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Abstract

Reasoning with model-based representations is
an intuitive paradigm, which has been shown
to be theoretically sound and to possess some
computational advantages over reasoning with
formula-based representations of knowledge. In
this paper we present more evidence to the util-
ity of such representations.

In real life situations, one normally completes
a lot of missing "context" information when
answering queries. We model this situation
by augmenting the available knowledge about
the world with context-specific information; we
show that reasoning with model-based repre-
sentations can be done efficiently in the pres-
ence of varying context information. We then
consider the task of default reasoning. We
show that default reasoning is a generalization
of reasoning within context, in which the rea-
soner has many "context" rules, which may
be conflicting. We characterize the cases in
which model-based reasoning supports efficient
default reasoning and develop algorithms that
handle efficiently fragments of Reiter's default
logic. In particular, this includes cases in which
performing the default reasoning task with the
traditional, formula-based, representation is in-
tractable.

Further, we argue that these results support an
incremental view of reasoning in a natural way.

1 Introduction

The generally accepted framework for studying reason-
ing in intelligent systems is the knowledge-based system
approach. The idea is to store the knowledge in some

representation language with a well defined meaning as-

signed to its sentences. The sentences are stored in a
Knowledge Base (KB) which is combined with a rea-
soning mechanism that can be used to determine what
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can be inferred from the sentences in the KB. There are
many knowledge representations that can be used to rep-
resent the knowledge in a knowledge-based system. Dif-
ferent representation systems (e.g., a set of logical rules,
a probabilistic network) are associated with cormespond-
ing reasoning mechanisms, each with its own merits and
range of applications. Given a logical knowledge base,
for example, reasoning can be abstracted as a deduction
task: determine whether a sentence, assumed to capture
the situation at hand, is logically implied by the knowl-
edge base. In all cases, the emphasis of this approach
is on comprehensibility [McCarthy and Hayes, 1969;
Pearl, 1988]: knowledge should be encoded so that it
is readily accessible.

It is widely acknowledged today that a large part
of our everyday reasoning involves arriving at conclu-
sions that are not entailed by our "theory" of the world.
Many conclusions are derived in the absence of infor-
mation that is sufficient to imply them. This type of
reasoning is naturally non-monotonic since further ev-
idence may force us to revise our conclusions. Within
the knowledge-based systems approach this situation is
handled by theories for reasoning with "defaults" (see
eg. [Reiter, 1987a)). The true knowledge about the
world is augmented by a set of default rules that capture
only "typical" cases. The quest is for a reasoning system
that, given a query, responds in a way that agrees with
what we know about the world and the default assump-
tions and at the same time supports our intuition about
a plausible conclusion.

Computational considerations, however, render this
self-contained approach to reasoning inadequate for com-
monsense reasoning. This is true not only for the task
of deduction, but also for many other forms of reason-
ing which have been developed. All those were shown
to be even harder to compute than the original formu-
lation [Selman, 1990; Roth, 1993]. Of particular inter-
est in this context are the results on default reasoning
tasks [Selman and Kautz, 1990; Kautz and Selman, 1991;
Papadimitriou, 1991], where the increase in complexity
is clearly at odds with the intuition that reasoning with
defaults should somehow reduce the complexity of rea-
soning. This remains true, even when we severely re-
strict the expressivity of the knowledge base, the default
rules and the queries allowed. For example, when the
knowledge base is Horn, all the default rules are positive
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literals, and the query is a single positive literal, the de-
fault reasoning task is NP-Hard [Selman and Levesque,
1990]. This should be contrasted with the case of deduc-
tive reasoning, where Hom theories are distinguished by
the existence of linear time satisfiability algorithms.

An alternative approach to the study of common-
sense reasoning is developed in [Kautz et al.,, 1995;
Khardon and Roth, 19%4c]. There, the knowledge
base is represented as a set of models (satisfying as-
signments) of the world rather than a logical formula
describing it. It is not hard to motivate a model-
based approach to reasoning from a cognitive point of
view and indeed, most of the proponents of this ap-
=>0ach to reasoning have been cognitive psychologists
IJohnson-Laird, 1983; Johnson-Laird and Byme, 1991,
Kosslyn, 1983], who have alluded to the notion of "rea-
soning from examples" on a qualitative basis. In the Al
community this approach can be seen as an example of
Levesque's notion of "vivid" reasoning [Levesque, 1986;
1992], and is somewhat related to Minsky's frames-
theory [Minsky, 1975].

Given a model-based representation of the knowledge
base KB and a query a, the deduction task KB \= a can
be answered in a straightforward way: Evaluate a on all
the models in the representation. If you find a model of
KB which does not satisfy a, then KB not= a, otherwise
conclude KB = a. Clearly, if the modelbased repre-
sentation contains all the models of KB this approach
yields correct deduction, but representing KB by explic-
itly holding all the possible models is not plausible. A
model-based approach becomes feasible if KB can be
replaced by a small model-based representation and still
support correct deduction.

The theory of model-based representations developed
in [Khardon and Roth, 19%4c] (generalizing the theory
developed in [Kautz et a/., 1995] for the case of Hom ex-
pressions) characterizes the propositional languages for
which modelbased representations support efficient de-
duction and abduction. It is shown that in many cases in
which the deduction and abduction tasks are NP-Hard in
the formula-based setting, the modelbased representa-
tion is small (polynomial in the number of propositional
variables in the domain), and reasoning with it yields
correct and efficient reasoning algorithms.

In this paper, we extend the work presented in
[Khardon and Roth, 1994c] and present some more com-
putational advantages of reasoning with modelbased
representations. As a basic computational task we con-
sider the problem of reasoning within a varying con-
text. In real life situations, one normally completes a lot
of missing context information when answering queries
[Levesque, 1986]. We model this situation by augment-
ing the knowledge we have about the world with context-
specific information. Reasoning within context is there-
fore a deduction task, where some additional constrain-
ing information is added to the knowledge base. We show
how to solve this task efficiently using a model-based
representation, for a variety of propositional languages
as context information.

We then consider the task of default reasoning. There,
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given a representation of the world, a set of (sometimes
conflicting) default rules and an assertion q) one is trying
to asses whether g can be concluded "by default” from
the available information. We show that default reason-
ing is a generalization of reasoning within context, in
which the reasoner has many context rules, which may
be conflicting. We provide an efficient algorithm for the
default reasoning task, for various dasses of world knowl-
edge, default rules and queries, based on the algorithm
developed for reasoning within context.

As in the case of deductive and abductive reasoning
[Khardon and Roth, 1994c], we present an efficient de-
fault reasoning algorithm for cases where the formula
based reasoning is hard. For example, in contrast to
the hardness result mentioned above, we show that if
the knowledge base is any propositional language with
a polynomial size DNF1, the default rules are arbitrtry
monatone functions and the query is a Horn query, the
default reasoning task can be solved correctly and effi-
ciently.

Equally important for the plausibility of model based
reasoning is the view that it suggests about reasoning.
While we do not consider in the paper the question of
how the knowledge base is acquired, this issue is clearly
an important one, and the plausibility of any theory
for reasoning hinges on it. It is important therefore
to mention that it has been shown, within the Leam-
ing to Reason framework [Khardon and Roth, 1994b;
1995], that modelbased representations that are suitable
for the reasoning tasks considered here can be leamed ef
ficiently. The model based approach to default reasoning
can therefore be incorporated within an inductive set-
ting. The model based representation can be efficiently
leamed, context specific default rules can be acquired in
various learning processes, and these can be combined to
work together in a plausible and efficient way. Further-
more, we show how knowledge available within a specific
context can be used to reason within this context. There-
fore, our treatment of reasoning within context supports
the view that an intelligent agent constructs a represen-
tation of the world incrementally by pasting together
many "narrower” views from different contexts.

The inductive nature of non-monotonic reasoning is
also at the heart of the approach developed in [Valiant,
199%4; Roth, 1995], where a different view on dealing with
incomplete information is taken.

2 Preliminaries

We consider problems of reasoning where the "world" is
modeled as a Boolean function W : {0,1}" —» {0,1}.
We use interchangeably the terms propositional expres-
sion and Boolean function, and likewise for propositional
language and a dass of Boolean functions. We denote
dasses of Boolean functions by F', G, and functions by
f,9.

We consider a set X — {x1,..., xn) of variables, each
of which is associated with a world's attribute and can

1The size of the modetbased representation of KB is re-
lated to the size of its minimal DNF. Thus, we do not assume
that the DNF representation is known but only require that
a polynomial size representation exists.



take the value 1 or O to indicate whether the associated
attribute is true or false in the world.

Assignments are mappings from X to {0,1}, and we
treat them as elements in {0, 1}* with the natural map-
ping. Assignments in {0, 1}" are denoted by x.y.z, and
weight(x) denotes the number of 1 bits in the assign-
ment x. A clause is a disjunction of literals, and a
CNF formula is a conjunction of dauses. For exam-
ple (z; ¥ T2) A {23 V F1 V z4)l is @ CNF formula with
two clauses. A term is a conjunction of literals, and a
DNF formula is a disjunction of terms. For example
(21 AT3) V (za AF7 A zg) is @ DNF formula with two
terms. A CNF formula is monotone if all the literals in
it are positive (unnegated). A CNF formula is Hom if
every clause in it has at most one positive literal. A CNF
formula is k-quasi-Hom if there are at most k positive
literals in each clause. It is a k-quasieversed-Hom if
there are at most k negative literals in each clause. A
DNF formula is k-quasi-monotone DNF if there are at
most k negative literals in each term.

Every Boolean function has many possible representa-
tions, and in particular both a CNF representation and
a DNF representation. By the DNF size of /, denoted
\DNF(f)\, we mean the number of terms in the minimal
DNF representation of/. (Similarly, for \CNF{f)\.)

An assignment = € {0, 1}" satisfies /if f{z)=1. (xis
also called a model of /.) If/ is a theory of the "world",
a satisfying assignment of / is sometimes called a possi-
ble world. By "/ implies g", denoted / |= ¢, we mean
that every model of / is also a model of g. Throughout
the paper, when no confusion can arise, we identify a
Boolean function / with the set of its models, namely
F71(1). Observe that the connective "implies” (=) used
between Boolean functions is equivalent to the connec-
tive "subset or equal" (€} used for subsets of {0,1}"
Thatis, flE giland only if f Cyg.

3 Reasoning with Models

Consider a propositional knowledge base W and let &
be a propositional query. The deduction problem W |=
a can be approached using the following model-based
strategy:
Algorithm MBR(T, a):
Test Set: A sel' € W of possible assignments.
Test: If there is an element £ € I' which does

not satisfy a, return "NO". Otherwise, return
IIYESII.

Clearly, this approach solves the inference problem if
T is the set of all models (satisfying assignments) of W,
but this set might be too large. A model-based approach
becomes useful if one can show that it is possible to use
a fairly small set of models as the Test Set, and still
perform reasonably good inference.

This section briefly introduces the monotone theory
of Boolean functions [Bshouty, 1993], and the theory of
reasoning with models? (see [Khardon and Roth, 1994d]
for more details).

AWe note that this direction wes studied independently
in the Relational Data Base community [Beeri et a/., 1984;
Mannila and Raiha, 1986]. The results on modetbased rea-

Definition 1 {Order) We denote by < the usual par-
tial order on the lattice {0,1}", the one induced by the
order 0 < 1. That 15, for z,y € {0.1}", z < y #f and
ondy if ¥i x; < y. For an assignment b € {0,1}" we
define x <p y tfond only if B b < y & b [Here & is the
bitwise addition modulo 2}. We say that x > y if and
enlytffa>yande #y.
Intuitively, if b = U then the order relation on the #th
bit is the normal order; if & = 1, the order relation is
reversed, that is, 1 <, 0.
Next we define: The monotone extension of = €
{0,1)"® with respect to b:
My(z)={z [z 2z}
The meonelone exteasior of [ with respect to b:
Miy(fy={z |z 23 z, for some z € f}.

The sel of minimal essignmenis of [ with respect to &

ming(f) = {z | z € f, such that ¥y € f,z ¥4 y}.
Definition 2 (Basis) 4 set B s abasisfor f if [ =
Mpep MulS). B is e basts for a class of functions F if

t 15 a basis for all the functions ¢ F.

The importance of these definitions is thal one can
show that every Boolean function has a basis B, and
can be represented as follows:

I=AMmin=A V Mz (1)
8EE bEB ;eminyif)

This representation yiclds a necessary and sufficient con-

dition describing when = € {0,1}" is positive for f:

Corollary 1 Let B be a basis for f, x € {0,1}". Then,

z € f fie., fix) = 1) if and ondy if for cvery basis

element b € B there exisls 2 € mang(f) such thatz >, =,

It s known that for every b, the size of ming(f) is

bounded by the size of its DNTF representation. Further,

a set of assignments which falsify every clause in a CNF

representalion of f is a basis for f. Therefore, f has a

basis whose size is bounded by |CN F(f)|. Some impor-

tant function classes have a small fired basis, irrespective
of the CNF size of the function:

Horn-CNF formmnlas: The basis for this class is By =
{ue {0,1}"| weight{u) > n~1}, since every Horn
clause is falsified by an assignment in Bg. Clearly.
\Be)=n+1.

k-quasi-Horn formulas:

By, = {u € {0,1}" | weight(u) > n— &k} is a
bhasis. Clearly, | By, | = O(n*}. Similarly, there is a
basis for k-quasi-reversed-Horn formulas.

log nCNF formulas: CNF in which the clauses contain
at most Oflogn) literals. The basis for this class
is derived using a combinatorial construction called
an (n, k)-universal set [Alon f al., 1992]. It can be
shown that [Biggn-cnr| = O(n?).

Common queries: A function 15 common i every
clause in its CNF representation is taken from cne of
the above classes. The union of the bases for these
classes is a basis, B¢, for all common functions. We
refer to this class as the class of common queties.

soning have immediate implications in this domain which are
described elsewhere [Khardon et ol., 1995].
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3.1 Deduction

We can now to characterize a model-based knowledge
base for which the algorithm MBR is successful.

Definition 3 For a knoMedge base f € F the set T =
I'® of characteristic models off, is the set of all minimal
assignments of f with respect to the basis B. Formally,

F? = Upen{z € min,{ 1}

The following are the basic theorem of the theory of rea-
soning with models, its application to common queries,
and a bound on the size of the model-based representa-
tion.

Theorem 1 Let f be any Boolean function, and & & &G,
where B be a basis for G. Then f & o if and only if for
everyu € T8, af{u)=1

Theorem 2 Let f be any Boolean function. Then for
any common query, modetbased deduction using Ff” ,is
correct.

Theorem 3 Let f be any Boodlean function, and B a

basis. Then, the size of the modetbased representation
off is

P81 < 3" Imin(£)] < }Bi - [DNF(f)|.

L1¥:)

We note that this bound is tight in the sense that for
some functions the size of the DNF is indeed needed.
It does however allow for an exponential gap in other
cases. Namely, there are functions with an exponential
size DNF and a linear size model-based representation
[Khardon and Roth, 1994c). It is also interesting to com-
pare the size of this representation to the size of other
representations for functions. Examples in [Kautz et ai,
1995] show that there are cases where the (Hom CNF)
formula representation is small and the model-based rep-
resentation is exponentially large, and vice versa. For a
discussion of these issues see [Khardon and Roth, 1994c].
Example: Let / have the CNF representation:

f=(mVasvaa) A{lea Ve Ve ) A (BT VTV 2aVE])

The function / has 12 (out of the 16 possible) satisfyi 3q
assignments. The non-satisfying assignments of/ are”:
{0000,0001,0010,1101}.

If we want to be able to answer all possible Hom
queries with respect to / we need to use the Hom ba-
sis By = {1111,1110,1101,1011,0111}. Each of the
models 1111,0111,1011,1110 satisfies / and therefore for
each of these, miny(f) = 6. For 6 = 1101, the mini-
mal elements can be found by drawing the correspond-
ing lattice and checking which of the satisfying assign-
ments of / are minimal. This yields min1101g/) =
{1100,1111,1001,0101}. We therefore get that I';#
{1111,0111,1011,1100,1001,0101,1110}. Note that it
includes only 7 out of the 12 satisfying assignments of /.

Clearly, in general I‘f" C f, and therefore model-
based deduction never makes mistakes on queries that

% An element of {0,1}* dencles an assgnment to the
varables zi,...,zn (ie., 0011 means r; = £; = 0, and
za=a24 =10
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are implied by f. Furthermore, for the Horn query
oy = 23 A Zs — T3, reasoning with P2% will find the
counterexample 1011 and deduce correctly that f |~ ay.

We note that in general, if f is given in its ONF repre-
sentation, solving the problem f k= a is co-NP-complete,
even when « is a Horn query.

4 Reasoning within Context

It has been argued that in real life situations, one nor-
mally completes a lot of missing “context” information
when answering queries [Levesque, 1986]. For example,
if asked at the conference how long it takes to drive to the
airport, we would probably assume (unless specified oth-
erwise) that the question refers to the city we are at now,
Montreal, rather than where we live (and have been to
the airport more times). This corresponds to assigning
the value “true” to the attribute “here” for the purpose
of answering the question. Sometimes we need a more
expressive language to deacribe our assumptions regard-
ing the current context and assume, say, that some rule
applies [Setman and Kautz, 1990]. For example, we may
assume {in the “conference” context) that if someone has
a car, then it is a rental car.

Let W be a Boolean function that describes our knowl-
edge about the world. A “first principle” way to for-
malize the above intuition is the following: we want to
deduce a query a from W, if a can be inferred from
W given that the query refers to the current context.
Namely, the instances of W which are relevant to the
query must also satisfy the context conditicn d, a con-
junction of some literals and rules. We denote this ques-
tion by W =4 a.

Notice that it is possible that W |54 & but W £ o, if
all the satisfying assignmenis of W that do not satisfy
o do not satisfy d. Formalized this way, we get that
the problem W =4 « is equivalent to the problem W A
d = a. Thus, a theorem proving approach to reasoning
does not give any computalional advantage in solving
this reasoning problem.

Let W € F, @ € G and let B be a basis for G. From
Theorem 1 it is clear that given ', ,, the set of charac-
teristic models for W A d, model-based reasoning can be
used to solve the reasoning problem W A d | o. How-
ever, we consider here a more general problem: given
I'f, we are interested in performing inference according
ta j=4 with it, where the “context condition™ d may vary.

From our model-theoretic definition of the conneciive
[z4 it is clear that if one holds el the models of W, then
by filtering out all the models that do not, satisfy d and
then performing the model-based test one can answer
W Ad = a correctly. The algorithm C-MBR does just
that, with the set :

Algorithm C-MBR(T, d,a):
Test Sei: Consider only those elements of I' which
satisfy d.
Test: If there is such an element which does not sat-
isfy e, return “NO”. Otherwise, return “YES".

The following theorems characterize the cases in which
this algorithm, C-MBR, provides correct reasoning.



Theorem 4 Giver '8, the algorithm C-MBR provides
an exact solution te the reasoning prodlem W =4 o for
every d such that B is o basis ford — a.

Proof: Clearly, W kja s WAdEas W Edvas
W E (d = a) Therefore from Thecrem 1, when &
is a basis for d — a, l" can be used for model based
reagoning with it. Models of W that do not satisfy d
are useless as counterexamples since d — ¢ always holds
and therefore, using the Test Set of Algorithm C-MBR
produces the correct inference. [ |

Theorem 5 The following conditions on o, B and d
guaraniee that C-MBR supporits correct reasoning within
conlezi.

(i} Lel « be @ Horn query and B = By, a basis for Horn
theories. If d is & monolone Boolean funclion then B is
a basis for d — ar.

(i1} Let a be & k-quasi-Horn query and B = By, ,,, ¢
basts for {k + {)-quasi-Horn theories. If d s a Boolean
function thal can be represenled as o I-guasi-monofone
DNF then B is a basis for d — a.

(iti) Let o be a lognCNF guery and B a basis for
2log nCNF theories. If d is 2 conjunclion of up to logn
arbitrary rules {or disfunctions) then B is a basis for
d—a.

Proof: For {1}, consider first the case in which d =
Mgy 7o Leta = A ;(m; — z;) be a Horn query (that
is, m; is a monotone conjunction). Then

d—a=dvaz=dv AV = Alldam) — ),
ied JES
which means that 4 — o 15 a Horn expression. In gen-
eral, if d’ is a monotone function, &' = \/,d; where d;
are monotone conjunctions. Since ¥f g, h, (f vV g} —
k= {(f — MA(g —= h), we get that & — & =
f\f(f"\ju((df Amj) — z;)) is 2 Horn theory*. For (ii),
in the same way, we get that the body of the rule might
contain up to k +1{ non-negated literals. For (1}, similar
manipulations show that d — a is 2 2legnCNF. ]

The approach presented in this section can be viewed
as a process of augmenting a modei-based representation
T with a set of rules. Given a model-based represenia-
tion I'f, of W, any rule that holds in W cannot help
in answering queries, since it does not filter out any as-
signment of W, and is thus redundant. However, the
context rules do not hold in W and thus augmenting W
with them modifies the set of conclusions. As we have
shown, in order to reason within context, we nesd to
maintain a model-based representation with respect to
a basis that is slightly larger than in the pure deductive
case.

5 Default Reasoning with Models

In the previous section we assumed that the context in-
formation is given. In general, one might have many

*We note that the size of the resulting Horn theory might
be exponentially large, but it only appears in the anralysis.
We do not actually compute this expression in the algorithm.
Rather, filtering examples according to d is sufficient. The
satne holds for the other cases.

conlext rules, which may be conflicting, and the goal is
to derive plausible conclusions in the face of this infor-
mation,

This is the situation modeled in default reasoning.
Given a representation of the world, a set of (sometimes
conflicting) default rules, and an assertion g, one is try-
ing to asses whether g can be concluded by default from
the available information. We will see that this is a gen-
etalization of the situation discussed in the previous sec-
tion, and that it can also be dealt with efficiently using
model-based representations. We shall concentrate here
or a special case of Reiter's Default logic [Reiter, 1980],
applied to propositional logic and with some restrictions
on the default rules.

In Reiter's default logic, default rules have the form
o : §/%, which should read as “if o holds and it is con-
sietent to assume $ then conclude y". The case with
8 = v is called normal defeulis, and o is called a prereq-
uisite, The discussion below considers normal defaults
with empty prerequisites (i.e. of the form : 3/3). In this
cage, we denote by D the set of Boolean functions 2,
and say that [ is the set of default rules. We sometimes
treat a collection of rules as their conjunction. That is,
D(z) = 1 means Agepd(z) =1.

Definition 4 A default rule is simple if il is of the form
:B/8, end 3 is a single iteral. The rule 15 positive ¢f 8
is any monotone funciion. The rule is positive simple if
f 15 a positive literal.

Notice that the theory for diagnosis [Reiter, 1987b] and
the closed world defaults [Reiter, 1980] can he described
using simple defaults.

A defaull theory is a paiv (D, W) where D is a set of
default rules, and W is propositional expression. An ez-
tension of (D, W) is defined as a fixed point of some oper-
ator. For our special case the following theorem gives an
allernative and simpler definition: (The operator Th{R)
denotes the theorem closyre of R.)

Theorem 6 ([Reiter, 1987b)], page 88) Let D be a
set of normel defoults with emply prerequisile. E is an
extension of (D, W) +f E = Th{W U {3| : §/8 € 5],
and 5 is @ mazimal subset of D suck that E = WU{8j :
B/8 € S} is consistent,

Using this theorem as the definition for extension we
can identify 8 maximal consistent subset S wilh each
extension E. We denote this subset by 5¢. Given that
Sg is consistent with W, we get that an extension E
includes ¢ iff W A Sg [ ¢.

The defaull reasoning task DEF(D, W, q) is defined
as follows: given a default theory (D, W) and a propo-
sitional expression ¢, decide whether there exisis an ex-
tension E of (D, W) such that g € E.

Clearly, if W is consistent with the set of all rules in
D, then there exists only one maximal consistent subset.
S of D, the one which contains all these rules. This case
simply reduces to reasoning within the context D, which
we discussed earlier. The main difficulty which arises in
the general case is that W may not be consistent with
all of D.

Next we present positive results on default reasoning.
As in the deductive teagoning case, Lhe efficient results
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we present hold in cases where the formula based reason-
ing is hard®. The following algorithm, D-MBR, is based
on the abduction algorithm® developed in [Kautz ef al.,
1995] and used in [Khardon and Roth, 1994c].

Algorithm D-MBR(I', D, q):
Do for all models z € T such that ¢(z) =1
Let S={de D : dfz)=1}
If C-MBR(T,S,q) answers “YES", return
“YES”.
EndDo
Return “NO”.

Assume that I' = Ty, a model based representation of
W. The algorithm D-MBR receives I', D and a query
g as mput. It starts by enumerating all the models in
. When it finds 8 model 2z in which the query holds,
(i.e., g{z) = 1) it sets 5 to be the set of all the rules
in I that this model satisfies. The algorithm then tests
whether W A S | g by calling the praocedure C-MBR
to decide whether W |=g q. 1f the answer is “yes” the
algorithm returns “yes” {and possibly the extension 5},
and otherwise it continues to test the next model in T
If all ihe models in T have been scanned and no good
extension has been found the algorithm says “no”.

/* No extension found */

Theorem T Lef W be any propesitional expression, D a
set of positive defaults, and Q the class of Horn queries.
Then, for all ¢ € Q, on trput (D, l"g," .4), the algorithm
D-MBR solves the default reasoning task DEF(D, W, g)
correctly.

Proof: Assume first that there exists extension E that
contains g. We show that the algorithm answers “YES”.
By definition, the existence of the extension implies that
W A Sg | g and that there exists an assignment u € W
such that Sg(u} = 1 and g{u) = 1. Let z € min;- (W)
such that ¢ <~ u. Then Sg(z} = 1, as Sg is mono-
tone. Since W A Sg | g we have g{z) = 1. Since
2 € IR, the algorithm D-MBR will use it, and set Sg
correctly (since Sg is a maximal set of elements from
D). By (i) of Theorem 5 the algorithm C-MBR answers
“Yes” when called with I‘ﬁ," ,Sg and g, and therefore D-
MBR answers “YES". Assume now that J-MBR returns
“YES”. Since g is Horn and S is a set of monotone func-
tions, Theorem 5 implies that C-MBR ia correct, that is
W AS |= g. By construction, S is a maximally consistent
sel and therefore the corresponding extension contains q.

We note that the default reasoning task is NP-Hard [Se-
men and ue, 1990] when the base is Hom,
all the default rules are posttive literals, and the query is a
single positive literal. Qur results provide an algorithm for
this dass of problems, which is polynomial in the size of the
model based representation. The latter though may be expo-
nential in the size of the Hom expression, and in particular
this happens for the problems used in the reduction in [Sek
man and Levesque, 1990]. So strictly speaking we do not
prove an advaniage in this spedial case. Our results, how-
ever, provide efficient algorithms in cases where they were
not known fo exist before.

®0ur results were inspired by the connections between ab-
duction and default reasoning developed in [Selman, 1990].
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Similarly, we can show:

Theorem 8 Lei W be any propositional expression, D
@ set of simple defaulls with up fo k-1 negative lterals,
and Q the cl'as; of Horn gueries. Then, for all g € Q,
on input (D, T/ ), the algarithm D-MBR solves the
default reasoning task DEF(D, W, q) correctly.

Proof: Let F' be an extension and Sg its corresponding
maximal consistent subset of D). The element b, defined
by: & = 0 when 7 € Sk, atherwise, b; = 1, i% in the
basis By, .

Note that if Sg(u) = 1 and z € min,(W) such that
z <3 u, then Sg(z) = 1 since the assignments to vari-
ables in Sg are the same in ¥ and 2. Therefore the proof
of Theorem 7 applies here as well (replacing the basis
element 1" by b, and using (ii) of Theorem 5). !l

Using Theorem 4 we can find other instances in which
cotrect default reasoning is possible. For example, we
could answer queries that are more general than Homn
quertes. In particular, if D is simple and the literals in
D are special (e.g., Abnormal predicates in diagnosis)
and do not appear in the queries, then we can set a
special basis that will handle every query which is either
Horn or in log r-CNF.

The above theorems yield efficient default reasoning
whenever the model-based representation T is small.
{And, in particular, whenever the DNF size of f is small.)
‘This should be contrasted with the hardness of deductive
and default reasoning.

6 Discussion

Reasoning with models is an intuitive paradigm, which
has been shown to be theoretically sound. In this paper
we presented more evidence to the utility of such rep-
resentations. In particular, these representations sup-
port efficient reasoning in the presence of varying con-
text information, as well as some restricted cases of de-
fault reasoning. The significance of these results is that
they are achieved as natural extensions of exact (deduc-
tive) reasoning, and hold in cases in which the traditional
formula-based representation does not support efficient
reasoning.

These results can be viewed as providing some the-
oretical support for the usefulness of casebased style
reasoning, where a set of "typical cases' is used as a
knowledge representation.

We have shown that a model-based representation can
be used to reason correctly when some additional con-
straining context information is supplied. This informa-
tion augments the agents' knowledge and aids in deriving
conclusions relevant to this context. We call this a top-
down solution. It is conceivable, though, that an agent
would have only some of the models, those models that
come from some specific context d. In such a case, our
results show that the agent reasons correctly within this
context (although not within every context). This ap-
proach can be shown to work in other scenarios in which
the agent constructs a model-based knowledge represen-
tation by randomly collecting examples in the environ-
ment [Khardon and Roth, 1994a]. Thus, the approach



supports the view that an intelligent agent constructs a
representation of the world incrementally by pasting to-
gether many "narrower" views from different contexts.

In default reasoning, an agent may have many (possi-
bly conflicting) default rules, acquired in different con-
texts. Default reasoning is thus a generalization of rea-
soning within context where the additional information
may not be consistent, and may not be consistent with
the knowledge the agent has about the world. Indeed,
a query holds "by default", if there is a plausible con-
text in which it holds. As we have shown, model-based
representations efficiently support default reasoning.

Finally, we mention that it has been shown, within
the Leaming to Reason framework [Khardon and Roth,
1994b], that the model based representations discussed
here can be leamed efficiently. This can be combined
with context specific default rules that are acquired via
rote leaming or other learning processes [Schuurmans
and Greiner, 1994] to work in a plausible way.
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