
F r o m A p p r o x i m a t e t o O p t i m a l S o l u t i o n s : 
A C a s e S t u d y o f N u m b e r P a r t i t i o n i n g 

Richard E. K o r f 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, Ca. 90024 

korf@cs.ucla.edu 

Abst rac t 

Given a set of numbers, the two-way parti­
tioning problem is to divide them into two 
subsets, so that the sum of the numbers in 
each subset are as nearly equal as possible. 
The problem is NP-complete, and is contained 
in many scheduling applications. Based on 
a polynomial-time heuristic due to Karmarkar 
and Karp, we present a new algorithm, called 
Complete Karmarkar Karp (CKK), that opti­
mally solves the general number-partitioning 
problem. CKK significantly outperforms the 
best previously-known algorithms for this prob­
lem. By restricting the numbers to twelve sig­
nificant digits, we can optimally solve two-way 
partitioning problems of arbitrary size in prac­
tice. CKK first returns the Karmarkar-Karp 
solution, then continues to find better solutions 
as time allows. Almost five orders of mag­
nitude improvement in solution quality is ob­
tained within a minute of running time. Rather 
than building a single solution one element at a 
time, CKK constructs subsolutions, and com­
bines them in all possible ways. CKK is di­
rectly applicable to the 0/1 knapsack problem, 
since it can be reduced to number partitioning. 
This general approach may also be applicable 
to other NP-hard problems as well. 

1 I n t roduc t i on and Overview 
Consider the following very simple scheduling problem. 
We are given two identical machines, a set of jobs, and 
the time required to process each job on either machine. 
Assign each job to one of the machines, in order to com­
plete all the jobs in the shortest elapsed time. In other 
words, divide the job processing times into two subsets, 
so that the sum of the times in each subset are as nearly 
equal as possible. This is the two-way number partition­
ing problem, and is NP-complete[l]. The generalization 
to K-way partitioning with K machines is straightfor­
ward, with the cost function being the difference between 
the largest and smallest subset sums. This basic prob­
lem is likely to occur as a subproblem in many practical 
scheduling applications. 

For example, consider the set of numbers (4, 5, 6, 7, 8). 
If we divide it into the two subsets (7,8) and (4,5,6), 
the sum of each subset is 15, and the difference of the 
subset sums is zero. In addition to being optimal, this is 
also a perfect partition. Note that if the sum of all the 
numbers is odd, a perfect partition will have a subset 
difference of one. 

We first present previous work on this problem, in­
cluding a polynomial-time greedy heuristic, and an 
exponential-time algorithm to find optimal solutions. 
We also present an elegant polynomial-time approxima­
tion algorithm due to Karmarkar and Karp, called set 
differencing[5], or the KK heuristic, which dramatically 
outperforms the greedy heuristic. The main contribu­
tion of this paper is to extend the KK heuristic to a 
complete algorithm, which we call Complete Karmarkar 
Karp (CKK). The first solution returned by CKK is the 
KK solution, and as the algorithm continues to run it 
finds better solutions, until it eventually finds and veri-
fies an optimal solution. 

We present experimental results comparing CKK to 
the standard algorithm for finding optimal solutions. 
CKK appears to be asymptotically faster than the stan­
dard algorithm, and provides orders of magnitude im­
provement when perfect partitions exist. Due to the ex­
istence of perfect partitions, it is possible in practice to 
optimally partition arbitrarily large sets of numbers, if 
the number of significant digits in each number is lim­
ited. This limit is about twelve decimal digits for two-
way partitioning. This is not a limitation in practice, 
since no physical quantities are known with more than 
twelve digits of precision. For example, this would repre­
sent an accuracy of one second in over 30,000 years. We 
have performed the same experiments for three-way par­
titioning, with very similar results, except that the pre­
cision limit for optimally partitioning large sets is only 
six decimal digits. 

CKK is the best existing algorithm for number par­
titioning, outperforming even stochastic approaches. It 
also can be directly applied to the 0/1 knapsack problem, 
which can be reduced to number partitioning. Instead 
of incrementally building a single partition, CKK con­
structs a large number of subpartitions, and combines 
them together in all possible ways. We believe that this 
general strategy may be applicable to other NP-complete 
problems as well. 

266 AUTOMATED REASONING 



2 Previous W o r k 
2.1 Greedy Heuristic 
The obvious greedy heuristic for this problem is to first 
sort the numbers in decreasing order, and arbitrarily 
place the largest number in one of two subsets. Each 
remaining number is then placed in the subset with the 
smaller total sum thus far, until all numbers are assigned. 

For example, given the sorted numbers (8,7,6,5,4), 
the greedy algorithm would proceed through the follow­
ing states, where the numbers outside the list are the cur­
rent subset sums: 8,0(7,6,5,4), 8,7(6,5,4), 8,13(5,4), 
13,13(4), 13,17(), for a final subset difference of 4. Note 
that the greedy algorithm does not find the optimal so­
lution in this case. The above notation maintains both 
subset sums, but to find the value of the final difference, 
we only need the difference of the two subset sums. Thus 
we can rewrite the above trace as: 8(7,6,5,4), 1(6,5,4), 
5(5,4), 0(4), 4(). In practice, however, we would keep 
track of the actual subsets as well. 

This algorithm requires 0(N log N) time to sort the 
N numbers, and then O(N) time to assign them, for an 
overall time complexity of 0(N log N). 

2.2 Set Differencing (Karmarkar-Karp) 
The set differencing method of Karmarkar and Karp[5], 
also known as the KK heuristic, is another polynomial-
time approximation algorithm. It also begins by sorting 
the numbers in decreasing order. In our example, the 
two largest numbers are 8 and 7. The algorithm commits 
to placing these two numbers in different subsets, while 
deferring the decision about which subset each will go in. 
For example, if we place the 8 in the left subset, and the 
7 in the right subset, this is equivalent to placing their 
difference of 1 in the left subset, since we can subtract 7 
from both subsets without affecting the final difference. 
Similarly, placing the 8 in the right subset and the 7 
in the left subset is equivalent to placing 1 in the right 
subset. The algorithm removes the two largest numbers, 
computes their difference of 1, and then treats the 1 just 
like any other number, inserting it in sorted order in 
the remaining list of numbers. The algorithm continues 
removing the two largest numbers, replacing them by 
their difference in the sorted list, until there is only one 
number left. This number represents the value of the 
final subset difference. 

For example, given the sorted numbers (8,7,6,5,4), 
the 8 and 7 are replaced by their difference of 1, which 
is inserted in the remaining list, resulting in (6,5,4,1). 
Next, the 6 and 5 are replaced by their difference of 
1, yielding (4,1,1). The 4 and 1 are replaced by their 
difference of 3, giving (3,1), and finally the difference of 
these last two numbers is the final subset difference of 2. 
The KK heuristic also fails to find the optimal partition 
in this case, but does better than the greedy heuristic. 

While the above algorithm computes the final differ­
ence of the subset sums, computing the actual partition 
is slightly more involved. The algorithm builds a tree, 
initially with one node for each original number, and no 
edges. Each differencing operation adds an edge between 
two numbers, to signify that they must go in different 
subsets. The resulting graph forms a spanning tree of 

the original nodes, which is then two-colored to deter­
mine the actual subsets, with all the numbers of one 
color going in one subset. 

For example, Figure 1 shows the final tree for the ex­
ample above. First, replacing 8 and 7 by their difference 
creates an edge between them. The larger of the two, 
node 8, represents their difference of 1. Next, replacing 
6 and 5 by their difference adds an edge between them, 
with node 6 representing their difference of 1. If we then 
take the difference of 4, and the 1 from the difference 
between 7 and 8, we add an edge between 4 and 8, since 
node 8 represents the difference of 1. Since 4 is larger 
than 1, node 4 represents their difference of 3. Finally, 
an edge is added between node 4 and node 6, which rep­
resents the remaining value of 1. 

In general, the resulting graph forms a spanning tree of 
the original nodes, since all the numbers must eventually 
be combined, and N — 1 edges are created, one for each 
differencing operation. We then color the nodes of the 
graph with two colors, so that no adjacent nodes receive 
the same color, to get the final partition itself. To two-
color a tree, color one node arbitrarily, treating this node 
as the root, and then color all the nodes at a given depth 
from the root the same color, alternating colors with 
each level. Two-coloring the above graph results in the 
subsets (7,4, 5), and (8,6), whose subset sums are 16 and 
14, respectively, for a final partition difference of 2. 

The running time of this algorithm is O(NlogN) to 
sort the TV numbers, 0(N \ogN) for the differencing, 
since each difference must be inserted into the sorted 
order, and finally O(N) to two-color the graph, for an 
overall time complexity of 0(N log N). 

The KK heuristic finds much better solutions on aver­
age than the greedy heuristic. Figure 2 shows compar­
ative data for the two algorithms, partitioning random 
integers uniformly distributed from 0 to 10 billion. The 
horizontal axis is the number of values in the original 
set, and the vertical axis is the difference of the final 
subset sums, on a logarithmic scale. Each data point is 
an average of 1000 random problem instances. As the 
number of values increases, the final difference found by 
the KK heuristic is orders of magnitude smaller than for 
the greedy heuristic. We also show the optimal solution 
quality, which is orders of magnitude better than even 
the KK solution in this range. The optimal solution data 
points are averages of only 100 problem instances each. 
With 40 or more numbers of this size, a perfect partition 
difference of zero or one was found in every case. If we 
extend the graph further to the right, at about 300 num­
bers the KK line joins the optimal line, finding a perfect 
partition almost every time. The greedy line, however 
remains almost flat, requiring a. thousand numbers to 
drop another order of magnitude in solution quality. 

The explanation for the difference between the qual-

K0RF 267 



ity of the greedy and KK solutions is quite simple. The 
difference of the final partition is on the order of the 
size of the last number to be assigned. For the greedy 
heuristic, this is the size of the smallest original num­
ber. This explains the small improvement with increas­
ing numbers of values, since the more values we start 
with, the smaller the smallest of them is likely to be. 
For N numbers uniformly distributed between 0 and 1, 
the greedy method produces a final difference of 0(1 /N). 
For the KK method, however, repeated differencing op­
erations dramatically reduce the size of the remaining 
numbers. The more numbers we start with, the more 
differencing operations, and hence the smaller the size 
of the last numbers. Karmarkar and Karp have shown 
that the value of the final difference is 0(l/Nalo*N), for 
some constant a [5]. 

2.3 Finding Optimal Solutions 
Both algorithms above run in 0(N log N) time, but only 
find approximate solutions. If we want an optimal so­
lution, the obvious algorithm is to search a binary tree, 
where at each node the left branch assigns the next unas-
signed number to one subset, and the right branch as­
signs it to the other subset. We keep track of the best 
final difference found during the search, and return it as 
the result, along with the actual subsets if desired. 

The time complexity of this algorithm is 0(2N), since 
we have to search a binary tree of depth N, and its space 
complexity is 0(N), since we can search the tree depth-
first. There are two ways of pruning this tree, however. 
If we reach a node where the difference between the cur­
rent subset sums is greater than or equal to the sum of all 
the remaining unassigned numbers, the best we can do is 
to assign all the remaining numbers to the smaller sub-

set. For example, consider the state 15,0(6,5,4), which 
results from assigning the 8 and 7 to the same subset. 
Since the sum of 6, 5, and 4 is no greater than the cur­
rent subset difference of 15, the best we can do is to put 
all the remaining numbers in the other subset. Since 
this pruning doesn't depend on the best solution found 
so far, the size of the tree is independent of the order in 
which it is searched. 

If we reach a terminal node whose subset difference 
is zero or 1, representing a perfect partition, then we 
can terminate the search. The above example illustrates 
this, since once we assign the remaining numbers to the 
other subset, the resulting complete partition has a dif­
ference of zero. If a perfect partition exists, then the 
search order matters, since the sooner we find a perfect 
partition, the sooner we can quit. The obvious way to 
order the search is to sort the numbers in decreasing 
order, and always put the next number in the smaller 
subset, before putting it in the larger subset. This algo­
rithm produces the greedy solution first, and continues 
to search for better solutions, until an optimal solution 
is eventually found and verified. 

Several additional optimizations deserve mention. 
One is that the first number should only be assigned 
to one subset, cutting the search space in half. The sec­
ond is that whenever the current subset sums are equal, 
the next number should only be assigned to one subset, 
cutting the remaining subtree in half. The first optimiza­
tion is in fact a special case of the second, but in practice 
only this special case yields significant performance im­
provements. Finally, when only one unassigned number 
remains, it should be assigned only to the smaller sub­
set. Figure 3 shows the resulting binary tree for the 
numbers (4,5,6,7,8), where the number in front of the 
set is the difference between the current subset sums, 
and the numbers below the leaf nodes represent the cor­
responding final partition differences. 

2.4 Pseudopolynomial-Time Algor i thm 
There is also another rather different algorithm for find­
ing optimal solutions. This is a dynamic programming 
approach which assumes that the original numbers are 
integers, or can be mapped to integers, such as a set of 
rational numbers. It requires an array whose size is half 
the sum of all the numbers. The algorithm enumerates 
all possible subset sums, as opposed to all possible sub­
sets, to determine the achievable subset sum closest to 
half the total sum. Unfortunately, the space complex­
ity of this algorithm makes it impractical for numbers of 
even moderate size. 

3 Complete K a r m a r k a r - K a r p 
Similar to the extension of the greedy heuristic to a com­
plete algorithm, the main contribution of this paper is to 
extend the KK heuristic to a complete algorithm. While 
the idea is extremely simple, it doesn't appear in Kar­
markar and Karp's original paper[5], and apparently es­
caped a number of other researchers who worked on the 
problem subsequently [6; 4; 2]. 

At each cycle, the KK heuristic commits to placing 
the two largest numbers in different subsets, by replac-

268 AUTOMATED REASONING 



ing them with their difference. The only other option is 
to place them in the same subset. This is done by replac­
ing them by their sum. The resulting algorithm, which 
we call Complete Karrnarkar-Karp (CKK), also searches 
a binary tree, where each node replaces the two largest 
numbers. The left branch replaces them by their differ­
ence, while the right branch replaces them by their sum. 
The difference is inserted in sorted order in the remain­
ing list, while the sum is simply appended to the head of 
the list, since it will always be the largest element. Thus, 
the first solution found by CKK is the KK solution, but 
as it continues to run it finds better solutions, until an 
optimal solution is eventually found and verified. 

In the worst case, the time complexity is still 0(2N). 
However, the same pruning rules apply as in the standard 
algorithm, with the largest element of the set playing the 
role of the current subset difference. In other words, a 
branch is terminated when the largest element is greater 
than or equal to the sum of all the remaining elements. 
Figure 4 shows the resulting binary tree for the numbers 
(4,5,6,7,8). Note that the tree in Figure 4 is smaller 
than that in Figure 3, even though both find optimal 
solutions to the same problem instance. 

There are two reasons why CKK is more efficient than 
the standard complete algorithm, depending on whether 
or not a perfect partition exists. If there is no perfect 
partition, then both algorithms must search the whole 
tree. This is illustrated by the left subtrees in Figure 3 
and Figure 4, where both algorithms place the 8 and 7 in 
different subsets. This state is represented by 1(6,5,4) 
in Figure 3, where 1 is the current subset difference, and 
by (6, 5,4,1) in Figure 4B. The distinction between these 
two representations is that in the latter case, the differ­
ence of 1 is treated like any other number, and inserted 
at the end of the sorted order, instead of having the spe­
cial status of the current subset difference. Thus, at the 
next level of the tree, represented by nodes (4,1,1) and 
(11,4,1) in Figure 4, the largest number is greater than 
the sum of the remaining numbers, and these branches 
can be pruned. In the standard algorithm, however, the 
two children of the left subtree, 5(5,4) and 7(5,4) in 
Figure 3, do not have this property, and have to be ex­
panded further. Thus, CKK allows more pruning than 
the standard algorithm. 

The second reason that CKK is more efficient occurs 

when a perfect partition does exist. In that case, for 
the same reason that the KK heuristic produces better 
solutions than the greedy heuristic, the CKK algorithm 
finds better solutions sooner, including the perfect solu­
tion. This allows it to terminate the search much earlier 
than the standard algorithm, on average. 

4 Exper imenta l Results 
To demonstrate these effects, we implemented both the 
standard complete algorithm and the CKK algorithm, 
which both find optimal solutions. The results for two-
way partitioning are shown in Figure 5. We chose ran­
dom numbers uniformly distributed from 0 to 10 bil­
lion, which have ten significant decimal digits. Each 
data point is the average of 100 random problem in­
stances. To make the algorithms more efficient, the CKK 
algorithm directly computes the optimal partition when 
there are four numbers left, since the KK heuristic is op­
timal in that case. The equivalent stopping point for the 
standard algorithm is when there are three unassigned 
numbers remaining, with the current subset difference 
playing the role of the fourth number. The horizontal 
axis shows the number of values partitioned, with data 
points for sets of size 5, 10, 15, ..., 95, 100. The vertical 
axis shows the number of nodes generated by the two 
algorithms. The descending line shows the average opti­
mal partition difference on the vertical axis, fortuitously 
representable on the scale. 

Both algorithms were coded in C, and generate ap­
proximately 15 million nodes per minute on a SUN 
SPARC 2. Thus, the whole vertical axis represents about 
an hour of computation. While CKK would seem to re­
quire more time per node to insert the computed differ­
ence in the remaining list, this amounts to only a con­
stant factor, since most of the nodes in the tree are near 
the bottom, where the lists are very short. This constant 
is made up for by the fact that when there are only four 
numbers remaining, the final partition difference can be 
computed more efficiently by CKK, since they are in 
sorted order. For the standard algorithm, the last sub­
set difference is not in sorted order with respect to the 
remaining three numbers. 

There are clearly two different regions of this graph, 
depending on how many values are partitioned. With 
less than 30 numbers, no perfect partitions were found, 
while with 40 or more numbers, a perfect partition was 
found in every case. The optimal solution quality aver-

KORF 269 



ages .5 beyond 40 numbers, since there are roughly equal 
numbers of final differences of zero and one. 

Figure 5 shows that CKK outperforms the standard 
algorithm over the entire range. Without a perfect parti­
tion, there is a small asymptotic improvement. The ratio 
of the number of nodes generated by the standard algo­
rithm compared to CKK grows linearly with the number 
of values partitioned. This suggests that CKK is asymp­
totically more efficient than the standard algorithm. 

The performance improvement is much more dramatic 
when a perfect partition exists. In that case, CKK finds 
the perfect partition much sooner than the standard al­
gorithm, and hence terminates the search earlier. As the 
problem size increases, the running time of the standard 
algorithm drops gradually, but the running time of CKK 
drops precipitously, resulting in orders of magnitude im­
provement. We have run CKK on 10-digit problems up 
to size 300, and the trend seen in Figure 5 continues, 
bottoming out at about 37 milliseconds to partition 300 
numbers. At that point, the KK solution is almost al­
ways optimal, and the running time is dominated by the 
0(N log N) time to find this first solution. 

The data in Figure 5 is for numbers with ten dec­
imal digits of precision, to allow running many trials 
with different numbers of values. Arbitrary-size single 
problem instances with up to twelve digits of precision 
can be solved in practice, however. Since no physical 
quantities are known with higher precision, any two-way 
partitioning problems that arise in practice can be opti­
mally solved, regardless of problem size. While all our 
experiments were run on uniformly distributed values, 
we believe that the same results will apply to other nat­
urally occurring distributions as well. 

Most of the work on number partitioning, however, 
has focussed on problems without perfect partitions. To 
generate large such problem instances, numbers with 
up to 36 decimal digits have been used[6]. As long 
as there is no perfect partition, the performance of 
both CKK and the standard algorithm is largely in­
dependent of the precision of the numbers being par­
titioned, except for a constant based on whether single-
precision, double-precision, or multiple-precision arith­
metic is used. The data above was collected with double-
precision arithmetic. To optimally partition 40 15-digit 
double-precision numbers with CKK requires an aver­
age of about 3 hours and 42 minutes, while the standard 
algorithm requires an average of 9 hours and 16 minutes. 

For larger problems with very high precision, we must 
settle for approximate solutions. In that case, we can run 
CKK for as long as time allows, and return the best solu­
tion found. The first solution found is the KK solution, 
and as the algorithm continues to run, it finds better 
solutions. This technique is very effective, since much of 
the improvement in solution quality occurs early in the 
run. Figure 6 shows the improvement as a function of 
running time for partitioning 40 15-digit numbers. The 
horizontal axis is the number of nodes generated on a 
logarithmic scale, and the vertical axis is the ratio of the 
initial KK solution to the best solution found for a given 
number of node generations, also on a logarithmic scale. 
The entire horizontal scale represents less than a minute 
of real time, and shows almost five orders of magnitude 
improvement, relative to the original KK solution. Al­
most three orders of magnitude improvement is obtained 
within a second of running time. 

270 AUTOMATED REASONING 



5 M u l t i - W a y Par t i t i on ing 
So far, we have discussed partitioning a set of numbers 
into two subsets. Here we briefly discuss the generaliza­
tion of all these techniques to partitioning into multiple 
subsets, omitting the details due to space limitations. 
The general task is to partition a set of numbers into K 
mutually exclusive and collectively exhaustive subsets, 
so that the difference between the largest subset sum 
and the smallest subset sum is minimized. 

5.1 Greedy and Standard Algorithms 
The generalizations of the greedy heuristic and the 
standard optimal algorithm to K-way partitioning are 
straightforward. We sort the numbers in decreasing or­
der, and maintain K different subsets. For the greedy 
heuristic, we always place the next number in the subset 
with the smallest sum so far. The complete algorithm 
places each number in each different subset, in increas­
ing order of their subset sums, searching a K-ary tree. 
By never placing a number in more than one empty sub­
set, we avoid generating duplicate partitions that differ 
only by a permutation of the subsets, and produce all 
NK/K! distinct K-way partitions of N elements. We 
prune the tree when the sum of the remaining elements 
is small compared to the differences between the current 
subset sums. We only have to maintain A' — 1 subset 
sums, since we can always subtract the smallest subset 
sum from each of the others without affecting the final 
difference. A perfect partition has a difference of zero if 
the sum of the original numbers is divisible by K, and a 
difference of one otherwise. 

5.2 Karmarkar-Karp Heuristic 
Karmarkar and Karp generalize their set differencing 
method to K-way partitioning as follows. Every ele­
ment represents a partial partition, with potentially K 
subset sums. The initial numbers each represent a par­
tial partition with the number itself in the largest sub­
set, and the remaining subset sums equal to zero. For 
example, a three-way partition of the set (4,5,6,7,8) 
would initially be represented by the subpartitions 
((8,0,0), (7,0,0), (6,0,0), (5,0,0), (4,0,0)), which are 
sorted in decreasing order. Then the two largest 
numbers are combined into a single subpartition by 
putting them in different subsets, resulting in the list 
((8, 7,0), (6,0,0), (5,0,0), (4,0,0)). Since the combined 
subpartition still has the largest subset sum, the next 
smaller subpartition, (6,0,0), is combined with it by 
placing the 6 in the smallest subset, resulting in the 
subpartition (8,7,6). Since we are only interested in 
the difference between the largest and the smallest sub­
set sums, we subtract the smallest sum, 6, from each 
of the subsets, yielding the subpartition (2,1,0). This 
subpartition is then inserted into the remaining sorted 
list in decreasing order by largest subset sum, resulting 
in ((5,0,0)(4,0,0)(2,1,0)). Again, the two largest are 
combined, yielding ((5,4, 0)(2,1, 0)). Finally, these last 
two subpartitions are merged by combining the largest 
subset sum with the smallest, the smallest subset sum 
with the largest, and the two medium subset sums to­
gether, yielding (5,5,2). Subtracting the smallest from 

all the subset sums results in the final subpartition of 
(3,3,0), which has a difference of 3, and is optimal in 
this case. While we have shown all three subset sums for 
clarity, our actual implementation only maintains the 
two non-zero values for each subpartition. Additional 
bookkeeping is required to recover the partition itself. 

5.3 Complete Karmarkar-Karp Algor i thm 
The CKK algorithm also generalizes to multi-way parti­
tioning. As in the case of two-way partitioning, instead 
of combining subpartitions in only one way, to make the 
algorithm complete we must combine them together in 
all possible ways. Again consider three-way partition­
ing. A particular subpartition represents a commitment 
to keep the elements in the different subsets separate. 
There are three cases to consider in combining a pair 
of subpartitions. In the first case, both subpartitions 
have only a single non-zero subset sum, say (X, 0, 0) and 
(A, 0, 0). We can combine these in two different ways, re­
sulting in (A', A, 0) or (X + A, 0, 0). In the second case, 
one subpartition has a single non-zero subset sum and 
the other has two non-zero subset sums, say (A',Y, 0) 
and (A, 0, 0). In this case we can combine them in three 
different ways, resulting in the subpartitions (X,Y, A), 
(A', Y + A, 0), and (X + A, Y, 0). Finally, both subpar­
titions can have two non-zero subset sums, say (A', Y, 0) 
and (A,B,0). In this case, there are or six different 
ways to combine them: (X,Y + B,A), (X,Y + A,B), 
(X + B,Y,A), (A' + B, Y + A,0), (X + A,Y,B), and 
(A+ A, Y + 5,0). In each case, the combined subpar­
titions are searched in increasing order of largest subset 
sums, so that the first solution found is the KK solution. 

The resulting search tree has depth TV, and nodes with 
branching factor two, three, and six. The number of leaf 
nodes, however, is no greater than that in the standard 
tree. This is proven by showing that each of the three 
groups of combinations above is mutually exclusive and 
collectively exhaustive, and hence each distinct partition 
is represented by exactly one leaf node. 

Pruning works by comparing the subset sums in the 
largest subpartition to the sum of all values in the re­
maining subpartitions. A complete partition with differ­
ence zero or one is optimal, and terminates the search. 

We implemented the above algorithms for three-way 
partitioning, obtaining similar results to those for two-
way partitioning. Namely, there is a small asymptotic 
improvement when no perfect partition exists, and or­
ders of magnitude improvement with perfect partitions. 

While the constant factors for CKK and the standard 
algorithm are roughly the same for two-way partitioning, 
the three-way version of CKK is more complex. As a 
result, CKK runs about 33% slower per node generation 
than the standard algorithm, on three-way partitioning 
problems. While this reduces the absolute performance 
of CKK, it appears to be asymptotically more efficient 
than the standard algorithm, and runs faster in practice. 

In order to run large numbers of three-way partition­
ing problems of different sizes, we used numbers with 
five significant decimal digits. Single instances of arbi­
trary size with six digits of precision can be solved in 
practice, however. Three-way partitioning is computa-

K0RF 271 



tionally more difficult than two-way, and partitioning 
into more subsets is likely to be harder still, since the 
number of distinct K-way partitions is 0(KN/N\). 

6 Stochastic Approaches 
There have been at least three studies applying stochas­
tic algorithms to number partitioning, none of which can 
guarantee optimal solutions. Johnson et al.[2] applied 
simulated annealing to the problem, but found that it 
was not competitive with the Karmarkar-Karp heuristic 
solution. Ruml et al.[6] applied various stochastic al­
gorithms to some novel encodings of the problem, but 
their best results outperform the KK solution by only 
three orders of magnitude, compared to the five orders 
of magnitude CKK achieves in a minute. Jones and 
Beltramo[3] applied genetic algorithms to the problem, 
but don't mention the Karmarkar-Karp heuristic. Their 
technique fails to find an optimal solution to the single 
problem instance they ran, while the KK solution to this 
instance is optimal. 

7 0 / 1 Knapsack Prob lem 
Given a set of integers, and a constant C, the 0/1 knap­
sack problem asks if there exists a subset of the integers 
whose sum is exactly C. We can reduce this problem to 
the two-way partition problem, and hence apply CKK 
to the 0/1 knapsack problem as well. Let S be the sum 
of all the integers. Assume that C > 5/2, and other­
wise use S — C for C. Add a new integer D such that 
(5 + D)/2 = C, or D = 2C - S. If this augmented 
set can be perfectly partitioned with a difference of zero, 
then the subset of the perfect partition that does not 
contain D is a subset of the original numbers whose sum 
is exactly C, and hence a solution to the 0/1 knapsack 
problem. Conversely, if this augmented set cannot be 
perfectly partitioned, then there is no subset of the orig­
inal numbers that sum to exactly C, and hence no solu­
tion to the 0/1 knapsack problem. 

8 Summary and Conclusions 
The main contribution of this paper is to extend a 
very effective polynomial-time approximation algorithm 
due to Karmarkar and Karp, to a complete algorithm 
(CKK). The first solution it finds is the KK solution, 
and as it continues to run it finds better solutions, un­
til it eventually finds and verifies an optimal solution. 
For problems without perfect partitions, CKK appears 
to be asymptotically more efficient than the standard op­
timal algorithm. When a perfect partition exists, CKK 
outperforms the standard algorithm by orders of magni­
tude. We showed results for two-way partitioning, and 
have obtained similar results for three-way partitioning. 
In practice, two-way partitioning problems of arbitrary 
size can be solved if the numbers are restricted to no 
more than twelve significant digits of precision, while 
arbitrary-sized three-way partitioning problems can be 
optimally solved with six significant digits. For large 
problems with very high precision, CKK can be run 
as long as time is available, returning the best solution 

found when time runs out. CKK outperforms every al­
gorithm we could find in the literature. 

What contribution does this work make beyond the 
specific problem of number partitioning? First, CKK 
is directly applicable to the 0/1 knapsack problem, and 
may apply to other related problems as well. Secondly, 
it presents an example of an approach that may be effec­
tive on other combinatorial problems. Namely, we took 
a good polynomial-time approximation algorithm, and 
made it complete, so that the first solution found is the 
approximation, and then better solutions are found as 
long as the algorithm continues to run, eventually finding 
an optimal solution. Thirdly, it represents an example of 
another approach that may be more broadly applicable. 
Most algorithms for combinatorial problems construct 
a solution to a problem incrementally, adding one ele­
ment at a time to a single partial solution. This is the 
case with the standard algorithm for number partition­
ing. The CKK algorithm, on the other hand, constructs 
a large number of partial solutions, and combines them 
together in all possible ways. In this case, this latter 
strategy is much more effective, and may be for other 
problems as well. 

9 Acknowledgements 
Thanks to Wheeler Ruml for introducing me to num­
ber partitioning, and to the Karmarkar-Karp heuristic. 
Thanks to Wheeler, Ken Boese, Alex Fukunaga, and 
Andrew Kahng for helpful discussions concerning this 
research, and to Pierre Hasenfratz for comments on an 
earlier draft. This work was supported by NSF Grant 
IRI-9119825, and a grant from Rockwell International. 

References 
[1] Garey, M.R., and D.S. Johnson, Computers and 

Intractability: A Guide to the Theory of NP-
Completeness, W.R. Freeman, San Francisco, 1979. 

[2] Johnson, D.S., C.R. Aragon, L.A. McGeoch, and 
C. Schevon, Optimization by simulated annealing: 
An experimental evaluation; Part II , graph coloring 
and number partitioning, Operations Research, Vol. 
39, No. 3, 1991, pp. 378-406. 

[3] Jones, D.R., and M.A. Beltramo, Solving parti­
tioning problems with genetic algorithms, in Belew, 
R.K., and L.B. Booker (Eds.), Proceedings of the 
Fourth International Conference on Genetic Algo­
rithms, Morgan Kaufmann, San Mateo, Ca., 1991, 
pp. 442-449. 

[4] Kahng, A., personal communication, 1993. 
[5] Karmarkar, N., and R.M. Karp, The differenc­

ing method of set partitioning, Technical Report 
UCB/CSD 82/113, Computer Science Division, 
University of California, Berkeley, Ca., 1982. 

[6] Ruml, W., J.T. Ngo, J. Marks, S. Shieber, Easily 
searched encodings for number partitioning, Techni­
cal Report TR-10-94, Center for Research in Com­
puting Technology, Harvard University, Cambridge, 
Mass., 1994. 

272 AUTOMATED REASONING 


