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Abs t rac t 

Sensor and motor systems are not separable 
for autonomous agents to accomplish tasks in 
a dynamic environment. This paper proposes 
a method to represent the interaction between 
a vision-based learning agent and its environ­
ment. The method is called "motion sketch" by 
which a one-eyed mobile robot can learn several 
behaviors such as obstacle avoidance and target 
pursuit. A motion sketch is a collection of vi­
sual motion cues detected by a group of visual 
tracking routines of which visual behaviors are 
determined by individual tasks, and is tightly 
coupled with motor behaviors which are ob­
tained by Q-learning, a most widely used rein­
forcement learning method, based on the visual 
motion cues. In order for the motion sketch 
to work, first the fundamental relationship be­
tween visual motions and motor commands is 
obtained, and then the Q-learning is applied 
to obtain the set of motor commands tightly 
coupled with the motion cues. Finally, the ex­
perimental results of real robot implementation 
with real-time motion tracker are shown. 

1 I n t r o d u c t i o n 
Recent research in artificial intelligence has developed 
computational approaches of agent's involvements in 
their environments [Agre, 1995]. An autonomous agent 
is regarded as a system that has a complex and ongoing 
interaction with a dynamic environment that is difficult 
to predict its changes. Our final goal, in designing and 
building an autonomous agent with vision-based learn­
ing capabilities, is to have it perform a variety of tasks 
adequately in a complex environment. In order to build 
such an agent, we have to make clear the interaction be­
tween the agent and its environment. There have been a 
variety of approaches to analyze the relationship between 
the agent with visual capabilities and its environment. 

In physiological psychology, [Held and Hein, 1963] 
have shown that self-produced movement with its con­
current visual feedback is necessary for the development 
of visually-guided behaviors. Their experimental results 
suggest that perception and behavior are tightly coupled 

in autonomous agents that perform tasks. In biology, 
[Horridge, 1987] similarly have suggested that motion is 
essential for perception in living systems such as bees. 

In computer vision area, so-called "purposive active 
vision paradigm" [Aloimonos, 1994; Sandini and Grosso, 
1994; Edelman, 1994] has been considered as a represen­
tative form of this coupling since [Aloimonos et a/., 1987] 
proposed it as a method that converts the ill-posed vi­
sion problems into the well-posed ones. However, many 
researchers have been using so-called active vision sys­
tems in order to reconstruct 3-D information such as 
depth and shape from a sequence of 2-D images given 
the motion information of the observer or capability of 
controlling the observer motion. Furthermore, though 
purposive vision does not consider vision in isolation but 
as a part of complex system that interacts with world in 
specific ways [Aloimonos, 1994], very few have tried to 
investigate the relationship between motor commands 
and visual information [Sandini, 1993]. 

In robot learning area, the researchers have tried 
to make agents learn a purposive behavior to achieve 
a given task through agent-environment interactions. 
However, almost of them have only shown computer sim­
ulations, and only a few real robot applications are re­
ported which are simple and less dynamic [Maes and 
Brooks, 1990; Connel and Mahadevan, 1993]. The use 
of vision in the reinforcement learning is very rare due 
to its high costs of sensing and processing. 

In order to realize tight coupling between visual sensor 
and motor systems, we should consider the relationship 
between the low level representation of motion (motor 
commands to actuators) and the visual information, and 
develop a learning capability to abstract the low level 
representation into a form suitable for task accomplish­
ment. In this paper, we propose a method to repre­
sent the interaction between the agent and its environ­
ment which is called "motion sketch" for a real one-eyed 
mobile robot to learn several behaviors such as obsta­
cle avoidance and target pursuit. A motion sketch is a 
collection of visual motion cues detected by a group of 
visual tracking routines of which visual behaviors are de­
termined by individual tasks, and is tightly coupled with 
motor behaviors which are obtained by Q-learning, a 
most widely used reinforcement learning method, based 
on the visual motion cues. 

In the next section, we describe the basic idea of the 
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motion sketch for our example task. In section 3, we 
give a method for acquisition of the fundamental rela-
tionship between visual motion cues and robot motor 
commands. In section 4, we describe a reinforcement 
learning method to obtain target pursuit behavior and 
obstacle avoidance one. Then, in order to demonstrate 
the validity of our method, we show the experimental 
results of the real robot implementation with a real-time 
visual motion tracker [Inoue et a/., 1992] in section 5. 

2 M o t i o n Sketch 

Figure 1: Motion sketch 

The interaction between the agent and its environment 
can be seen as a cyclical process in which the environ­
ment generates an input (perception) to the agent and 
the agent generates an output (action) to the environ­
ment. If such an interaction can be formalized, the agent 
would be expected to carry out actions that are appro­
priate to individual situations. "Motion sketch," we pro­
posed here, is one of such formalizations of interactions 
by which a vision-based learning agent that has real-time 
visual tracking routines behaves adequately against its 
environment to accomplish a variety of tasks. 

Figure 1 shows a basic idea of the motion sketch. The 
basic components of the motion sketch are visual motion 
cues and the motor behaviors. 

Visual motion cues are detected by several visual 
tracking routines of which behaviors (called visual be­
havior) are determined by individual tasks. The visual 
tracking routines are scattered over the whole image and 
an optical flow due to an instantaneous robot motion is 
detected. In this case, the tracking routines are fixed 
to the image points. The image area to be covered by 

these tracking routines are specified or automatically de­
tected depending on the current tasks, and the coopera­
tive behaviors between tracking routines are performed 
for the task accomplishment. For the target pursuit task, 
the multiple templates are initialized and every template 
looks for the target to realize stable tracking. In the 
task of obstacle detection and avoidance, the candidates 
for obstacles are first detected by comparing the optical 
flow with that of non-obstacle (ground plane) region, and 
then the detected region is tracked by multiple templates 
each of which tracks the inside of the moving obstacle re­
gion. 

The motor behaviors are sets of motor commands ob­
tained by Q-learning, based on the detected motion cues 
and given task. The sizes and positions of the target and 
the detected obstacle are used as components of a state 
vector in the learning process. 

Visual and motor behaviors work in parallel in the 
image and compose a layered architecture. The visual 
behavior for monitoring robot motion (detecting the op­
tical flow on the ground plane on which the robot lies) 
is the lowest and might be subsumed in part due to oc­
clusion by other visual and motor behaviors for obstacle 
detection/avoidance and target pursuits which might oc­
clude each other. 

Thus, the "motion sketch" represents the tight cou­
pling between the agent that can perform an appropri­
ate action sequence so as to accomplish the given tasks 
and its environment which is represented by visual mo­
tion cues from the visual tracking routines. The motion 
sketch does not need any calibrations nor any 3-d recon­
struction so as to accomplish the given task. The visual 
motion cues for representing the environment does not 
seem dependent on scene components nor limited to the 
specified situations and the task. Furthermore, the inter­
action is quickly obtained owing to the use of real-time 
visual tracking routines. 

The behavior acquisition scheme consists of the fol­
lowing four stages: 
stage 1 Obtaining the fundamental relationship be­

tween visual and robot motions by correlating mo­
tion commands and flow patterns on the floor with 
very few obstacles. 

stage 2 Learning target pursuit behavior by tracking a 
target. 

stage 3 Detection of obstacles and learning an avoid­
ance behavior. 

stage 4 Coordination of the target pursuit and obstacle 
avoidance behaviors. 

At each stage, we obtain the interaction between the 
agent and its environment. 

3 Obta in ing sensorimotor apparatus 
Before introducing the method for obtaining sensorimo-
tor apparatus, motion mechanism and visual tracking 
routines we use in the experiment are shown. 
(A) PWS system: 

The robot has a Power Wheeled Steering (hereafter 
PWS) system driven by two motors into each of which 
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&E(K) indicates the decreasing degree of E(K) by us­
ing the 1 ~ K principal components for obtaining the 
approximation of pi 

Figure 3 shows the relationship between and 
K. From this figure, it is sufficient to use the first two 
principal components for describing pi as a linear combi­
nation of principal components. That is, including more 
than the third pricipal components does not have influ­
ence on decreasing more than 1 pixel error per a point. 

Figure 3: The change rate of Error values per a 
point 

Thus, vector pi may be approximated by 

The first two principal components obtained in the real 
experiment are shown in Figure4. Obviously, the first 
(a) corresponds to a pure rotation and the second (b) to 
a pure backward motion. 

Figure 5: Relation among the possible actions 

Thus, we can compress the visual motion patterns by 
the obtained fundamental relationship and then use it to 
include the ego-motion information in the internal state 
space of the agent in the learning process. 

4 Behavior acquis i t ion based on visual 
mot ion cues 

4.1 Basics of Reinforcement Learning 
Reinforcement learning agents improve their perfor­
mance on tasks using reward and punishment received 
from their environment. They are distiguished from su­
pervised learning agents in that they have no "teacher" 
that tells the agent the correct response to a situation 
when an agent responds poorly. An agent's only feed-
back indicating its performance on the task at hand is 
a scalar reward value. One step Q-learning [Watkins, 
1989] has attracted much attention as an implementa­
tion of reinforcement learning because it is derived from 
dynamic programing [Bellman, 1957]. The following is 
a simple version of the 1-step Q-learning algorithm we 
used here. 

Initialization: Q <— a set of initial values for the 
action-value function (e.g., all zeros). 
Repeat forever: 

1. the current state 
2. Select an action that is usually consistent 

with the policy / but occasionally an alternate. 
3. Execute action a, and let s' and r be the next state 

and the reward received, respectively. 
4. Update Q(s,a): 

4.2 Target tracking behavior acquisition 
According to the above formalization of the state set, 
the action set, and other functions and parameters, we 
apply the Q-learning to a target pursuit task. 

We use the visual tracking routines in order to pur­
sue a target specified by a human operator and obtain 
the information about the target in the image such as 
its position and size which are used in the Q-learning 
algorithm for acquisition of target pursuit behavior. 
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Visual functions of tracking routine 
Our visual tracking routine has the following visual func­
tions. 

(a) An initial image specified 

Figure 6: Visual functions of tracking routine 
1. A target image is specified by a human operator in 

advance as shown in Figure 6(a). A target is tracked 
by an object tracker which consists of 5 visual track­
ing routines fixed together as shown in Figure 6(b). 
Even if the pattern of the target is deformed by oc­
clusion or the vibration of the robot body, the object 
tracker can continue to the track target owing to the 
use of multiple visual tracking routines. 

2. We prepare three kinds of resolutions(a normal, a 
half and a quarter resolutions) as shown in Figure 
6(c). Even if the the pattern of the target becomes 
large or small, the object tracker can continue to 
track it by changing the image resolution and the 
search area for the block matching. 

3. When the target detection fails, a search-whole-
image routine is called in order to detect the target 
again outside the pre-defined search area. 

We define the state of the target in the image based on 
its position and size (three levels) obtained by the visual 
tracking routines. 

State and action spaces in Q-learning 
In order to apply the Q-learning scheme to a target pur­
suit task, we define a number of sets and parameters. 
The state of the target, S in the image is quantized into 
9 sub-states, combinations of three positions (left, cen­
ter, and right) and three sizes (large (near), medium, and 
small (far)). Similarly, changes in position and size of the 
target in the image are quantized into 9 sub-states, com­
bination of three states for position changes (move left, 
no move and move right) and three states for size changes 
(enlarge, no change, shrink). We add two lost situations 
(target is lost into the left side or the right side) in the 
state space. Futhermore, we add the action index (to­
tally 25 actions) just taken on observing the current sit­
uation into the state space in order that we deal with the 
so-called perceptual aliasing problem. That is, induing 

the self-motion index into the agent's internal state en­
ables the agent to discriminate both changes caused by 
the observer motion and an actual changes happened in 
the environment. 

Totally, we have 92x25 states in the set S. We have 
25 actions in the action set A. We assign a reward value 
1 when the robot touched the target or 0 otherwise. A 
discounting factor 7 is used to control to what degree 
rewards in the distant future affect the total value of a 
policy. In our case, we set the value a slightly less than 
1 (7 = 0.9). 

4.3 Obstacle avoidance behavior 
acquisition 

(a) Detection and tracking of obstacles by flow 
differences 
We know the flow pattern p{ corresponding to the action 
i in the environment without any obstacles. The noise 
included in p{ is not so much, because this flow pattern 
is described as a linear combination of the two principal 
motion vectors. Therefore, it makes motion segmenta­
tion easy. Motion segmentation is done by comparing 
the flow pattern p, with the flow pattern p°b* which is 
obtained in the environment with obstacles. The area in 
the p°bs is detected as the area for obstacle candidates if 
its components are different from that of pi. This infor­
mation (position and size in the image) is used to obtain 
the obstacle tracking behavior. After obtacle detection, 
the visual tracking routines are set up at the positions 
where the obstacle candidates are detected and the re­
gions are tracked until the region disappears from the 
image. 

(b) Learning obstacle avoidance behavior 
Learning to avoid obstacles consists of two stages. First, 
the obstacle tracking behavior is learned by the same 
manner as in learning the target pursuit behavior. Next, 
the obstacle avoidance behavior is generated by using 
the relation between the possible actions and the obsta­
cle tracking behavior as follows: (1) the relationship be­
tween the possible actions is divided into four categories 
by clustering the action space in terms of the coefficients 
(a1,al

2) (See Figure7(b)), (2) the obstacle tracking be­
havior is mapped on the relationship, and the category 
Ct which includes the obstacle tracking action is found, 
(3) the obstacle avoidance action is selected among the 
categories except for Ct. More correctly, the obstacle 
avoidance action is obtained by finding the action hav­
ing the smallest action-value function with respect to the 
obstacle tracking behavior among the categories except 
for Ct. 

5 Exper imenta l results for a real system 
5.1 A configuration of the system 

Figure 8 shows a configuration of the real mobile robot 
system. We have constructed the radio control system of 
the robot [Asada et a/., 1994]. The image processing and 
the vehicle control system are operated by VxWorks OS 
on MVME167(MC68040 CPU) computer which are con­
nected with host Sun workstations via Ether net. The 
image taken by a TV camera mounted on the robot is 
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transmitted to a UHF receiver and subsampled by the 
scan-line converter (Sony Corp.). Then, the video sig­
nal is sent to a Fujitsu tracking module. The tracking 
module has a function of block correlation to track some 
pre-memorized patterns and can detect motion vectors 
in real time. In the Figure 8, a picture of the real robot 
with a TV camera (Sony camera module) and a video 
transmitter is shown. 

5.2 Target tracking wi th no obstacles 

The experiment consists of two phases: first, learning 
the optimal policy / through the computer simulation, 
then apply the learned policy to a real situation. Figure 
9 shows a sequence of images where the robot succeeded 
in pursuing a target. The top of Figure 9 (a) shows the 
initial position of the target. The top figures in the Fig­
ure 9 (b), (c) and (d) shows the processed images. The 
white rectangle in each image shows the target position 
which is tracked. The white lines in these images show 
the optical flows. In this way, based on the hierachical 
architecture of the visual tracking routine, we can per­
form the target tracking and the optical flow detection 
in parallel on the real system. 

(c) (d) 
Figure 9: The robot succeeded in pursuing a tar­
get. 

5.3 Obstacle detection and avoidance 
Figure 10 shows a sequence of images where the robot 
succeeded in avoiding a moving obstacle. The top figures 
in the Figure 10 (a) and (b) show the processed images. 
In (a), the rectangles indicate the obstacle candidate re­
gions. 

6 Concluding Remarks and Future 
Work 

As one of the method for representing the interaction be­
tween the agent and its environment which enables the 
situated agents to behave adequately against the exter­
nal world, we proposed "motion sketch" which is inde­
pendent of scene components and tightly coupled with 
motor commands. Now, we are planning to develop a 
new program which tightly connects Max Video 200 and 
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Fujitsu Tracking module to speed up and finish the final 
stage of behavior integration. 
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to (d) 

Figure 10: The robot succeeded in avoiding a mov­
ing obstacle. 
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