge. (Our 
probabalistic problem generator permits some variation 
in actual density and tightness values, especially locally 
within a problem.) 

We counted constraint checks, a standard measure of 
CSP algorithm performance, and cpu time in seconds. 
In the figure, checks are shown first, then time, on a 

DEC Alpha 300XL, is shown in parentheses. Adding 
FOF reduced constraint checks in almost every case. The 
improvement of FOF over FC approaches an order of 
magnitude in constraint checks at the highest tightness. 
FC-CBJ-FOF-DMD had the fewest constraint checks in 
every case, and the best time at three points out of four. 

The improvement increases as the problems become 
sparser. We expect that problems of lower density, where 
variables are involved in fewer constraints, will be better 
candidates for FOF, since there will be fewer subprob-
lems in the decompositions and less opportunity for re­
dundancy. (Constraints where different values are likely 
to support the same values at other variables will also 
lead to fewer subproblems). The lowest density trans­
lates into an average number of constraints per vari­
able of 3.136. (Note, however, that the threshhold for 
FOF decomposition avoids bad behavior for FOF even 
at much higher densities.) We will call the average num­
ber of constraints per variable the degree (this has to do 
with the standard representation of CSPs as "constraint 
graphs1'). 

As problems become sparser they tend to become eas­
ier anyway, however, other things being equal. There are 
fewer constraints to check. Also there may be deeper 
theoretical reasons to expect loosely constrained prob­
lems to be harder [van Beek 94], and other things being 
equal loosely constrained problems must be denser to 
stay on the hard problem ridge. However, by increasing 
the number of problem variables we can obviously en­
counter harder problems (and real-world problems may 
well be large, sparse problems). 

We do just this in the second experiment (Figure 5) 
taking off from the point where we obtained the best re­
sult in the first experiment. At this point the parameters 
were: a tightness of .675, 50 variables with 8 values, and 
a degree of 3.136. We keep these parameters fixed except 
for the number of problem variables, which we increase 
from 50, to 100,150 and 200. (Our analysis suggests that 
by maintaining a fixed degree, as opposed to a fixed den­
sity, we will in theory remain on the hard problem ridge.) 
In this experiment we restrict our attention to the two 
best algorithms from the first experiment. The savings 
become quite significant. 

So far, although our generator allows some variation, 
we have been lookly at basically homogeneous random 
problems. One might expect that application problems 
would involve more heterogeneity in their structure. In 
the third experiment we introduced more divergence in 
structure by removing or loosening constraints. We 
started with a set of 5 "ridge" problems with 99 vari­
ables, a domain size of 4, tightness .25 and density .06. 
(This density corresponds to an average degree of ap­
proximately 7.75.) For each of these we generated a se­
quence of problems by randomly choosing variables, five 
at a time, with degree greater than 3, and reducing their 
degree to three (by randomly removing constraints in­
volving the variables). We call this process introducing 
weak spots into the problem. Figures 6a-e shows these 
five problem sequences. (Note that the scales differ.) In 
Figure 6f we induce weak spots (in the problem of Figure 
6a) in a different manner, by loosening the constraints 

FREUDER AND HUBBE 551 



552 CONSTRAINT SATISFACTION 



FREUDER AND HUBBE 553 



around variables rather than removing them (so that the 
tightness times the degree is less than 1). 

We do not show the FC-DMD results; in the first 
problem for example FC-DMD peaks at close to 50 mil­
lion constraint checks, way off the chart shown in Figure 
6a. Our IDC algorithm was tested on these problems in 
[Freuder and Hubbe 93]; FOF-DMD actually performs 
somewhat better. (IDC has not been combined with 
FC-CBJ.) 

The general lesson of these figures seems to be that 
CBJ and FOF complement each other nicely in coping 
with the induced inhomogeneity. The weak spots may 
also hinder standard forward checking, by reducing the 
pruning that forward checking can accomplish. This may 
lead to larger failed subproblems, which in turn provide 
an opportunity for FOF. Although we did not design 
these problem sequences specifically for FOF, these ap­
proaches to inducing inhomogeneity would admittedly 
appear to favor FOF. However, the larger point is that 
in inhomogeneous problems with a range of degrees and 
tightnesses there may well be areas with a structure for 
which FOF is particularly well suited, and FOF seems 
well able to take advantage of such local opportunities. 

5 Potent ia l 
As the IDC algorithm demonstrates, a primary potential 
application of the extraction method arises in situations 
where we can determine that a subproblem S has no so­
lution, or does not have all the solutions - S can then be 
discarded. We might know S has no solutions from pre­
vious experience, e.g. with a similar problem. We might 
infer it from domain knowledge. The coloring problem 
illustration used in the first section is an example. We 
can "create" unsolvable subproblems. Take any inconsis­
tent pair of values a and b for X and Y. The subproblem 
obtained by reducing the domain of X and Y to a and 
b, can be factored out. Taking this further: if the sets 
of values A for X and B for Y are such that no pair of 
values from A and B is consistent we can factor out the 
larger subproblem where X and Y are only reduced to A 
and B. We could look for pairs of value subsets, A and 
B, which are optimal in the sense that any pair of values 
in their Cartesian product is inconsistent, and no other 
pair of value subsets produces a larger Cartesian prod­
uct in which all value pairs are inconsistent. Optimal 
pairs are probably too hard to find, but we might have 
heuristics for finding good ones. (Contrast this approach 
with the work in [Hubbe and Freuder 92], which utilizes 
the Cartesian product of consistent pairs of values.) To 
some degree we are trying to "extract" the tight con­
straint, or part of it. This may in some sense loosen the 
A-B constraint, making it perhaps more likely that what 
remains will succeed. 

Call a subproblem, S, involving some of the values, for 
some, but not all, of the variables, a subset, subdomain 
subproblem. S extends to a subdomain subproblem, S1 

involving all of the variables, in which the domains of 
the variables not in S are not reduced at all. Call S1 

the extension of S. If S is unsolvable, its extension will 
be also. If we can identify an unsolvable subset, sub-
domain subproblem we can factor out its extension. As 

an illustration we can generalize the earlier coloring ex­
ample. 3-cliques (triangles) cannot be colored with 2 
colors. For every 3-clique we can factor out a subprob­
lem where 3 variables have the same 2 colors and the 
rest of the variables have all possible colors. Another 
simple illustration: in the n-queens problem, a subprob­
lem that includes a 3-queens problem cannot be solved. 
For example, consider a subproblem in which the first 
three rows are restricted to take values from the first 
three columns. 

Alternatively, we can extract subproblems that we sus­
pect have solutions. This will enable us to focus on such 
subproblems early. If we know that a subset, subdomain 
subproblem S does have a solution, we can extract its 
extension. We are not guaranteed the extension has a 
solution, but it might be a good place to look. If we 
know an actual solution for S we can extract a subjirob-
lem where the values for the S variables are the solution 
and all values are available again for variables not in S. 
Again, this might be a good place to look. This idea can 
be extended if we have the Cartesian product represen­
tation of a set of solutions [Hubbe and Freuder 1992], 
where each tuple in the Cartesian product is a solution. 
Again we can extract a subproblem where the values for 
the S variables are the values in the Cartesian product 
set, and all values are available for variables not in S. To 
some degree here we can again try to "extract" a tight 
constraint (or several of them), but this time by consid­
ering a subproblem where the only values remaining for 
the variables involved form a Cartesian product set of 
solutions. Since all pairs are possible in the subproblem 
the constraint is effectively eliminated. 

The extraction method could also be useful if we have 
other reasons to want to work on S first (or last), ear­
lier (or later), in the search for a solution. We might 
even wish to factor out a subproblem that contains pos­
sibilities that are not considered to be of interest at the 
moment, or alternatively embody current preferences. 
Another way to get good subproblems to try first might 
be to extract a subproblem where all the values were 
loosely constraining and/or constrained. Ideally this 
would mean loose within the subproblem, as opposed 
to within the problem as a whole, but that seems harder 
to achieve. For example we might collect the values that 
relatively speaking are most consistent with other values 
in each domain and extract that subproblem to work on 
first. Notice that this is related to, but not equivalent 
to, the idea of value ordering for "succeed first". Our 
scheme allows us to try all the "easiest" combinations 
before we involve any of the less likely values, and still 
know exactly what we left out, in case we do not find 
a solution with these values, or want to look for more 
solutions. Alternatively we could try to recognize good 
subproblems to put off examining, by extracting sub-
problems where all the values were tightly constraining 
and/or constrained. Or we could try to be more sophis­
ticated yet about identifying subproblems with charac­
teristics that strongly suggest the existence or absence 
of solutions. 

Work on "really hard" problems has provided con­
siderable insight in this regard [Cheeseman et al. 91, 

554 CONSTRAINT SATISFACTION 



Williams and Hogg 92], which has been tested on various 
types of CSPs. Likelihood of solution has been related 
to the tightness and density of constraints. Likelihood of 
solution has also been related to problem difficulty. Re­
ally hard problems have often been found on a "ridge" in 
"tightness/density space" between a region where prob­
lems are very likely to have solutions and a region where 
they are very likely to be unsolvable. We could try to 
extract in such a way so as to move pieces of the problem 
outside these really hard problem parameters, by trying 
to raise or lower constraint tightness. Starting with an 
overall hard problem we might try to extract subprob-
lems that were not hard or isolate the hard part of a 
problem in a smaller subproblem. This strategy might 
be particularly useful for inhomogeneous problems. 

Constraint density could also be adjusted. Earlier we 
considered extracting subproblems in which all pairs of 
values between some variables were consistent. If the 
domains of X and Y in the subproblem consist only of 
mutually consistent values then there is effectively no 
constraint left between X and Y in the subproblem and it 
can be deleted. Following up on this notion of "eliminat­
ing constraints" in subproblems, we can try to extract 
out subproblems with desirable structure. By deleting 
enough constraints in this way we can try to reduce to a 
tree or 2-tree, for example [Freuder 90]. 

Note that the factoring out decomposition can be 
applied recursively. For example, we might try 3-
coloring hard graphs, factoring out 3-cliques, and doing 
some "forward checking"-type local consistency process­
ing whenever a domain is reduced to 1 element in a sub-
problem [Nadel 89]. We have seen how the factoring out 
process can be applied repeatedly during search. Extrac­
tion may prove particularly useful for dynamic CSPs, or 
"families" of related CSPs (where we have information 
about subproblems left over from previous experience) 
and for inhomogeneous CSPs (where we can extract hard 
or easy pieces). (We need to consider overhead of course, 
but some required information may come "free". The 
FOF decomposition uses only the constraint checks nor­
mally performed by forward checking.) 

Our extraction mechanism provides an opportunity for 
practitioners to utilize domain-specific knowledge about 
subproblems. This knowledge may be available a priori, 
such as the simple "theorem" about uncolorable sub-
problems used in Section 1, or it may be acquired knowl­
edge. The acquired knowledge may be obtained and used 
while solving a single problem, as is the knowledge used 
by FOF, or it might be acquired while solving an ini­
tial set of problems and then applied to enhance future 
performance in the same domain. 

6 Conclusion 

We have introduced a general method for disjunctively 
decomposing a constraint satisfaction problem so that 
one of the resulting subproblems will be any specified 
subdomain subproblem. We suggested a number of uses 
for this decomposition and implemented and tested one 
that factors out unsolvable subproblems discovered dur­
ing search. 

Acknowledgements 
We wish to thank Gerard Verfaillie for pointing out to us 
that IDC decomposition generalizes to subdomain sub-
problem extraction and for further helpful discussion. 

References 
[Charman 93] Charman, P., Solving space planning 

problems using constraint technology, in Nato ASI Con­
straint Programming: Students' Presentations, TR CS 
57/93, Institute of Cybernetics, Estonian Academy of 
Sciences, Tallinn, Estonia, 80-96. 

[Cheeseman et al. 91] Cheeseman, P., Kanefsky, B. 
and Taylor, W., Where the really hard problems are, 
IJCAI-91, 331-337. 

[Freuder 90] Freuder, E. Complexity of k-tree struc­
tured constraint satisfaction problems, AAAI-90, 4-9. 

[Freuder and Hubbe 93] Freuder, E. and Hubbe, P., 
Using inferred disjunctive constraints to decompose con­
straint satisfaction problems, IJCAI-93, 254-261. 

[Freuder and Hubbe to appear] Freuder, E. and 
Hubbe, P., A disjunctive decomposition control schema 
for constraint satisfaction, in Principles and Practice of 
Constraint Programming, V.J. Saraswat and P. Van Hen-
tenryck, eds., The MIT Press. 

[Frost and Dechter 94] Frost, D. and Dechter, R., 
Dead-end driven learning, AAAI-94, 294-300. 

[Haralick and Elliott 80] Haralick R. and Elliott, G., 
Increasing tree search efficiency for constraint satisfac­
tion problems, AIJ 14, 263-313. 

[Hubbe and Freuder 92] Freuder, E. and Hubbe, P., An 
efficient cross product representation of the constraint 
satisfaction problem search space, AAAI-92, 421-427. 

[Mackworth 77] Mackworth, A., On reading sketch 
maps, IJCAI-77, 598-606. 

[Nadel 89] Nadel, B., Constraint satisfaction algo­
rithms, Computational Intelligence 5, 188-224. 

[Prosser 93] Prosser, P., Hybrid algorithms for the con­
straint satisfaction problem, Computational Intelligence 
9, 268-299. 

[Sabin and Freuder 94] Sabin, D. and Freuder, E., 
Contradicting conventional wisdom in constraint satis­
faction, in Principles and Practice of Constraint Pro­
gramming, LNCS 874, A. Borning, ed., Springer-Verlag. 
10-20. 

[Schiex and Verfaillie 93] Schiex, T. and Verfaillie, G., 
Nogood recording for static and dynamic constraint sat­
isfaction problems, TAI '93, 48-55. 

[Smith and Kelleher 88] Smith, B. and Kelleher, G., 
Reason Maintenance Systems and Their Applications, 
Ellis Horwood, Chichester, England. 

[Verfaillie 93] Verfaillie, G. personal communication. 
[Williams and Hogg 92] Williams, C. and Hogg, T., 

Using deep structure to locate hard problems. AAAI-
92, 472-477. 

[van Beek 94] van Beek, P., On the inherent level of 
local consisttency in constraint networks,AAAI-94, 368-
373. 

[Van Hentenryck 89] Van Hentenryck, P., Constraint 
Satisfaction in Logic Programming, MIT Press. 

FREUDER AND HUBBE 555 


