
T h e T r a i l b l a z e r S e a r c h w i t h a H i e r a r c h i c a l A b s t r a c t M a p 

Takahiro Sasaki* and Fumih iko Chimura* and Mar i o Tokoro* 
Department of Computer Science, 

Faculty of Science and Technology, Keio University 
3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan 

Abst rac t 

We deal with the moving target search problem 
where the location of the goal may change dur­
ing the search process. The Trailblazer Search 
(TBS)[Chimura and Tokoro, 1994] achieves a 
systematic and effective search by maintaining 
a map. The map stores path information about 
the region where the algorithm has already 
searched through. However, because of the 
growth of the map, there is a problem that the 
time to make decisions of search steps increases 
rapidly. We propose an algorithm, the Trail-
blazer Search with an Abstract map(TBSA), 
that reduces the cost of map maintenance, and 
hence improves the reactiveness of the prob­
lem solver. We partition the information about 
the problem space into local maps, and build 
an abstract map that controls maintenance of 
the local maps. In this way, the problem solver 
can systematically manage information about 
the problem space, and it can utilize the map 
with less cost. We evaluate the efficiency of our 
method, and show how significant cost reduc­
tion in map maintenance can be achieved by 
using a two-layered map. 

1 I n t roduc t i on 
Heuristic search is the process of trial and error dur­
ing an attempt to reach a goal state in a certain do­
main. We deal with search problems for agents, con­
sidering that the agents will take actual actions in the 
real world. Korf presented the Learning Real-Time A* 
(LRTA)[l990] that interleaves constant time decision 
and actual execution of search steps. However, LRTA* 
is a search algorithm for stationary goals. When consid­
ering the dynamic property of the real world, goals may 
change locations while the agents are planning to ac­
complish them. Ishida and Korf presented moving target 
search probem[l99l]. Representing a goal that changes 
locations as a moving target, and taking a uniformly 

* sasakiQmt.cs.keio.ac.jp 
* chimura@mt.cs.keio.ac.jp 
*mario@mt.cs.keio.ac.jp. Also affiliated with Sony Com­

puter Science Laboratory Inc. 

weighted graph as the problem space, the aim of the 
problem is for a problem solver to reach a node where 
the target is located, namely, to capture the target. 

Moving Target Search {MTS)[Ishida and Korf, 1991] 
extends LRTA* to tackle the search problem for mov­
ing targets. While exploring the problem space, start­
ing from heuristic estimates, the problem solver tries to 
learn the exact distances between any two nodes in the 
problem space. Once the problem solver learns the set 
of exact distance values, the search task is then reduced 
to moving to the adjacent nodes that are closer to the 
target. However, since the problem solver cannot learn 
the exact distances at once, it may re-explore the same 
locations many times and require many search steps to 
solve a problem. This occurs if the problem space is com­
plicated as for a maze and the problem solver is trapped 
in deep dead ends, where the initial heuristic estimates 
greatly differ from the true values. 

In Intelligent Moving Target Search (IMTS) [ishida, 
1992], while overlooking the motion of the target, the 
problem solver conducts a lookahead search to find ex­
its of dead ends. This method significantly reduces the 
number of search steps of MTS, since the problem solver 
can make decisions that widely reflect the structure of 
the search space. 

In contrast, Trailblazer Search (TBS)[Chimura and 
Tokoro, 1994] records the information about locations 
where the problem solver has already explored. Due to 
this information, the problem solver can avoid explor­
ing the same nodes repeatedly. Furthermore, from the 
stored information, the algorithm creates a map that en­
ables the problem solver to chase the target, once the 
target moves on a direct path found in the map. In 
this way, TBS significantly reduces the number of search 
steps. However, as the search proceeds, TBS rapidly in­
creases its cost of map maintenance, according to the 
growth of the map. As a result, TBS takes an increas­
ingly longer time to make a decision for each step. 

In this paper, we propose an algorithm, the Trailblazer 
Search with an Abstract map (TBSA), that achieves an 
effective map maintenance, so as to improve the reactive­
ness of the problem solver. We partition the information 
about the problem space into local maps, and build a 
global layer, called abstract map, which controls mainte­
nance of the local maps. In this way, we can systemati­
cally manage information about the problem space, and 

SASAKI, CHIMURA, AND TOKORO 259 



limit map maintenance within smaller local maps, in­
stead of the entire map. TBSA can thus make decisions 
in less time. 

We describe the hierarchical map maintenance of 
TBSA. We formally analyze the method, and show em­
pirical results indicating its effectiveness. 

2 Search for Mov ing Targets and the 
Trai lb lazer Search 

We represent the problem space as a connected and undi­
rected graph with unit cost assigned to each edge. We 
represent a goal that changes location as a moving tar­
get. At any time period during the process, a problem 
solver and a target are assigned nodes in the graph. In 
alternate turns, they move to any node adjacent to their 
current locations. Starting from separated initial nodes, 
the search ends when the locations of the problem solver 
and the target coincide. 

We make three assumptions to assure a solution for 
the search. Firstly, the problem solver always knows the 
location of the target. Concretely speaking, the prob­
lem solver must know the name of the node where the 
target is located. Secondly, the problem solver has an 
admissible[Pearl, 1984] heuristic function that returns 
an estimated distance between any two nodes in the 
problem space. Lastly, the problem solver moves faster 
than the target. In the particular problem space de­
fined above, we implement this assumption by periodi­
cally skipping the target's turn. 

Chimura and Tokoro presented the Trailblazer Search 
(TBS), an algorithm for moving targets. The basic idea 
of TBS is to store path information about the region 
the problem solver has previously explored, and to ex­
ploit this information*for accomplishing the task. The 
problem solver records every step of itself and the target. 
This is done by recording an undirected edge connecting 
the departure and arrival nodes of the step. The prob­
lem solver organizes these records into a graph called 
the trail. From the trail, the problem solver calculates 
the routing table called the map, using Dijkstra 's short­
est path algorithm or Floyd's algorithm[Aho et al., 1974]. 
The map holds a minimum cost path from the current lo­
cation of the problem solver to any node it has explored. 

TBS separates the capturing process of the target into 
two distinct phases: (l)the search phase, and (2)the 
chase phase. In both phases, the problem solver ex­
ploits the information of the map in order to achieve 
an effective process. The process starts from the search 
phase. By using the map in the search phase, the prob­
lem solver can distinguish an unexplored region from 
an explored region, and can thus conduct a systematic 
process by eliminating unnecessary re-exploration of the 
same nodes. Once the target crosses the trail of the 
problem solver (or vice versa), and hence the trails of 
the problem solver and the target overlap, the problem 
solver finds a path in the map leading to the target. 
Then, TBS enters the chase phase. The chase phase is 
deterministic since the values referred from the map are 
accurate. The problem solver simply needs to move to 
reduce the distance between itself and the target. 

In the search phase, either the problem solver must 
find the target or the trail of the problem solver and the 
target must overlap before exploring the whole problem 
space. Hence, the algorithm eventually enters the chase 
phase. In the chase phase, according to the assumption 
that the problem solver moves faster than the target, 
the problem solver can always capture the target. Thus 
TBS is a complete algorithm, i.e., it terminates. In the 
following, we formally describe the TBS algorithm. 

Let x and y be the locations of the problem solver 
and the target respectively. They take values from a set 
of integers that identify the actual nodes in the prob­
lem space. Let h(x, y) be the heuristic estimate of the 
distance between x and y, and C(x,y) be the distance 
between x and y derived from the map. The value of 
C(x,y) is oo if there is no path found between x and y 
on the map. For each explored node, we assume that 
the problem solver records the parent node from which 
it has arrived to the node for the first time. 

• Procedures of the problem solver when it is its own 
turn to move 

1. For each node x' adjacent to x, read C(x', y) to 
find if there is any path from x' to y. If there 
is no path, enter the search phase, otherwise 
enter the chase phase. 
a. In the search phase 

For each unexplored node x' adjacent to 
x, calculate h(x',y), move to the node x' 
with minimum h(x',y). Ties are broken 
randomly. If all of the adjacent nodes have 
been explored, move to the node x' that is 
the parent node of x. 

b. In the chase phase 
Move to the adjacent node x' with minimum 
C(x',y). Ties are broken randomly. 

2. Record the move of the problem solver by 
adding an undirected edge connecting x and x' 
to the trail. Assign the value of x' to x as the 
new location of the problem solver. 

3. Update the routing table. 
• Procedures of the problem solver when it is the tar­

get's turn to move 
1. Record the move of the target by adding an 

undirected edge connecting y and y' to the trail, 
where y' is the new location of the target. As­
sign the value of y' to y as the new location of 
the target. 

2. Update the routing table. 
With the map information, even if the problem space 

is complicated as for a maze, a problem solver executing 
TBS can capture the target in fewer steps than one exe­
cuting Ishida's MTS. However, TBS requires map main­
tenance, whose cost increases rapidly as the search pro­
ceeds, and as trails of the problem solver and the target 
become more complicated. The problem solver uses the 
map to decide which direction to proceed next. As a 
result, the problem solver takes an increasingly longer 
time to make decisions for each step, and it becomes 
increasingly difficult for the problem solver to behave 

260 AUTOMATED REASONING 



Problem Solver 

Figure 1: The detailed map of the entire problem space 

reactively. If we consider real-world applications, such 
as the problem for an autonomous robot to capture a 
target robot, the cost of map maintenance is tolerable 
to some extent. The reason is that map maintenance 
takes computational cost, while search steps take physi­
cal cost such as the cost of the robot's move. However, 
for TBS, the increase in the cost of map maintenance is 
so extreme that it cannot be neglected, especially if we 
consider large scale real-world problems. 

3 The Trai lb lazer Search w i t h an 
Abs t rac t M a p 

TBS maintains a map including all the details every time 
the problem solver takes a single step(fig.l). This is use­
less since a single move results in updating the map for 
the entire area of the trail, even though the move will 
only affect the structure of the trail in a small region sur­
rounding the location where the move took place. Fol­
lowing the idea that the map should be locally updated, 
we divide the map and conduct routing in the partitions. 
In order to keep track of connections between partitions, 
we create a global map over the partitions. Therefore, 
the problem solver hierarchically maintains the informa­
tion about the problem space. We call the search al­
gorithm that uses the hierarchical map, the Trailblazer 
Search with an Abstract map (TBSA). This section de­
scribes the maintenance method and the use of this two-
layered hierarchical map. 

3.1 A Hierarchical Construction of a Map 
TBSA regards the problem space as a set of exclusive 
partitions called the subproblem spaces. The partitions 
will be made by a simple function distinguishing nodes 
of one partition from those of the other partitions. In a 
subproblem space, some nodes directly connect to nodes 
that belong to another distinct subproblem space. We 
call them boundary nodes. A boundary lies between con­
nected boundary nodes of different subproblem spaces. 

TBSA maintains the map in two layers(fig.2): (l)the 
local maps hold the detailed information about the cor­
responding subproblem space, and (2)the abstract map 
holds the information about how each subproblem space 
interconnects with one another. Each local map records 
every search step the problem solver takes in correspond­
ing partitions of the problem space. The abstract map 
only records boundary nodes and edges connecting those 

Figure 2: The detailed local maps and the abstract 
global map 

nodes. In the abstract map, the cost of an edge is the 
cost of the path that connects the boundary nodes, and 
that is calculated from a local map. 

Due to the hierarchical map, TBS A systematically 
manages the information that has been acquired dur­
ing the search process. As a result, the problem solver 
makes decisions in a shorter time for each step. 

3.2 Hierarchical Map Maintenance and 
Reconstruction of Paths 

In the following, we describe, (1) how TBS A constructs 
and maintains a hierarchical map, and (2) how TBS A 
calculates the distance between any two nodes according 
to the hierarchical map. 

If the problem solver takes a step within a certain 
subproblem space, map maintenance proceeds only in a 
corresponding local map. If the problem solver strides 
across the boundary between two distinct subproblem 
spaces, map maintenance proceeds in the abstract map. 
In both procedures, we can use the same routing algo­
rithms on each map. Let pn represent a node that the 
problem solver reaches after taking n steps. For n being 
a non-negative integer, assume that the problem solver 
moves from a node pn-1 to a node pn on its nth step. 
S(x) identifies a subproblem space to which each node x 
belongs. Map maintenance proceeds differently, accord­
ing to whether both pn-1 and pn belong to the same 
subproblem space or not. 

SASAKI, CHIMURA, AND T0K0R0 261 



Figure 3: Updating of the abstract map, when a step is 
taken across the boundary 

to the abstract 
is the actual cost 

of the path between node q and node pn-1, de­
rived from the local map of 

3. Update the abstract map. 
(fig-3) 

The same map maintenance is done when the target 
takes a step. 

We now show how to calculate the map cost C(x,y) 
between two nodes x and y, where x is the location of 
the problem solver and y of the target. The function 
Cs(x) denotes the cost referred from the local map of 
subproblem space S(x) to which the node x belongs. 
The function CAbst denotes the cost referred from the 
abstract map. The distance between two nodes located 
in the same subproblem space can be directly referred 
from the corresponding local map. On the other hand, 
the distance between two nodes located in distinct sub-
problem spaces must be calculated by reconstructing the 
path from the local maps and the abstract map. 

Here, v and w indicate any explored boundary node lo­
cated inside subproblem spaces S(x) and S(y), respec­
tively. 

TBSA differs from TBS only in the way of constructing 
the map and of calculating the distance between two 
nodes on the map. TBSA follows the policy of TBS that 
separates the process of capturing the target into the 
search phase and the chase phase. Thus TBSA inherits 
the simplicity and completeness of TBS. 

In the following of this paper, we will analyze the 
search problem on a two-dimensional grid space. Al­
though grid-like space represents only some features of 
many problem types, the search problem on such a space 
is not extremely special. This is because, if we regard 
junctions as nodes and connections between junctions as 
edges, we can naturally convert the grid-like space to a 
general graph-like one. 

In a grid-like problem space, we consider partitions of 
fixed size, made by horizontally and vertically dividing 

the grid at fixed intervals. This method for partitioning 
allows TBSA to create hierarchies with small overhead. 
For general graph-like problem spaces, however, the par­
titioning method becomes a major issue. Later, we dis­
cuss a method that creates hierarchies in such problem 
spaces. 

4 Formal Analysis of T B S A 
TBS and TBSA both update the map every time the 
problem solver or the target moves. We analyze the 
worst-case time complexity of map maintenance for each 
step of the problem solver or the target. We consider the 
rectangular grid-like problem space as discussed above. 
Let n be the total number of the nodes in the problem 
space. If we use Dijkstra's algorithm[Aho et a/., 1974] 
for routing, the stepwise worst case time complexity of 
map maintenance is , for TBS. If we equally parti­
tion the problem space into d subproblem spaces, each 
local map contains n/d nodes at most. The abstract map 
contains nodes at most, since each 
subproblem contains boundary nodes. Hence, for 
each step of the problem solver or the target, the step­
wise worst-case time complexity of map maintenance is 

for the local map, and 0(16nd) = 0(nd) for 
the abstract map. The partitioning number d ranges 
between 1 and n. If we coarsely partition the problem 
space, i.e., take a small d, the problem solver or the tar­
get tends to move within a subproblem space. Hence, 
the term of becomes dominant in the step­
wise cost of map maintenance. When d = 1, the term 
of b e c o m e s . In this case, a single local 
map works as a detailed entire map. On the other hand, 
if we finely partition the problem space into small pieces, 
i.e., take a large d, the problem solver or the target will 
frequently stride across boundaries. Hence, the term of 
0(nd) becomes dominant in the stepwise cost of map 
maintenance. When d = n, the term of 0{nd) becomes 

In this case, the abstract map works as a detailed 
entire map. Now if we let d be d both 0{(n/d)2) 
and 0(nd) become , which are less than the value 

for TBS. 

5 Exper imenta l Results of T B S A 
We empirically evaluated the performance of TBSA, 

and for comparison, TBS. The problem space is a 50 x 50 
rectangular grid, organized as a torus. We randomly 
placed obstacles on junctions, that prevent the problem 
solver or the target from moving to the occupying junc­
tions. The obstacle occupation of the whole problem 
space was set in the range from 0% to 40% at intervals 
of 5%. According to preliminary experiments that tested 
the best division, we partitioned the problem space into 
25 subproblem spaces by dividing each side of the grid 
equally into 5 parts. We set the speed of the target to 
4/5 that of the problem solver by skipping the turn of the 
target once every five turns. We performed experiments 
for each TBSA and TBS, and for different strategies of 
targets. The strategies are, (l)Avoid: the target moves 
to the furthest adjacent node from the problem solver, 
(2) Meet the target moves cooperatively to meet the 

262 AUTOMATED REASONING 



problem solver, i.e., searches for the problem solver, and 
(3) Random: the target moves randomly. For each ex­
periment, we randomly created 100 sample grids, and 
averaged the results over all the samples. For each ex­
periment, we counted the total number of search steps 
and the cost of map maintenance. The cost of map 
maintenance is regarded as the number of references to 
records on the routing table for each time the map is up­
dated. Further, to evaluate the algorithm's reactiveness, 
we measured the cost of map maintenance for each 10 
steps of the problem solver. Figures 4 and 5 show the 
total number of steps and the total map maintenance 
cost. Figure 6 shows the result of the cost of map main­
tenance for each 10 steps up to 150 steps, where the 
target's strategy is Avoid and the obstacle ratios are 0% 
and 20%. 

As shown in figure 4, TBSA shows the same tendency 
as TBS for the total number of search steps. This is 
because TBSA differs from TBS only in how the map 
is maintained; the policy of movement is the same for 
both. When the obstacle ratio increases from 0% to 25%, 
it becomes easier for a systematic search like TBS and 
TBSA to capture the Avoiding targets. This shows that 
problem solvers can get out of dead ends faster than the 
targets[Chimura and Tokoro, 1994]. 

On the other hand, as shown in figure 5, TBSA signif­
icantly reduces the cost of map maintenance, compared 
with TBS. When the obstacle ratio is 40%, TBSA's cost 
of map maintenance reduces to 0.035 times that of TBS 
for the target's strategy of Avoid or Meet, and to 0.080 
times for Random. The cost of map maintenance is es­
pecially high when the capturing process of the target 
includes a long chase phase. This is because, in the chase 
phase, the problem solver must make a combined map 
of both the problem solver and the target. The chase 
phase tends to become shorter when the obstacle ratio 
increases, since Avoiding targets tend to get trapped in 
dead ends. This explains why the Avoid curve dips as 
the obstacle ratio increases. The chase phase is usually 
longer for a target with the Avoid strategy than for one 
with other strategies. Hence, the biggest improvement 
of TBSA against TBS appears when the target's strat­

egy is Avoid. For an A voiding target and for an obstacle 
ratio of 0%, TBSA's cost of map maintenance is 0.005 
times that of TBS. Within a practical time, TBSA can 
solve much larger problems than TBS, such as the mov­
ing target problem on a 200 x 200 grid. 

Figure 6 shows that the cost of map maintenance of 
TBSA for each 10 steps increases slowly, while that of 
TBS increases rapidly, as the search proceeds. This re­
sult indicates significant improvement of the problem 
solver's reactiveness. We can confirm the improvement 
on a computer display; TBSA responds instantly, while 
TBS spends quite a long time to take a single step. Nev­
ertheless, the reaction time of TBSA is not constant. 
Since the number of nodes in a subproblem space is lim­
ited to a constant, we predict that the maintenance cost 
of a local map is constant as well. On the other hand, 
since the abstract map controls local maps, and since the 
number of local maps is regarded as unlimited, as for the 
abstract map, we cannot set any plausible boundary to 
the cost of maintenance. However, the increase in the 
number of nodes included in the abstract map is so slow 
that maintenance cost of the abstract map has little im-

SASAKI, CHIMURA, AND TOKORO 263 



pact on the total cost of map maintenance. 

6 Related Research 
In the field of AI planning, there has been plenty of re­
search dealing with hierarchical problem solving. Accord­
ing to [Prieditis and Janakiraman, 1993], it is a three 
step problem-solving paradigm:(1)abstraction, (2)prob-
lem solving, and (3) reconstitution. After organizing an 
abstract problem space, a plan is first inferred in that 
problem space. The intermediate states of the abstract 
plan are then used as intermediate goals to guide the 
search for a more detailed plan. Knoblock showed that 
this method can reduce the search complexity from ex­
ponential to linear when searching for a solution with the 
same length[Knoblock, 1991]. In TBSA, the phase of or­
ganizing the hierarchical map corresponds to the step 
of abstraction, and the phase of reconstructing paths 
from the hierarchical map corresponds to the steps of 
problem solving and reconstitution. The major issue of 
TBSA and hierarchical problem solving in general, is the 
need of a cost effective abstraction scheme. The ALPINE 
system[Knoblock, 1990] automatically forms abstraction 
hierarchies by analyzing the structure of the problem 
space before problem solving. Even though this automa­
tion isn't directly applicable to the dynamic nature of 
map construction, the idea of learning hierarchies is use­
ful for TBSA. For example, instead of using a predefined 
function for partitioning the problem space, TBSA might 
initially explore a small region of the search space and 
predict an appropriate partition for the whole problem 
space. This will be one way of making TBSA applicable 
to more general search problems other than problems on 
a grid. 

Hierarchical problem solving is regarded as an 
important technique for realizing real-time problem 
solving[Strosnider and Paul, 1994]. We introduced the 
paradigm into the map maintenance of TBS in order to 
improve the problem solver's reactiveness. 

7 Conclusions and Future Work 
We dealt with the problem of searching moving tar­
gets. The information about the region explored by the 
search algorithm is predicted to be especially useful for 
searching moving targets. However, the concern for this 
method is that the map becomes larger as the algorithm 
progresses. TBSA is a method that uses a hierarchical 
map of where the algorithm has explored. TBSA han­
dles the problem space in partitions, called local maps. 
It maintains an abstract map on top of the local maps, 
in order to systematically manage the information of the 
problem space. 

We formally and empirically analyzed TBSA in a 
problem where a problem solver searches for a target 
on a grid-like problem space with randomly placed ob­
stacles. First, we formally showed that TBSA reduces 
the cost of map maintenance for each step of the prob­
lem solver from 0(n2) to 0(n4/3), where n is the number 
of nodes in the problem space. Then, with results from 
simulations, we showed that TBSA actually reduced the 
cost of map maintenance. TBSA inherits the simplicity 

and completeness of TBS; however, there is significant 
improvement in the algorithm's reactiveness. We found 
that, within a plausible time, TBSA could solve prob­
lems of sizes up to a 200 x 200 square grid. TBS could 
not solve a problem of this size within a plausible time. 

For larger problems, it might be beneficial to construct 
a hierarchical map that has more than two layers. It will 
be useful if the search algorithm can control the number 
of layers adaptively. We plan to research this strategy 
further. 

References 
[Aho et a/., 1974] Alfred V. Aho, John E. Hopcroft, and 

Jeffrey D. Ullman. The Design and Analysis of Com­
puter Algorithms. Addison-Wesley, 1974. 

[Chimura and Tokoro, 1994] Fumihiko Chimura and 
Mario Tokoro. The Trailblazer Search: A New Method 
for Searching and Capturing Moving Targets. In Pro­
ceedings of AAAI-94, pages 1347-1352, 1994. 

[Chimura, 1994] Fumihiko Chimura. The Trailblazer 
Search: A Study on Searching Moving Targets. PhD 
thesis, Department of Computer Science, Faculty of 
Science and Technology, Keio University, 1994. 

[Ishida and Korf, 1991] Toru Ishida and Richard E. 
Korf. Moving Target Search. In Proceedings of IJCAI-
91, pages 204-210, 1991. 

[Ishida, 1992] Toru Ishida. Moving Target Search with 
Intelligence. In Proceedings of AAAI-92, pages 525-
532, 1992. 

[Knoblock, 1990] Craig A. Knoblock. Learning Abstrac­
tion Hierarchies for Problem Solving. In Proceedings 
of AAAI-90, pages 923-928, 1990. 

[Knoblock, 1991] Craig A. Knoblock. Search Reduction 
in Hierarchical Problem Solving. In Proceedings of 
AAAI-91, pages 686-691, 1991. 

[Korf, 1990] Richard E. Korf. Real-Time Heuristic 
Search. Artificial Intelligence, 42(2-3): 189-211, 1990. 

[Pearl, 1984] Judea Pearl. Heuristics: Intelligent Search 
Strategies for Computer Problem Solving. Addison 
Wesley, 1984. 

[Prieditis and Janakiraman, 1993] 
Armand Prieditis and Bhasker Janakiraman. Gener­
ating Effective Admissible Heuristics by Abstraction 
and Reconstitution. In Proceedings of AAAI-93, pages 
743-748, 1993. 

[Strosnider and Paul, 1994] Jay K. Strosnider and C. J. 
Paul. A Structured View of Real-Time Problem Solv­
ing. AI Magazine, 15(2):45-66, 1994. 

264 AUTOMATED REASONING 


