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Abs t rac t 

We study how an autonomous robot can at­
tain a cognitive process that accounts for its 
symbolic manipulation of acquired knowledge 
without generating fatal gaps from the reality. 
The paper focuses on two essential problems; 
one is the symbol grounding problem and the 
other is how the internal symbolic processes can 
be situated with respect to the behavioral con­
texts. We investigate these problems by ap­
plying a dynamical system's approach to the 
robot navigation problem. Our formulation, 
based on a forward modeling scheme using re­
current neural learning, shows that the robot is 
capable of learning grammatical structure hid­
den in the geometry of the workspace from the 
local sensory inputs through its navigational 
experiences. Furthermore, the robot is capa­
ble of mentally simulating its own action plans 
using the acquired forward model. Our asser­
tion is that the internal representation obtained 
is grounded, since it is self-organized solely 
through interaction with the physical world. 
We also show that structural stability arises 
in the interaction between the neural dynam­
ics and the environmental dynamics, which ac­
counts for the situatedness of the internal sym­
bolic process. 

1 In t roduc t i on 
The recent successes of behavior-based robotics [Brooks, 
1986; Maes, 1991] have led to an underestimation of the 
necessity of internal representation. The behavior-based 
robots are characterized by their direct sensory-motor 
maps, through which they can react rapidly to the dy­
namical environment. Although the resultant reactive-
type behavior of these robots can be quite complex de­
pending on the adopted environment, the emergence of 
such complex behavior does not necessarily account for 
all aspects of intelligence. We consider that some intelli­
gent activity should involve deliberative internal compu­
tation rather than merely reactive interaction between 
the environmental and the internal systems. An intel­
ligent robot should be capable of mentally simulating 

its own potential action plans through manipulating the 
knowledge of its internal model in a flexible way, be­
fore choosing a course of action. Such internal com­
putation should maintain certain combinatorial powers 
especially when the acquired knowledge contains gram­
matical complexity. We consider that the deliberative 
thinking paradigm of the traditional AI itself is not mis­
leading. However, the paradigm faces two essential prob­
lems. One is the "symbol grounding problem" as Harnad 
[Harnad, 1990] has discussed, namely "How can the se­
mantic interpretation of a formal symbol system be made 
intrinsic to the system, rather than just parasitic on the 
meanings in our heads ?'' The other is how the symbolic 
process can be situated to the current context that is 
determined solely from the history of interacting with the 
environment. This paper discusses our novel approaches 
to address the above issues, in which we have used a 
mobile robot as an experimental platform. 

Conventionally, the problem of mobile robot navi­
gation has been approached in rather straightforward 
manner. A global representation formula is employed: 
a robot builds an environmental map, represented in 
global coordinates, by gathering geometrical informa­
tion as it travels [Elfes, 1987; Freyberger et a/., 1990]. 
Although a variety of methodologies has been proposed 
in this context, potential problems still remain, espe­
cially in robot localization. The localization is not al­
ways robust enough in the noisy environments of the 
real-world since there exist gaps between the knowledge 
of the global map and the information provided by the 
local sensory inputs. 

Kuipers [Kuipers, 1987], Mataric [Mataric, 1992], and 
others have developed an alternative approach based on 
landmark detection. In this approach, the robot ac­
quires a graph-type representation of landmark types. 
This representation is equivalent to a finite state machine 
(FSM), as a topological modeling of the environment. 
In navigation, the robot can identify its topological po­
sition by anticipating the landmark types in the FSM 
representation. Although this scheme enables the robot 
to acquire grammatical knowledge of the obstacle envi­
ronment by a local representation scheme, its stability 
is not clear in circumstances where incorrect landmark 
matching happens to take place. A FSM would halt if 
fed an illegal symbol. This navigation strategy is sus­
ceptible to such a crash if the landmark type is misread. 
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Although robustness can be enhanced through improv­
ing the landmark detection scheme by combining, for ex­
ample, global positioning (as conducted in ref.[Mataric, 
1992]) or other sensor-fusion techniques, it would remain 
limited as long as the model is represented symbolically. 

The above discussion has demonstrated that ap­
proaches using global maps or FSM cannot provide rep­
resentation intrinsic to the robot. In this paper, we 
focus on the dynamical system's approach [Beer, 1995; 
Jordan, 1988] as an alternative, with the expectation 
that its language can be utilized to build an effec­
tive representational and computational framework for 
behavior-based robots. It is known from the theory of 
symbolic dynamics [Crutchfield, 1989] that some classes 
of dynamical systems, for example chaos and fractals can 
provide combinatorial and linguistic power. Therefore, 
there is the possibility that knowledge, which requires 
its own grammatical handling, could be represented as 
being embedded into such intrinsic dynamical functions. 
Another characteristic, which we can take advantage of, 
is the phenomenon of entrainment that takes place be­
tween different dynamical systems which are coupled to­
gether. We will show that the internal symbolic process 
is naturally situated to the system's context by means of 
entrainment of the internal dynamics from the environ­
ment, through its interaction with the physical world. 

2 Nav igat ion Prob lem 
We consider how a mobile robot learns to navigate in 
an unstructured environment under the following condi­
tions: 

• The robot cannot access its global position, but it 
must navigate based on its local sensory (range im­
age) input. 

• There are no explicit landmarks accessible to the 
robot in the adopted workspace. 

• No apriori knowledge of the workspace geometry is 
given. 

Previously, we have formulated the skill-based learning 
of navigation [Tani and Fukumura, 1994a; 1994b]. This 
scheme aims to ensure that a robot will acquire skills 
(a state-action map) for a fixed navigational task, such 
as homing or cyclic routing, under the supervision of a 
trainer. The current paper presents the formulation of 
model-based learning. The benefit of this type of learning 
is that the process of planning with the internal model 
enables the robot to adapt flexibly to different goal tasks. 
The specific application, shown later in this paper, is 
that after the learning process, the robot mentally sim­
ulates its action plans using the acquired model i.e. it 
conducts lookahead predictions of future sensory input 
for arbitrary motor programs. 

3 Arch i tec tu re 
The YAMABICO mobile robot [lida and Yuta, 1991] 
was used as an experimental platform (see Figure 1). 
We briefly review the navigation architecture [Tani and 
Fukumura, 1994b; 1994a]. YAMABICO can obtain the 
range image by a laser range finder in real-time. The 
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Figure 1: The YAMABICO mobile robot equipped with 
a laser range sensor. 

ranges for 24 directions, covering a 160 degree arc in 
front of the robot, are measured every 150 milli seconds 
by triangulation. The robot maneuvers by differentiat­
ing the rotation velocity of the left and right wheels, and 
it normally moves with a speed of 0.3 m/s. 

In our formulation, maneuvering commands are gen­
erated as the output of a composite system consisting 
of two levels. The control level generates a collision-
free, smooth trajectory using a variant of the poten­
tial method [Khatib, 1986], while the navigation level 
directs the control level in a macroscopic sense, respond­
ing to the sequential branching that appears in the sen­
sory flows. The navigation level can be adapted through 
learning; the control level, on the other hand, is fixed. 

Firstly, let us describe the control level. The robot can 
sense the forward range readings of the surrounding en­
vironment in robot-centered polar coordinates given by 
rz(l < i < N). The angular range profile Rt is obtained 
by smoothing the original range readings through ap­
plying an appropriate Gaussian filter. The maneuvering 
focus of the robot is a local peak (the angular direction 
of the largest range) in this range profile. The robot pro­
ceeds towards a particular potential hill (an open space 
in the environment) by targeting its peak with a con­
stant control gain. This control scheme is implemented 
as follows: 

Vdif = kp.0f (1) 
where Vdif is the differential rotational velocity between 
the left and right wheels, Of is the angular displacement 
of the focus point from the center, and kp is a constant 
gain. 

The navigation level focuses on the topological 
changes in the range profile as the robot moves. As 
the robot moves through a given workspace, the pro­
file gradually changes until another local peak appears 
when the robot reaches a branching point. At this mo­
ment of branching the navigation level decides whether 
to transfer the focus to the new local maximum or to 
remain with the current one. This is the essential point 
of our architecture. The navigation level functions only 
at branching point that appears in unconstructed envi­
ronment. Therefore the navigation decisions are made 
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on the topological trajectory that is determined by the 
dynamics of collision-free maneuvering applied to the en­
vironment. 

The navigation level makes decisions for each branch 
by utilizing the sensory input at that moment. Two 
types of sensory inputs are used, one is the range image 
and the other is the local travel distance measured from 
the previous branch to the current one. The range im­
age is compressed by the vector quantization technique 
known as the Kohonen network [Kohonen, 1982]. The 
N-dimensional vector, describing the range profile R at 
each branching sequential time n, is fed into the net­
work, and the resultant mapping into an output vector 
pn of fewer dimensions / is obtained. More details of this 
application of the Kohonen's net should refer to [Tani 
and Fukumura, 1994b]. Hereafter, all discussion focuses 
on the schemes for the navigational level, and we will 
describe "branching decisions" simply as "motor com­
mands'' . 

In the actual implementation, the robot sometimes 
drops into a concave dead end from which the robot can­
not escape with its current maneuvering scheme. In this 
terminal point, the robot turns through 180 degrees and 
receives sensory inputs, then starts again. 

4 Model-Based Learn ing 
Our main concern is how a robot can acquire the in­
ternal model as an intrinsic function which enables the 
mental simulation of its own actions in the obstacle en­
vironment. Here, we attempt to apply the scheme of 
forward modeling [Jordan, 1988] to the problem. 

4.1 Forward modeling 
The objective is to build a forward model through which 
a robot can conduct lookahead prediction of the sen­
sory input sequence (as the distal output) as a result 
of the given motor program (of the proximal input) in 
branching sequence. (Hereafter, the term "motor pro­
gram" denotes a sequence of motor commands.) The 
objective forward model is embodied using a standard 
discrete time RNN architecture, as shown in Figure 2. 
The mapping function of the RNN can be written as; 

(2) 

where fc and fp are the nonlinear maps from the current 
branching step to the next branching step, and Wc and 
Wp denote parameter sets of connective weights. This 
RNN architecture receives the current sensory input pn, 
the current motor command xn, then outputs the pre­
diction of the next sensory input pn+1- We employ the 
idea of the context loop [Elman, 1990] which enables 
the network to obtain a certain temporal internal rep­
resentation. (In Figure 2, there is a feedback loop from 
the context units in the output layer to those in the in­
put layer.) The current context input cn (a vector) is 
a copy of the context output in the previous time: by 
this means the context units remember the previous in­
ternal state. The navigation problem is an example of 
a so-called "hidden state problem" [Lin and Mitchell, 

1992]: a given sensory input does not always represent 
a unique situation/position of the robot. Therefore, the 
current situation/position is identifiable, not by the cur­
rent sensory input, but by the memory of the sensory-
motor sequence stored during travel. Adequate temporal 
internal representation of the travel history, by taking 
advantage of the context loop, can achieve just such a 
memory structure. 

The forward model is acquired in the learning phase; 
the robot travels around the workspace with sampling 
the sensory-motor sequence in the branching, then the 
network is trained as off-line by using back-propagation 
through time algorithm [R.umelhart et a/., 1986]. The 
learning succeds when it can extract certain grammatical 
structures from the sampled sensory-motor sequences. 

After the learning phase is completed, the robot is op­
erated in the so-called open-loop mode: the robot travels 
in the workspace by an arbitrary motor program while 
conducting the one-step lookahead prediction (predicts 
next sensory input as the result of the current motor 
command). The RNN predicts the next sensory input 
Pn+1 inputting the current sensory input pn and the 
current motor command xn to the network. The RNN, 
in the beginning of the travel, cannot predict the next 
sensory input correctly since the initial context value is 
set randomly. However, the context value can get situ­
ated as the RNN continues to receive the sensory-motor 
sequence during the travel, then the RNN begins to pre­
dict correctly. 

After the robot is situated to the environment, the 
RNN can be switched into the closed-loop mode with 
stopping the robot at a branch point. Now, a lookahead 
prediction of an arbitrary length for a given motor pro­
gram can be made by copying the previous prediction 
of the sensory input to the current sensory input. (As 
indicated by a dotted line in Figure 2, the closed-loop 
for the sensory input is made.) Let us denote the mo­
tor program as x*. Then the lookahead prediction of 
the sensory input sequence p* can be obtained by recur­
sively applying x* to the RNN mapping function, with 
using the initial values of context units C0 and the sen-
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sory input p() which have been obtained in the open-loop 
mode. 

4.2 Situatedness by entrainment 
This sub-section investigates the mechanism of situated­
ness by focusing on the coupling between the internal 
neural dynamics and the environmental dynamics. 

First, we will define the term "attractor" for both of 
the environmental and the internal dynamics. Let us 
consider the environmental dynamics F. We consider an 
infinite length of randomly generated binary sequences 
(the motor program x*) to be fed into the robot. Let 
s* be the resultant state transitions of the environmen­
tal state in the branching sequence. The environmental 
state s can be represented by the robot's position (in­
cluding the orientation) upon branching. In the ideal 
case with no noise in the environment, the infinite travel 
of the robot forms an invariant set **, since the trajec­
tory of the robot is limited to be in a subspace of the 
entire workspace after an initial transient period. We 
define this invariant set as the attractor of F with re­
spect to the excitatory input x*. Also, we define an 
invariant set p* for the sequence of the .sensory input, 
which s_* corresponds to. It is important to note that 
this attractor is the global attractor, since the robot's 
travel starting from any position in the workspace re­
sults in the same invariant set. For the neural dynamics 
/, let us consider a lookahead prediction of the RNN 
with respect, to a motor program x* of an infinite length 
which is randomly generated. This generates an infi­
nite sequence of the transitions of the context c*. When 
this infinite sequence forms an invariant set, this invari­
ant set c* is defined as the attractor of /. The sensory 
sequence which corresponds to c* is indicated as p*. De­
pending on the learning process, the generation of the 
global attractor is not assured for /. Since the objective 
of learning is to make the neural dynamics / to emulate 
the environmental dynamics F by means of the sequence 
of the sensory input, / in the limit of a learning process 
satisfies, for an arbitrary motor program x*, that: 

(3) 
The idea here is that there is, at least, one attractor for 
/ by which the lookahead prediction of the sensory input 
can be made correctly, as satisfying (3). Now let us con­
sider the coupling of these two dynamics. In the open-
loop mode, the RNN predicts the next sensory inputs 
Pn+1 using the current sensory inputs pn while the robot 
travels following the motor program x*. This coupling 
is schematically shown in Figure 3. In this coupling, it 
is conjectured that two sequences p* and p* converge 
into the same sequence for all the initial states of .s0 and 
C0 if / has been formed as global attractor dynamics. 
This implies that the internal dynamics, with arbitrary 
setting of the initial state, always become coherent with 
the environmental dynamics and predict the sensory in­
puts correctly, as long as the internal model is embedded 
in the global attractor dynamics. 

This feature of the entrainment of the internal dynam­
ics by the environmental one assures an inherent robust­
ness of the robot's behavior against temporal perturba­
tions. The robot, during its travel, could lose its context 

if perturbed by noise. The robot, however, can get sit­
uated again by means of the entrainment as long as it 
continues to interact with the environment. 

5 Exper iment 
We conducted experiments on the scheme presented 
above using the mobile robot YAMADICO. The robot 
learns the forward model through trial and error. The 
robot samples the data of the sensory-motor sequence 
while it wanders around the adopted workspace for a 
certain period, then it learns the forward model of the 
navigation level using the data obtained off-line. After 
learning, the capability of lookahead predictions is sta­
tistically measured in order to examine how the robot 
learns the internal model. If its knowledge is found to 
be insufficient, the above process of learning is repeated 
through sampling more data. 

5.1 Learning and look-ahead prediction 
Learning was repeated for rounds with increasing num­
ber of the sampled data sets. The sampled data set was 
fed into the RNN for off-line learning for each round, 
in which the network was re-trained with randomly set 
weight values. The training of the RNN was conducted 
for 20,000 steps, which are repeated if the mean square 
learning error per unit output cannot be decreased be-
low 0.01. The adopted RNN architecture is three-layered 
having 10, 12 and 9 units for the input, hidden, and out­
put layers respectively. It has four context units. After 
each round of learning, the test of a given lookahead pre­
diction is conducted for different 10 travels. Each travel 
starts from an arbitrary free space in the workspace. 
The robot travels using random branching with the RNN 
switched in the open-loop mode until the RNN becomes 
able to predict the next sensory input correctly. The 
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robot is stopped when the prediction error, for all sen­
sory input units, becomes less than 0.15 twice in succes­
sion. Then, lookahead prediction is conducted, with the 
RNN switched in the closed-loop mode, for an arbitrary 
motor program which comprises seven steps branching. 
Thereafter, the robot is directed by the motor program 
in order to test the lookahead prediction. After 10 trav­
els, the mean square prediction error per sensory input 
unit (MSPE) is calculated. 

In the first round of the learning, the robot sampled 
49 input data and learned them. In the test, it took 
long steps (often more than 15 steps) until the RNN in 
the open loop mode supplied good predictions. In the 
ensuing lookahead predictions in the closed loop mode, 
the RNN could hardly predict more than three steps 
ahead. It seemed that the RNN learned only particu­
lar instances of the sampled sequences but not in a more 
general way. In the second round with learning 102 input 
data, the steps to capture the context were shortened, 
and the lookahead prediction often went smoothly for 
several steps. However, once the prediction failed in the 
middle of the sequence, it continued to fail for subsequent 
steps. In the third round with learning 193 input data, it 
was observed that the context could be recovered within 
several steps, and also that lookahead predictions be­

came accurate except in cases with certain noise effects. 
Since the RNN could predict correctly for sequences it 
had never learned exactly, it can be said that the RNN 
succeeded in extracting the necessary rules in the form of 
generalized ones. An example of the comparison between 
a lookahead prediction and its sensory sequence during 
travel is shown in Figure 4. In (a) an arrow denotes the 
branching point where the robot conducted a lookahead 
prediction of a motor program given by 1100111. The 
robot, after conducting the predictions, traveled follow­
ing the motor program, generating the trajectory of a 
"figure of eight1', as shown. In (b) the left side shows 
the sensory input sequence, while the right side shows 
those of the look-ahead, the motor program and its con­
text values. The values are indicated by the bar heights. 
It can be seen that the look-ahead for the sensory inputs 
agrees very well with the actual values. We examined the 
distribution of the prediction error for a single unit in the 
third round. It was shown that the fraction of "good" 
predictions with an error of less than 0.1 is more than 
70 percent. Since the robot could capture the context 
and then achieve good lookahead prediction regardless 
of the initial setting of the position and the context val­
ues, it is assumed that the robot succeeded in learning 
the forward model as embedded into the global attractor 
dynamics, through trial and error. 

In order to confirm the formation of the global attrac­
tor in the experiment, we conducted the phase space 
analysis for the internal dynamics of the RNN. The 
RNN, switched to the closed loop mode, was activated 
for two thousand forward steps using input sequences 
of random motor commands. The phase diagram was 
plotted as a two-dimensional projection using the acti­
vation state of two context units, excluding 100 points 
from the initial transient steps. Fig. 5(a) shows the 
resulting phase diagram, while (b) shows an enlarge­
ment of part of (a) in which a one-dimensional struc­
ture is seen. We repeated this several times with dif­
ferent initial values of the internal states, and found 
that they all resulted in the same attractor structure. It 
confirmed that the internal dynamics are self-organized 
in the form of the global attractor dynamics. Al­
though any theory has not been established to ex­
plain the creation of low-dimensional global attractor 
in the recurrent neural learning, its tendency is sug­
gested in other numerical experiments [Pollack, 1991; 
Tani and Fukumura, in press]. 

We have stated that the global attractor provides an 
inherent robustness for context dependent navigation 
as a natural consequence of coupling between the in­
ternal and the environmental dynamical systems. The 
following experiment demonstrates an example of auto-
recovery from temporal perturbation. The robot trav­
eled in the workspace while predicting the next sen­
sory inputs with the RNN switched to the open-loop 
mode. During this travel, an additional obstacle was in­
troduced. The upper part of Figure 6 shows the trajec­
tory of the robot's travel; the lower part shows the com­
parison of the actual sensory inputs and corresponding 
one-step lookahead prediction. The branching sequence 
number is indexed beside the trajectory; this number 
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Figure 5: Attractor observed in the internal dynamics. 

corresponds to the prediction sequence in the lower part 
of figure. The prediction starts to be incorrect once the 
robot passes the second branching point, as it encounters 
the unexpected obstacle. The robot, however, continues 
to travel and meanwhile the obstacle is removed. After 
the sixth brandling point, as the lost context is recov­
ered by means of the regular sensory feed, the predic­
tion returns to the correct evaluation. It is noted that 
the values of the context units in this branch are almost 
the same as those of the first branch. This shows that 
the robot recognized its returning to the same branching 
point by capturing the context of the travel again. 

6 Symbol Ground ing Process 
A primitive conceptualization of the symbol grounding 
process is conjectured as the result of our experiments. 
Figure 7 illustrates the concept. As the robot travels 
around the workspace, clusters of the sensory inputs are 
collected in the sensory space arising from its branching 
sequences. Meanwhile the dynamical mapping is self-
organized in the internal state space such that it ac­
counts for the transitions among the clusters of the col­
lected sensory inputs. If different symbols are assigned to 
each cluster of sensory inputs and internal state values, 
the mental simulation process carried out by the inter­
nal dynamics might be equivalent to the symbolic pro­
cess of manipulating a set of terminal and non-terminal 
symbols. The terminal symbols are defined in the sen­
sory space and the non-terminal one in the internal state 
space. Here, our primitive symbols are not in the arbi­
trary shape of usual symbol tokens [Hamad, 1990], but 



in the nonarbitrary shape based on the physical interac­
tion between the robot and the environment. 

One might consider that such symbolic processes can 
be represented in the form of a FSM more easily. We, 
however, consider that the internal representations by a 
FSM are still "parasitic" since symbols are manipulated 
into an arbitrary shape regardless of their meaning in the 
physical world. A crucial gap exists between the actual 
physical systems defined in the metric space and their 
representation in the non-metric space, which makes the 
discussion of the structural stability of the whole sys­
tem difficult. In contrast to this state of affairs, the 
representation in our scheme can be said to be intrinsic 
to the system since it is embedded in attractor dynam­
ics which share the same metric space with the physical 
environment. In this meaning, the structural stability 
arises in the interaction between the internal and envi­
ronmental systems, which accounts for the situatedncss 
of the internal symbolic process. Therefore, those sym­
bols which have been self-organized through interaction 
with the physical world are naturally grounded. 

7 Conclusion 
This paper has described how symbolic processes arc self-
organized in the navigational learning of a mobile robot. 
Our study, based on a dynamical system's approach, has 
shown that the forward modeling scheme based on RNN 
learning is capable of extracting grammatical structure 
hidden in the geometry of the workspace from naviga­
tional experience. The robot was capable of mentally 
simulating its own actions using the acquired forward 
model. We have shown that such mental process by the 
RNN can naturally be situated with respect to the behav­
ioral contexts, provided that the forward model learned 
is that embedded on the global attractor. Finally it is 
concluded that the dynamical system's approach enables 
the robot to construct its symbolic process as grounded 
to the physical world. 
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