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Abst rac t 

Novelty Detection techniques are concept-
learning methods that proceed by recognizing 
positive instances of a concept rather than dif-
ferentiating between its positive and negative 
instances. Novelty Detection approaches conse­
quently require very few, if any, negative train­
ing instances. This paper presents a particu­
lar Novelty Detection approach to classification 
that uses a Redundancy Compression and Non-
Redundancy Differentiation technique based on 
the [Gluck & Myers, 1993] model of the hip­
pocampus, a part of the brain critically in­
volved in learning and memory. In particular, 
this approach consists of training an autoen-
coder to reconstruct positive input instances at 
the output layer and then using this autoen-
coder to recognize novel instances. Classifica­
tion is possible, after training, because positive 
instances are expected to be reconstructed ac­
curately while negative instances are not. The 
purpose of this paper is to compare HIPPO, the 
system that implements this technique, to C4.5 
and feedforward neural network classification 
on several applications. 

1 I n t roduc t i on 
Many practical applications of supervised learning are 
concept learning problems, that is, problems that involve 
discriminating instances according to whether or not 
they belong to a given class. This class can be thought 
of as the concept to be learned. Usually, concept learn­
ing involves learning correct classification of a training 
set containing both positive and negative instances of a 
concept, followed by a testing phase in which novel exam­
ples are classified. Good performance often depends on 
constructing training sets which contain a broad range 
of positive and negative examples. Many classification 
methods have been designed under these conditions, in­
cluding C4.5 [Quinlan, 1993] and backpropagation ap-
{►lied to a feedforward neural network (FF Classification) 
Rumelhart, Hinton, & Williams, 1986]. 
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As an alternative to learning a concept using a 
broad range of positive and negative training examples, 
some concept-learning techniques that require mainly--
or only—positive training examples have recently been 
introduced [Petsche & Gluck, 1994]. Such techniques are 
grouped as Novelty Detection methods (the term stems 
for the fact that negative inputs are recognized as being 
novel compared to positive inputs which are more famil­
iar as they belong to the class that was used for training). 
Novelty Detection techniques proceed by examining in­
stances of a concept, trying to find their commonali­
ties and generalizing from them. These techniques differ 
from more conventional classification approaches (C4.5, 
FF Classification) in that they attempt to recognize in­
stances of a concept rather than to differentiate between 
instances of both classes. 

The advantage of Novelty Detection approaches is that 
they can be used on problems that cannot easily be ad­
dressed by more conventional approaches. Such prob-
lems are those for which negative examples are very ex­
pensive or difficult to obtain. In machine fault diagnosis, 
for example, positive examples are plentiful and typically 
involve recording from the machine during normal oper­
ation. Negative examples, however, involve causing the 
machine to break down in each manner in which future 
failure is possible so that a recording can be made of 
each failure type. Monitoring tasks which consist of ex­
amining a system's readily available signals and issuing 
an alarm when a potential problem is detected fall in this 
category of problems. The need to monitor a system's 
operation arises frequently and the development of reli­
able Novelty Detection techniques would provide impor­
tant benefits for critical military and commercial systems 
(e.g., helicopter gearboxes, shipboard fire pumps, mo-
tors, and generators). Novelty Detection methods, there-
fore, also need to demonstrate a certain level of reliabil­
ity. The purpose of this paper is to introduce a particu­
lar Novelty Detection technique—Redundancy Compres­
sion and Non-Redundancy Differentiation— and demon­
strate experimentally that, in addition to requiring fewer 
negative examples, this technique is able to classify novel 
examples more accurately than the conventional classi­
fication approaches. 

The particular Novelty Detection technique intro-
duced in this paper uses an autoencoder [Hinton, 1989]. 
An autoencoder is a neural network which learns to map 
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from its inputs, through a narrow hidden layer, to out­
put nodes which attempt to reconstruct the input. Be­
cause the network has a narrow hidden layer, it is forced 
to compress redundancies in the input while retaining 
and differentiating non-redundant information. To im­
plement our technique, the network is trained to recon­
struct as well as possible a training set consisting of posi­
tive examples only. After having been trained on positive 
instances of the concept, the autoencoder should be able 
to adequately reconstruct subsequent positive instances, 
but should perform poorly on the task of reconstruct­
ing subsequent negative instances of the concept which 
present different structural regularities. Identifying pos­
itive and negative instances of a concept is therefore 
equivalent to assessing how well such instances are re-
constructed by the autoencoder. These same processes 
have previously been proposed to model computations 
occurring in the hippocampus [Gluck & Myers, 1993], a 
part of the brain involved in learning and memory. 

This paper presents HIPPO, a concept-learning system 
based on this idea and assesses its performance by ap­
plying it to three real-world problems: CH46 Helicopters 
gearbox fault detection, recognition of promoter regions 
of DNA, and classification of sonar targets; HIPPO'S error 
rates on these applications are then compared to those 
produced by C4.5 and FF Classification. The next sec­
tion describes HIPPO, including its Redundancy Com-
pression and Non-Redundancy Differentiation compo­
nent and its Threshold-Determination component. The 
following section discusses the testing of HIPPO and its 
results. 

2 H i p p o 
Implementing the idea of Redundancy Compression and 
Non-Redundancy Differentiation results in a device able 
to issue two sorts of signals: one for recognized data, 
and an other for novel data. Designing such a device, 
however, is not sufficient for building a powerful, stand-
alone concept-learning system: one also needs to be able 
to discriminate between "recognized" and "novel" sig­
nals. Such discrimination is called Threshold Determi­
nation. This section first describes HIPPO'S Redundancy 
Compression and Non-Redundancy Differentiation com­
ponent, and then discusses its Threshold Determination 
component. The last part is an overview of the overall 
functioning of the system. 

2.1 Redundancy Compression and 
Non-Redundancy Differentiation 

Redundancy Compression and Non-Redundancy Differ­
entiation is a process believed to occur in the hippocam­
pus [Gluck & Myers, 1993]. Gluck and Myers have used 
connectionist models to study the function of the hip-
pocampal region in the brain and its implications for 
learning and memory behaviors. They suggested that 
the hippocampus forms new stimulus representations 
during learning, and that these representations specif­
ically compress redundant information while preserving 
or differentiating non-redundant information. The sys­
tem they built based on these considerations was able to 

Figure 1: An Autoencoder with I = 0 = 6 and H = 3. 

accurately predict a range of classical conditioning be­
haviors observed in normal and hippocampal-damaged 
animals [Gluck & Myers, 1993]. Because these compres­
sion and differentiation constraints appear to be useful 
during learning in the brain, Gluck and Myers suggest 
that they may be useful for machine learning tasks as 
well. 

The Redundancy Compression and Non-Redundancy 
Differentiation technique uses an autoencoder, of the 
type that was proposed by [Hinton, 1989]. An autoen­
coder is an artificial neural network composed of a given 
number, 7, of input nodes; the same number of output 
nodes, 0; and a given number, H, of hidden nodes with 
H < I = O. This type of network learns to reproduce 
its inputs at the output layer, using a multilayer learning 
algorithm such as backpropagation [Rumelhart, Hinton, 
& Williams, 1986], the learning paradigm used in this 
work. Figure 1 presents an autoencoder with I = 0 = 6 
and H = 3. In the past, autoencoders have been used 
for estimating learning algorithms reliability [Pomerleau, 
1993] and for solving the catastrophic inference problem 
[Kortge, 1990]. We now discuss how autoencoders can 
also be used for Novelty Detection. 

In order to be used for Novelty Detection, the au­
toencoder is trained on positive instances of the con­
cept, using backpropagation. Once trained, the autoen­
coder can be fed new instances that it tries to reconsti­
tute at its output layer. The quality of reconstruction 
is evaluated by computing the sum of the absolute er­
ror at each corresponding input and output node, i.e., 
Error = J2i-i \Inp(i) — 0ut(i)\ where Inp(i) and Out(i) 
are the corresponding input and output nodes at po­
sition t and I is the size of the input. This error is 
recorded at various epochs. If after the autoencoder 
has been sufficiently trained, this error is small, then 
the instance should be labeled "positive", otherwise, it 
should be labeled "negative". The part of the system 
responsible for evaluating the size of the error and la­
beling the new instances is a semi-automated module 
called the Threshold-Determination component and will 
be described in section 2.2. 

The phenomena that take place while using an au­
toencoder can be understood as follows, the narrow in­
ternal layer of the autoencoder forces it to generate an 
internal representation that compresses redundancies in 
the input pattern while retaining and differentiating non-
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redundant information. When the autoencoder is specif­
ically used for classification, it is trained on positive in­
stances only. During training, consequently, the autoen­
coder learns to reconstruct positive data, but does not 
learn to reconstruct negative data. Since negative data 
present structural regularities that are different from 
those of the positive data (i.e., the inputs that are re­
dundant in the positive data may not be redundant in 
the negative data and vice-versa), reconstruction of neg­
ative data, must be done differently. At testing time, 
therefore, reconstruction of positive data will succeed, 
whereas reconstruction of negative data will fail, and this 
success or failure will be the criterion used in classifying 
new instances. 

2.2 Threshold Determination 
Threshold determination consists of determining a 
boundary that discriminates between the reconstruction 
errors of positive and negative data. The Threshold De­
termination component is a semi-automated component 
composed of two algorithms: one for the noiseless case, 
which requires only positive or only negative data and 
one for the noisy case, which requires both positive and 
negative data. For every application, one of the two al­
gorithms is manually selected according to the availabil­
ity of data and the the expected quality of separation 
between positive and negative reconstruction errors. 

Noiseless Case 
In the noiseless case, the separation between positive and 
negative data is clear and stable in that the reconstruc­
tion error of all the positive instances is much lower than 
that of all the negative instances after sufficient training 
took place. In such a case, only positive or only negative 
instances are necessary. 

In the case where only negative training instances are 
provided, the procedure we built simply computes the 
lower-bound of the reconstruction error of all the neg­
ative training instances at every epoch considered and 
then relaxes this bound by reducing it by a certain per­
centage. New instances are subsequently classified by 
checking whether the reconstruction error of the new in­
stance is higher than that of the relaxed boundary in at 
least a certain acceptable proportion of the epochs con­
sidered. In such a case, the new instance is negative; 
otherwise, it is positive. The case where only positive 
training instances are provided was treated in a similar 
fashion. Figure 2(a) illustrates the noiseless case and 
shows the boundary that was derived when using only 
negative data. In the particular case study that uses this 
algorithm—CH46 Helicopter gearboxes—, the relaxation 
ratio was set to 25%; the epochs considered are all the 
recorded epochs that occur after epoch 150; and the ac­
ceptable proportion of epochs considered was set to one 
half. 

Noisy Case 
In the noisy case, the separation between positive and 
negative data is not clear in that although the majority 
of positive instances have low reconstruction errors and 
the majority of negative instances have high reconstruc­
tion errors, some positive examples have a high recon­

struction error and some negative examples have a low 
reconstruction error. In such a case, the Threshold De­
termination component needs to process both positive 
and negative instances in order to establish a boundary, 
and will need to decide what data to ignore as excep­
tional or possibly noisy. The procedure that we built for 
this case tries to find the epoch that shows the best sep­
aration between the reconstruction errors of positive and 
negative instances among all the epochs considered and 
at the same time, considers how stable this separation 
is. 

In order to find the best separation, the procedure be­
gins by constructing the boundaries of the absolute and 
intermediate positive and negative regions of the epoch 
versus reconstruction error space, at every epoch consid­
ered. Instances that belong to a given class with great 
certainty have reconstruction errors that fail in the ab­
solute region of this class while instances that belong to 
this class with less certainty have reconstruction errors 
that fall in its intermediate region. The absolute neg­
ative region is located above the intermediate negative 
region, while the absolute positive region is located below 
the positive intermediate region. Absolute and interme­
diate regions differ from actual regions which span the 
entire negative and positive instance sets respectively. 
Absolute and intermediate regions are illustrated in Fig­
ure 2(b). To construct the negative intermediate region 
in particular, our procedure begins by stating the lower 
and higher boundaries of the actual negative region, and 
then proceeds by repeatedly shrinking this region by ma­
nipulating its boundaries, until it believes that it found 
the most accurate intermediate negative region. The re­
gion located above the upper boundary of the final in­
termediate negative region defines the absolute negative 
region. In the particular case studies that use this algo­
rithm —Promoter and Sonar Targets—, the density level 
of the final intermediate negative region is such that the 
lower half of the final intermediate negative region con­
tains less than two fifth of the negative data while half 
of the negative data contained in this lower half is con­
tained in its lowest fifth. The intermediate positive re­
gion is constructed in a similar fashion and the boundary 
for classifying positive and negative examples is estab­
lished as the midpoint between the lower boundary of the 
negative intermediate region and the upper boundary of 
the positive intermediate region. 

In order to find the epoch with the most stable sepa­
ration, the program calculates how stable the separation 
is at each recorded epoch. The stability of a given epoch 
is defined as the slope of the line that goes through the 
separation of this epoch and the next epoch recorded. 
The separation that is selected for classification is the 
best separation whose stability is higher than half the 
greatest stability encountered. 

2.3 Overall Functioning of the System 
The training of HiPPO is carried out in two phases. In 
the first phase, the Redundancy Compression and Non-
Redundancy Differentiation component is trained with 
positive instances of the concept. This phase results in 
the computation of a specialized autoencoder which can 
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Figure 2: The two cases of Threshold Determination. 

differentiate between a positive and a negative instance 
by showing a small reconstruction error in the positive 
case and a large one otherwise. The second phase of 
training consists of training the Threshold Determina­
tion component. In this phase, the specialized autoen-
coder is used with positive and/or negative instances. 
For each instance, the reconstruction error is recorded 
and fed into the Threshold Determination component 
which analyzes the reconstruction error of all the in­
stances and issues a discriminator. The discriminator 
can be interpreted as a boundary between positive and 
negative instances. 

Once the two components have been trained, HIPPO 
can be used as follows: First, an unlabeled instance can 
be input to the specialized autoencoder which will issue a 
reconstruction error. The reconstruction error can then 
be input to the discriminator which will issue a classifi­
cation. Figure 3 illustrates the functioning of the overall 
concept learner. 

3 Exper iments 
HIPPO was tested in three domains: CH46 helicopter 
gearbox fault detection, molecular biology promoter 
recognition, and sonar target classification. Its re­
sults are compared to those of two standard approaches 
to classification: C4.5, a decision tree learning sys­
tem [Quinlan, 1993] and FF Classification, another 
connectionist learning method [Rumelhart, Hinton, & 
Williams, 1986]. We begin by introducing the three do­
mains considered and the methodology used to evaluate 
the three approaches. We then discuss the results of the 
experiments. 

3.1 The Case Studies 
The CH46 Helicopter Gearbox data was obtained 
from NRaD[Kolesar & NRaD, 1994]. The CH46 Heli­
copter problem is a monitoring problem that consists 
of discriminating between faulty and non-faulty CH46 
helicopter gearboxes, according to the whining sound 
they emit during their operation. The sudden, unex­
pected failure of CH46 helicopter gearboxes is currently 
very costly both in terms of lives and equipment. The 
development of a monitoring system that can identify 
imminent failures before takeoff or when in flight is 
of paramount importance. The data for this problem 
was obtained by pre-processing the vibration time sig­
nal of the gearboxes of various faulty and non-faulty 
helicopters. The complete data set is composed of 18 
non-faulty instances and 46 faulty ones which come in 
the form of 256 long vectors of real numbers. In this 
particular problem, we chose the non-faulty examples to 
represent the positive class. 

The Promoter problem takes as input segments of 
DNA, some subset of which represent promoters. A pro-
moter is a sequence that signals to the chemical pro­
cesses acting on the DNA where a gene begins. The 
goal of the problem is to train a classifier to be able 
to recognize promoters, which are taken to be the posi­
tive class. The training set is composed of 100 examples 
(47 promoters and 53 negatives), each of which is com­
posed of a set of 51 nucleotides, where each nucleotide 
can take one of four values {a, c, g, or t}. The promoter 
data was obtained from the U.C. Irvine Repository of 
Machine Learning and was modified in response to Nor­
ton's critique of the biological flaws underlying the orig­
inal formulation of the data [Norton, 1994]. In addition, 
as is usual for this problem when run on a connection-
ist system, each example was converted into a 204-bit 
long vector where each nucleotide was represented with 
4 bits. 

The Sonar Target Recognition problem takes as 
input the signals returned by a sonar system in the cases 
where mines and rocks were used as targets. The sonar 
data was obtained from the U.C. Irvine Repository of 
Machine Learning though only a subset of 100 instances 
(47 positive and 53 negative) from this data was used in 
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this particular case study.1. The transmitted sonar sig­
nal is a frequency-modulated chirp, rising in frequency. 
The data set contains signals obtained from a variety of 
different aspect angles. Each instance of this data is rep-
resented as a 60-bit long vector. In this particular case 
study, we chose the signals returned by the mine targets 
to constitute the positive class. 

3.2 General Methodology 
Connectionist models such as HIPPO and FF Classifi­
cation are more difficult to train than symbolic models 
like C4.5. Not only do connectionist models require to 
be tuned before they can actually be trained but also, 
their training requires two phases: concept-learning and 
threshold-determination. No tuning is necessary and a 
single phase is sufficient for symbolic models. 

The learning rate, momentum, and bias for HIPPO and 
FF Classification were arbitrarily set to 0.05, 0.9, and 
1.0 respectively, and held constant for all three case stud­
ies. The number of hidden units and recorded epochs 
were determined experimentally for each case study on 
random subsets of the entire data sets. For the helicopter 
gearbox application, HlPPO used 32 and FF Classifica­
tion used 50 hidden units. Both systems were run for 
200 epochs which were recorded every 10 epochs for the 
first 190 epochs and every epoch subsequently. For the 
promoter problem, both systems used 153 hidden units 
while for the sonar target recognition problem, they used 
20 hidden units. In both applications, the systems were 
run for 100 epochs which were recorded every 10 epochs. 

The threshold-determination method of section 2.2 
was used with both HlPPO and FF Classification. It 
was tuned on random subsets of the entire data sets.2 

In every case study, the thresholds were established on 
the same data sets for both systems. For the helicopter 
gearbox problem, the noiseless method of section 2.2 was 
selected and applied to 10 negative instances. For both 
the promoter and the sonar target recognition problems, 
the noisy method of section 2.2 was selected and applied 
to 5 positive and 5 negative instances. 

In the three domains considered, the three systems 
were evaluated using 5-fold crossvalidation [Weiss & Ku-
likowski, 1991]. At every fold of every experiment, the 
training set used by C4.5 was divided into a training set 
for concept-learning and one for threshold-determination 
for HIPPO and FF Classification. Since HIPPO learns a 
concept from positive data only, the negative data was 
eliminated from its concept-learning training set while it 
was kept for FF Classification. In every experiment, the 
testing sets of the three systems always corresponded. 
Note that at every fold of every experiment, HlPPO uses 
significantly fewer negative data for overall training than 
the other two systems: for the CH46 helicopter gearbox 

'This explains why the results reported in section 3.3 are 
different from those reported in previous experiments on this 
data, such as [Gorman &. Sejnowski, 1988] 

2 For use with FF Classification, the input of the threshold-
determination component was taken to be the value of the 
output node and its output had to be reversed since positive 
instances are supposed to return a larger signal than negative 
ones. 

problem, HIPPO uses 10 negative data while FF Clasifi-
cation and C4.5 use between 35 and 39 such data. For 
the other two case studies, HlPPO uses 5 negative in­
stances while FF Classification and C4.5 use between 40 
and 44 such instances. 

3.3 Results 
The error rates of HlPPO, C4.5, and FF Classification in 
the three case studies considered are listed in Table 1. 
Numbers after each "±" are standard deviations for each 
of the five-fold averages. 

Table 1 shows that in both the CH46 Helicopter and 
the Sonar Target recognition case studies, HlPPO per­
formed much better than either FF Classification or 
C4.5. In the Promoter case study, HIPPO and FF Clas­
sification performed equally well and better than C4.5. 
These comparisons are all statistically significant with 
p < .05, except for the comparison with C4.5 in the 
sonar target recognition study. 

Altogether, this shows that in addition to requiring 
a much smaller number of negative training data than 
the other two systems, HlPPO is capable of classifying 
novel instances more accurately than both C4.5 and FF 
Classification in all cases except for the Promoter data, 
where HIPPO'S performance is matched by FF Classifica­
tion's. However, we believe that the limited performance 
of HIPPO with respect to FF Classification has to do 
with the weakness of the representation used in this ver­
sion of the promoter problem [Hirsh & Noordewier, 1994; 
Norton, 1994]. 

4 Conclusion 
This paper has presented a new approach to clas­
sification that uses the idea of Novelty Detection 
and in particular, that of Redundancy Compression 
and Non-Redundancy Differentiation. The system we 
introduced—HIPPO— attempts to learn how to recog­
nize concepts, rather than to differentiate between pos­
itive and negative instances of a concept. The method 
works in two phases. In a first phase, a concept is learned 
from positive instances only and in a second phase, the 
system learns how to identify positive and negative in­
stances of that concept. HlPPO was tested on three real-
world applications and compared with two conventional 
classification systems: C4.5 and Feedforward Classifica­
tion. In all applications, HlPPO performed better than 
C4.5 and in two of them, it performed better than Feed-
forward Classification (in the third application HIPPO 
and Feedforward Classification performed equally well). 
Furthermore, in all applications, HlPPO used a signif­
icantly smaller number of negative training data than 
the other two systems. 
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The work presented in this paper opens up a large 
number of possible theoretical and practical issues to 
consider in the future. It would be useful, in particular, 
to establish the strength and limitations of our approach 
more precisely, by experimenting in other domains (both 
artificial and real) and comparing HIPPO'S results with 
methods other than C4.5 and Feedforward Classification. 
We could also attempt to improve the two components 
of HIPPO, using a more refined version of the autoen-
coder and fully automating the Threshold Determina­
tion component. Such studies would contribute to the 
exploration of this promising new approach to concept-
learning which is more accurate than conventional meth­
ods and requires fewer negative data for training. 
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