
R E S C : A n A p p r o a c h f o r R e a l - t i m e , D y n a m i c A g e n t T r a c k i n g 

M i l i n d Tambe and Paul S. Rosenbloom 
Information Sciences Institute and Computer Science Department 

University of Southern California 
4676 Admiralty Way, Marina del Rey, CA 90292 

Email: {tambe, rosenbloom} @isi.edu 
WWW: ht tp : / /www. is i .edu/soar / { tambe, rosenbloom} 

Abst rac t 

Agent tracking involves monitoring the observ­
able actions of other agents as well as infer­
ring their unobserved actions, plans, goals and 
behaviors. In a dynamic, real-time environ­
ment, an intelligent agent faces the challenge 
of tracking other agents' flexible mix of goal-
driven and reactive behaviors, and doing so 
in real-time, despite ambiguities. This paper 
presents RESC (REal-time Situated Commit­
ments), an approach that enables an intelligent 
agent to meet this challenge. RESC's situat-
edness derives from its constant uninterrupted 
attention to the current world situation — it 
always tracks other agents' on-going actions in 
the context of this situation. Despite ambigu­
ities, RESC quickly commits to a single inter­
pretation of the on-going actions (without an 
extensive examination of the alternatives), and 
uses that in service of interpretation of future 
actions. However, should its commitments lead 
to inconsistencies in tracking, it uses single-
state backtracking to undo some of the commit­
ments and repair the inconsistencies. Together, 
RESC's situatedness, immediate commitment, 
and single-state backtracking conspire in pro­
viding RESC its real-time character. 
RESC is implemented in the context of intelli­
gent pilot agents participating in a real-world 
synthetic air-combat environment. Experimen­
tal results illustrating RESC's effectiveness are 
presented.1 

1 In t roduc t i on 
In a multi-agent environment, an automated agent of­
ten needs to interact intelligently with other agents to 
achieve its goals. Agent tracking — monitoring other 

1 We thank Rick Lewis and Yasuo Kuniyoshi for helpful 
feedback. This research was supported under subcontract to 
the University of Southern California Information Sciences 
Institute from the University of Michigan, as part of contract 
N00014-92-K-2015 from the Advanced Systems Technology 
Office (ASTO) of the Advanced Research Projects Agency 
(ARPA) and the Naval Research Laboratory (NRL). 

agents' observable actions and inferring their unobserved 
actions, plans, goals and behaviors — is a key capability 
required to support such interaction. 

This paper focuses on agent tracking in real-time, 
dynamic environments. Our approach is to first build 
agents that are (reasonably) successful in agent tracking 
in such environments, and then attempt to understand 
the underlying principles. Thus, the approach is one of 
first building an "interesting" system for a complex en­
vironment, and then understanding why it does or does 
not work (see [Hanks et a/., 1993] for a related discus­
sion). In step with this approach, we are investigating 
agent tracking in the context of our on-going effort to 
build intelligent pilot agents for a real-world synthetic 
air-combat environment[Tambe et a/., 1995]. This envi­
ronment is based on a commercially developed simulator 
called ModSAF[Calder et ai, 1993], which has already 
been used in an operational military exercise involving 
expert human pilots. For an illustrative example of agent 
tracking in this environment, consider the scenario in 
Figure 1. It involves two combating pilot agents — L in 
the light-shaded aircraft and D in the dark-shaded one. 

Figure 1: A simulated air-combat scenario. An arc on 
an aircraft's nose shows its turn direction. 

Initially, L and D's aircraft are 50 miles apart, so they 
can only see each other's actions on radar. For effective 
performance, they have to continually track these ac­
tions. Indeed, D is able to survive a missile attack by L 
in this scenario due to such tracking, despite the missile 
being invisible to D's radar. In particular, in Figure 1-
a, D observes L turning its aircraft to a collision-course 
heading (i.e., at this heading, L will collide with D at 

TAMBE AND ROSENBLOOM 103 



the point shown by x). Since this heading is often used 
to reach one's missile firing range, D infers the possibil­
ity that L is trying to reach this range to fire a missile. 
In Figure 1-b, D turns its aircraft 15° right. L reacts 
by turning 15° left, to maintain collision course. In Fig­
ure 1-c, L reaches its missile range, points its aircraft 
at D's aircraft and fires a radar-guided missile. While 
D cannot see the missile on its radar, it observes L's 
turn, and infers it to be part of L's missile firing behav­
ior. Subsequently, D observes L executing a 35° turn 
away from its aircraft (Figure 1-d). D infers this to be 
an fpole turn, typically executed after firing a missile to 
provide radar guidance to the missile, while slowing the 
closure between the two aircraft. While D still cannot 
observe the missile, it is now sufficiently convinced to 
attempt to evade the missile by turning 90° relative to 
the direction of L's aircraft (Figure 1-e). This beam turn 
causes D's aircraft to become invisible to L's (doppler) 
radar. Deprived of radar guidance, L's missile is ren­
dered harmless. 

Meanwhile, L tracks D's beam turn in Figure 1-e, and 
prepares counter-measures in anticipation of the likely 
loss of both its missile and radar contact. 

Thus, the pilot agents need to continually track their 
opponents' actions, such as turns, and infer unobserved 
actions, high-level goals and behaviors, such as the fpole, 
beam or missile firing behaviors. This agent tracking ca­
pability is related to plan-recognition[Kautz and Allen, 
1986; Azarewicz et a/., 1986]. The key difference is that 
plan-recognition efforts typically focus on tracking a nar­
rower (plan-based) class of agent behaviors, as seen in 
static, single-agent domains. In particular, they assume 
that agents rigidly follow plans step-by-step. In contrast, 
agent tracking involves the novel challenge of tracking a 
broader mix of goal-driven and reactive behaviors. This 
capability is important for dynamic environments such 
as air-combat simulation where agents do not rigidly fol­
low plans — as just seen, pilot agents continually react 
to each other's maneuvers. 

Agent tracking and plan recognition are both part of 
a larger family of comprehension capabilities that enable 
an agent to parse a continuous stream of input from its 
environment, whether it be in the form of natural lan­
guage or speech or music or simulated radar input, as 
is the case here (e.g., see [Rich and Knight, 1990, chap­
ter 14]). Resolving ambiguities in the input stream is 
a key problem when parsing all of these different types 
of input. One example of the ambiguity faced in agent 
tracking can be seen in L's turn in Figure 1-c. From D's 
perspective, L could be turning to fire a missile. Alter­
natively, L could be beginning a 180° turn to run away 
from combat. Or L could simply be following its flight 
plan, particularly if it has a much shorter radar range, 
and thus is likely unaware of D. Despite such ambigui­
ties, D has to track L's actions with sufficient accuracy 
so as to respond appropriately. The novel challenge in 
this domain — at least with respect to previous work in 
plan recognition — is that the ambiguity resolution has 
to occur in real-time. As the world rapidly moves on, an 
agent cannot lag behind in tracking. Thus, if D is late or 
inaccurate in its tracking of L's missile firing maneuvers 

in Figure 1-c, it may not evade the missile in time. 
This paper describes an approach called RESC (REal-

time Situated Commitments) for agent tracking that ad­
dresses the above challenges. RESC's situatedness rests 
on its constant attention to the current world situation, 
and its tracking of other agents' actions in the context of 
this situation. Despite its situatedness, RESC does make 
some commitments about the other agent's unobserv-
able actions, behaviors and goals, and attempts to use 
those in tracking the agent's future actions. In ambigu­
ous situations, these commitments could be inappropri­
ate and could lead to failures in tracking — in such cases, 
RESC modifies them on-line, without re-examining past 
world states. Together, RESC's situatedness, immediate 
commitments (despite the ambiguities), and its on-line 
modification of commitments provide RESC its real-time 
character. 

In the following, we first describe the process that 
RESC employs for tracking other agent's flexible and 
reactive behaviors (Section 2). This process enables 
RESC to be situated in its present as it tracks an 
agent's actions. Subsequently, RESC's ambiguity res­
olution and real-time properties are described in Section 
3. These descriptions are provided in concrete terms, 
using an implementation of the pilot agents in a system 
called TacAir-Soar[Tambe et a/., 1995J, built using the 
Soar architecture[Newell, 1990; Rosenbloom et ai, 1991]. 
We assume some familiarity with Soar's problem-solving 
model, which involves applying operators to states to 
reach a desired state. 

2 Tracking Flexib le Goal-dr iven and 
React ive Behaviors 

In an environment such as air-combat simulation, agents 
possess similar behavioral flexibility and reactivity. 
Thus, the (architectural) mechanisms that an agent em­
ploys in generating its own behaviors may be used for 
tracking others' flexible and reactive behaviors. Con­
sider, for instance, D's tracking of L's behaviors in Fig­
ure 1-c. D generates its own behavior using the operator 
hierarchy shown in Figure 2-a. (The solid lines indicate 
the actual hierarchy, and the dashed lines indicate unse-
lected options.) Here, at the top-level, D is executing its 
mission — to protect its home-base for a given time pe­
riod — via the execute-mission operator. Since the ter­
mination condition of this operator — completion of D's 
mission — is not yet achieved, a subgoal is generated.2 

D rejects options such asfjollow-flight-plan and run-away 
in this subgoal in favor of the intercept operator, so as 
to combat L. In service of intercept, D selects employ-
missile in the next subgoal. However, since D has not 
reached its missile firing range and position, it selects 
get-firing-position in the next subgoal. Skipping to the 
final subgoal, maintam-heading enables D to maintain 

2 A Soar operator has termination conditions — if the op­
erator's application (or new sensor input) changes the state 
so as to satisfy the termination conditions, then that opera­
tor and all of its subgoals are terminated. If the termination 
conditions remain unsatisfied, a subgoal is created, within 
which new operators are applied. 

104 ACTION AND PERCEPTION 



Figure 2: Operator hierarchies: Solid lines indicate ac­
tual selections; dashed indicate unselected options. 

The operators used for generating D's own actions, 
such as in Figure 2-a, will be denoted with the subscript 
D, e.g., interceptD. OperatorD will denote an arbitrary 
operator of D. StateD will denote the global state shared 
by all of these operators. It maintains all of the dynamic 
sensor input regarding D's own aircraft, such as its head­
ing and altitude. It also maintains dynamic radar input 
regarding L's aircraft, such as heading, range, collision 
course and other geometric relationships. Additionally, 
it maintains non-sensor information, e.g., D's missile ca­
pabilities. Together, stateD and the operatorD hierar­
chy constitute the introspectable aspect of D, and in this 
sense may be considered as D's model of its present self, 
referred to as modelD. 

ModelD supports D's flexible/reactive behaviors via 
its embedding within Soar; and in particular, via two 
of Soar's architectural features: (i) a decision proce­
dure that supports flexibility by integrating all available 
knowledge about absolute or relative worth of candidate 
operators right before deciding to commit to a single op­
erator; (ii) termination conditions for operators that sup-

port reactivity by terminating operators in response to 
the given situation[Rosenbloom et a/., 1991]. The point 
here is not that these specific architectural features are 
the only way to yield such behavior, but rather that there 
are such features, and that they can be reused in track­
ing other agents' behaviors. To illustrate this re-use, we 
assume for now that D and L possess an identical set 
of maneuvers. (Note that this sameness of maneuvers is 
not necessary; all that is required is for D to have an 
accurate model of its opponent's maneuvers.) 

Thus, D uses a hierarchy such as the one in Figure 2-
b to track L's behaviors. Here, the hierarchy (the solid 
lines in Figure 2-b) represents D's model of L's current 
operators in the situation of Figure 1-c. These operators 
are denoted with the subscript DL. This operatorDL 
hierarchy, and the stateDL that goes with it, constitute 
D'smodelof L or modelDL. Within modelDL, execute-
mission-Qij denotes the operator that D uses to track 
L's mission execution. Since L's mission is not yet com­
plete, D applies the interceptDL operator in the subgoal 
to track L's intercept. The unselected alternatives here, 
e.g., run-away-DL indicate the ambiguity in tracking L's 
actions (however, assume for now that this is accurately 
resolved). In the next subgoal, employ-missileDL is ap­
plied. Since L has reached its missile firing position, in 
the next two subgoals, final-missile-maneuverDL tracks 
L's final missile maneuver, and point-at-targetDL tracks 
L's turning to point at D. In the final subgoal, D ap­
plies the stari-&-maintatn-turnDL operator to stateDL , 
which does not (can not) actually cause L turn. Instead, 
this operator predicts L's action and matches the pre­
diction against L's actual action. Thus, if L starts turn­
ing to point at D's aircraft, then there is a match with 
modelDL's predictions — D believes L is turning to 
point at its target, D, to fire a missile. When L's aircraft 
turns sufficiently to point straight at D's aircraft (Figure 
1-c), the termination condition of the point-at-targetDL 
operator is satisfied, and it is terminated. A new oper­
ator, push-fire-buttonDL, is then applied in the subgoal 
of final-misstle-maneuveDL. This operator predicts a 
missile firing, although the missile cannot actually be ob­
served. StateDL maintains a representation of the mis­
sile, and marks it with a low likelihood. Following that, 
the fpole-rightDL operator predicts L's right turn for an 
fpole. When this prediction is matched with L's turn in 
Figure 1-d, the missile's likelihood is changed to high. 
D now attempts to evade the missile, with beam-rightD. 
(D currently chooses arbitrarily between the execution 
of operatorD and operatorDL , as it generates its own 
actions, while also tracking L s actions.) 

The above agent tracking process is related to pre­
vious work on model tracing in intelligent tutoring sys-
tems(ITS) for tracking student actions[Anderson et a/., 
1990; Ward, 1991]. However, that work has primarily 
focused on static environments. A recently developed 
ITS, REACT[Hill and Johnson, 1994], extends model 
tracing to a more dynamic environment. REACT relies 
upon a plan-driven tracking strategy, and deals with the 
more dynamic aspects of the domain as special cases. It 
specifically abstracts away from tracking students' men­
tal states. In contrast, pilots appear to track their op-

TAMBE AND ROSENBLOOM 105 



106 ACTION AND PERCEPTION 



describes single-state backtracking. 

3.1 Reducing Ambiguities 
There are two classes of strategies used in RESC to re­
solve ambiguities: active and passive. The active strate­
gies rely upon an agent's active participation in its en­
vironment to gather information to resolve ambiguities. 
In particular, an automated pilot, such as D, can act in 
its environment and force its opponent L to react and 
provide disambiguating information. Consider again the 
example in Figure 1-a. As discussed earlier, D faces am­
biguity in siateDL about whether L's radar has detected 
D. This gets resolved with L's turn to collision course. 
Unfortunately, if L just happens to be on collision course, 
it may not turn any further, and the ambiguity would 
be more difficult to resolve. In such cases, D can ran­
domly turn 15-20°, as shown in Figure 1-b, causing L 
to react if it wishes to maintain collision course. This 
provides D sufficient disambiguating information — L's 
radar has detected D. Unfortunately, D's actions in ser­
vice of active ambiguity resolution may interfere with 
its other goals, such as firing a missile at L. In general, 
such interference is difficult to resolve. Therefore, cur­
rently, active ambiguity resolution is based on a fixed set 
of known maneuvers (supplied by human experts). 

In contrast, passive ambiguity resolution strategies 
rely on existing information to resolve ambiguities. One 
key piece of information is that in this hostile environ­
ment, an opponent is likely to engage in the most harm­
ful maneuver. This information is used in the form of 
a worst case strategy for disambiguation. Thus, given 
a choice, D always selects the worst-case operatorDL 
(from its own perspective) while tracking L's actions. 
For instance, if there is ambiguity between run-awayDL 
or interceptDL , D will select intercept DL, which is more 
harmful. Similarly, D resolves ambiguity in the static in­
formation in stateDL via the worst-case strategy, e.g., it 
assumes that L's aircraft is carrying the most powerful 
missiles and radar that it can carry. Unfortunately, this 
worst-case strategy can lead to overly pessimistic behav­
ior. In the absolute worst-case, the only option for D is 
to run away. Therefore, D applies it selectively, typically 
in cases where it has to disambiguate rapidly, and yet no 
other means are available. Thus, as seen above, D does 
not automatically assume detection by L's radar, even 
though that would be the worst-case assumption. 

A second passive ambiguity resolution strategy is test 
incorporation[Bennett and Dietterich, 1986]. The key 
idea is to generate fewer incorrect alternatives in ambigu­
ous situations. In particular, modelDL generates alter­
native operatorsDL that are tested by matching against 
L's actual actions. Observations regarding these actions 
can be used to avoid generating alternatives that are 
guaranteed to lead to match failures. For instance, in 
Figure 1-d, fpole-rightDL and fpole-left-fii, are two al­
ternatives available to D in tracking L's actions. If D 
already sees L turning to its right, then fpole-leftDL can 
be eliminated, since it would be guaranteed to lead to a 
match failure. Test incorporation relies on such spatial 
relationships. 

A third passive ambiguity resolution strategy is goal 

incorporation (e.g., see [Van Beek and Cohen, 1991]). 
The key idea here is to resolve ambiguities only to the ex­
tent necessitated by an agent's goals. For example, given 
the reality of the simulation environment, L's aircraft of­
ten unintentionally deviates from its intended heading. 
Given such deviations, L sometimes makes corrections 
to its headings. However, D does not really need to 
track and disambiguate these small deviations and cor­
rective actions. It therefore uses fuzz-box filters that dis­
regard specified deviations in L's actions. For instance, 
for point-at-targetDL, which tracks L's pointing maneu­
ver (Figure 1-c), the fuzz-box filter disregards 5° of de­
viation in L's heading. Such filtering also helps to avoid 
tracking of detailed aspects of stateDL, and avoids am­
biguities there. 

3.2 Single-State Backtracking in RESC 
Based on the above disambiguation strategies, RESC 
commits to a single stateDL and a single operatorDL hi­
erarchy, which track L's actions as described in Section 2. 
However, should this cause a match failure, single-state 
backtracking is used to undo some commitments. As its 
name suggests, this backtracking takes place within the 
context of a single stateDL . Starting from the bottom 
of the operatorDL hierarchy, operators are terminated 
one by one in an attempt to get alternatives to take their 
place. Some alternatives do get installed in the hierar­
chy, and possibly change stateDl , but lead to match 
failures. These are also replaced, until some alterna­
tive leads to an operator DL hierarchy that culminates 
in match success.3 

Why is this process real-time? The main reason is 
that backtracking occurs without a re-examination of 
past sensor input or mental recreation of older statesDL. 
In particular, while backtrack search would normally in­
volve revisiting old statesDl and reconsidering the dif­
ferent operatorsDL possible in each of those states — 
creating an opening for combinatorics — RESC com­
pletely avoids such computation. Furthermore, although 
RESC does backtrack over the operator hierarchy, there 
are three factors that ameliorate the combinatorics there. 
First, given RESC's situatedness, backtracking remains 
tied to the present stateDL. Thus, while a match fail­
ure is recognized and the oacktrack process begun, L and 
D's aircraft continue to move and turn, changing their 
speeds, headings, altitudes, and relative geometric rela­
tionships (e.g., range, collision course, etc). StateDL 
is continuously updated with this latest information. 
The backtracking process takes place in the context of 
this continuously changing state. Thus, only those al­
ternative operatorsDL that are relevant to the current 
stateDL get applied. Similarly, in some cases, changes 
in stateDL cause portions of the operatorDL hierarchy 
to terminate automatically during the backtrack process. 
In other words, RESC is continuously dragged forward 
as the world changes. Second, RESC does not oblige 
D to address the match failure before D can execute 

3 In a few cases, there are pending changes related to ambi­
guities in stateDL, e.g., has L detected D? These are applied 
first, hoping they cause changes to operatorDL and lead to 
success. 

TAMBE AND R0SENBL00M 107 



any of its own operatorsD. Thus D is free to act to 
the extent it can. Finally, indeed, if the world were to 
magically become static, RESC's strategy will result in 
a complex search, although still within the context of a 
single stateDL . However, it is unclear if this is necessar­
ily problematic — a static world should possibly merit 
a more thorough search. 

Let us consider some examples of single-state back­
tracking. As a simple example, suppose D has com-
mited to the modelDL in Figure 2-b. Initially, point-at-
target DL has match success in that, as predicted, L in­
deed starts turning towards D(see Figure 3-a for an illus­
tration). However, L really has decided to run away; so 
it continues turning 180° without stopping when point­
ing at D (Figure 3-b). This leads to a match failure 
in the operatorDL hierarchy. Single-state backtrackingnow ensues, terminating operators beginning from the 
bottom of the hierarchy. Finally, interceptDL, is termi­
nated and replaced by run-away DL. This predicts L 
to be turning towards its home-base, which successfully 
matches L's actions (Figure 3-c). Thus, D successfully 
applies run-away DL, predicting and matching L's ac­
tions, without mentally recreating the state DL in which 
L may have initiated its run-away maneuver. 

Figure 3: L continues to turn to run away. 

A slightly more complex example involves situations 
where L is engaging in a beam maneuver. Here, D ini­
tially matches fpole-rightDL, and even infers L's missile 
firing, as part of stateDL . However, as L keeps turning, 
there is soon a matcn failure, causing D to backtrack 
until beam-right DL successfully matches. There are two 
key points here. First, again D is successful in applying 
beam-rightDL, without mentally recreating the stateDL 
in which L may have initiated its beam maneuver. Sec­
ond, D's earlier inference of L's missile firing is not re­
moved, even though it is based on a sequence of operators 
that eventually led to a match failure. This is because it 
is difficult for D to decide if L was initially maneuvering 
to fire a missile and then switched to beam, or if it was 
always engaged in beam. Not knowing any better, D 
does not eliminate the earlier inference from stateDL. 
Fortunately, when aircraft turn 90° to beam, they can­
not provide radar guidance to their missiles. Therefore, 
with L's beam, D infers that the missile that it ear­
lier inferred on stateDL has lost guidance and become 
harmless. The end result is identical to a case where 
D had successfully tracked L's beam maneuver, with­
out the failed intermediate inference of an fpole-rightDL 
maneuver. 

We have so far found RESC's single-state backtrack­
ing to be successful in the air-combat simulation domain 
(see Section 4). Given the potential application of this 
approach for other areas of real-time comprehension, it 

108 ACTION AND PERCEPTION 



tracking is a non-trivial task for D. Furthermore, higher 
percentages of operator executions may be dedicated to 
agent tracking with increased numbers of opponents. 

The fifth column shows the percentage of agent track­
ing operators involved in match failures (counting oper­
ators at the bottom of the hierarchy that encountered 
the failure, but not their parents). The main point here 
is that the overall percentage of these operator is low; at 
most 17% of the agent tracking operators are involved 
in match failures. 

In all of these cases, D is successful in tracking op­
ponents in real-time so as to react appropriately. Even 
in cases where D encounters match failures, it is able 
to backtrack to track the on-going activities in real-time 
and respond appropriately. However, as the number of 
opponents increases, D does face resource contention 
problems. With four opponents, it is unable to track 
the actions of all of the agents in time, and gets shot 
down (hence fewer operators). This resource contention 
issue is under active investigation[Tambe, 1995]. 

Our second set of experiments involved Soar-vs-
ModSAF simulated air-combat scenarios. ModSAF-
based[Calder et a/., 1993] pilot agents are controlled 
by finite state machines combined with arbitrary pieces 
of code, and do not exhibit high behavioral flexibility. 
While D was in general successful in agent tracking in 
these experiments —■ it did recognize the maneuvers in 
real-time and respond to them — one interesting issue 
did come up. In particular, in one of the scenarios here, 
there was a substantial mismatch in D's worst assump­
tions regarding its opponent's missile capabilities and the 
actual capabilities — leading to tracking failures. Deal­
ing with model mismatch is also an issue for future work. 

The second aspect to understanding the effectiveness 
of TacAir-Soar RESC is some quantitative estimate of the 
impact of agent tracking on improving D's overall perfor­
mance. In general, this is a difficult issue to address (see 
for instance the debate in [Hanks et a/., 1993]). Nonethe­
less, we can at least list some of the types of benefits 
that D accrues from this capability. First, agent track­
ing is crucial for D's survival. Indeed, it is based on 
agent tracking that D can recognize an opponent's mis­
sile firing behavior and evade it. Second, agent tracking 
improves D's overall understanding of a situation, so it 
can act/react more intelligently. For instance, if an op­
ponent is understood to be running away, D can chase 
it down, which would be inappropriate if the opponent 
is not really running away. Similarly, if D is about to 
fire a missile, and it recognizes that the opponent is also 
about to do the same, then it can be more tolerant of 
small errors in its own missile firing position so that it 
can fire first. Finally, agent tracking helps D in pro­
viding a better explanation of its behaviors to human 
experts. (Such an explanation capability is currently 
being developed[johnson, 1994]). If human experts see 
D as performing its task with an inaccurate understand­
ing of opponents' actions, they will not have sufficient 
confidence to actually use it in training. 

TAMBE AND R0SENBL00M 109 



5 Lessons Learned 
This paper presented an approach called RESC, for 
agent tracking in real-time dynamic environments. Our 
investigation was based on a real-world synthetic envi­
ronment that has already been used in a large-scale op­
erational military exercise[Tambe et ai, 1995]. Lessons 
learned from this investigation — as embodied in RESC 
— are as follows: 

• To track other agents' flexible and reactive behav­
iors: Reuse the architectural mechanisms that sup­
port an agent's own flexible/reactive behaviors in 
service of tracking others' behaviors. 

• To address ambiguities in real-time: Quickly com­
mit to a single interpretation, and use single-state 
backtracking to recover from erroneous commit­
ments. 

• To address real-time issues in general: Keep track­
ing firmly tied to the now, i.e., to the present state. 

One key issue for future work is investigating the gen­
erality of these lessons by applying RESC to other com­
petitive and collaborative multi-agent domains. One 
candidate that has been suggested is a real-time multi-
robot domain where robots track other robots or humans 
to collaborate in a task by observation (rather than by 
communication)[Kuniyoshi et ai, 1994]. Beyond agent 
tracking, there is some indication that RESC could apply 
in other real-time comprehension tasks. For instance, a 
RESC-type strategy has been previously used in a real-
time language comprehension system[Lewis, 1993]. This 
system also commits to a single interpretation of an in­
put sentence despite ambiguity, and attempts to repair 
the interpretation in real-time when faced with parsing 
difficulties. We hope that investigating these broader 
applications will lead to an improved understanding of 
agent tracking and comprehension. 

References 
[Anderson et aL, 1990] J. R. Anderson, C. F. Boyle, 

A. T. Corbett, and M. W. Lewis. Cognitive mod­
eling and intelligent tutoring. Artificial Intelligence, 
42:7-49,1990. 

[Azarewicz et ai, 1986] J. Azarewicz, G. Fala, R. Fink, 
and C. Heithecker. Plan recognition for airborne tac­
tical decision making. In Proceedings of the National 
Conference on Artificial Intelligence, pages 805-811. 
Menlo Park, Calif.: AAAI press, 1986. 

[Bennett and Dietterich, 1986] J. S. Bennett and T. G. 
Dietterich. The test incorporation hypothesis and the 
weak methods. Technical Report 86-30-4, Department 
of Computer Science, Oregon State University, 1986. 

[Calder et ai, 1993] R. B. Calder, J. E. Smith, A. J. 
Courtemanche, J. M. F. Mar, and A. Z. Ceranowicz. 
Modsaf behavior simulation and control. In Proceed­
ings of the Conference on Computer Generated Forces 
and Behavioral Representation, 1993. 

[Hanks ei ai, 1993] S. Hanks, M. E. Pollack, and P. R. 
Cohen. Benchmarks, test beds, controlled experimen­
tation, and the design of agent architectures. AI Mag­
azine, 14(4):17-42, 1993. 

[Hill and Johnson, 1994] R. Hill and W. L. Johnson. Sit­
uated plan attribution for intelligent tutoring. In Pro­
ceedings of the National Conference on Artificial In­
telligence. Menlo Park, Calif.: AAAI press, 1994. 

[Johnson, 1994] W. L. Johnson. Agents that learn to ex­
plain themselves. In Proceedings of the National Con­
ference on Artificial Intelligence, Seattle, WA, August 
1994. Menlo Park, Calif.: AAAI press. 

[Kautz and Allen, 1986] A. Kautz and J. F. Allen. Gen­
eralized plan recognition. In Proceedings of the Na­
tional Conference on Artificial Intelligence, pages 32-
37. Menlo Park, Calif.: AAAI press, 1986. 

[Kuniyoshi et ai, 1994] Y. Kuniyoshi, S. Rougeaux, 
M. Ishii, N. Kita, S. Sakane, and M. Kakikura. Coop­
eration by observation - the framework and the basic 
task pattern. In Proceedings of the IEEE International 
Conference on Robotics and Automation, May 1994. 

[Lewis, 1993] R. L. Lewis. An architecturally-based the­
ory of human sentence comprehension. In Proceedings 
of the Eleventh Annual Conference of the Cognitive 
Science Society, 1993. 

[Newell, 1990] A. Newell. Unified Theories of Cognition. 
Harvard Univ. Press, Cambridge, Mass., 1990. 

[Rich and Knight, 1990] E. Rich and K. Knight. Artifi­
cial Intelligence. McGraw-Hill, New York, NY, 1990. 

[Rosenbloom et ai, 1991] P. S. Rosenbloom, J. E. Laird, 
A. Newell, , and R. McCarl. A preliminary analysis of 
the soar architecture as a basis for general intelligence. 
Artificial Intelligence, 47(l-3):289~325, 1991. 

[Tambe and Rosenbloom, 1995] 
M. Tambe and P. S. Rosenbloom. Event tracking 
in a dynamic multi-agent environment. Computa­
tional Intelligence, (To appear), 1995. WWW: http: 
//www.isi.edu/soar/tambe/event.html. 

[Tambe et ai, 1995] 
M. Tambe, W. L. Johnson, R. Jones, F. Koss, J. E. 
Laird, P. S. Rosenbloom, and K. Schwamb. Intelli­
gent agents for interactive simulation environments. 
AI Magazine, 16(1), Spring 1995. 

[Tambe, 1995] M. Tambe. Recursive agent and agent-
group tracking in a real-time dynamic environment. In 
Proceedings of the International Conference on Multt-
agent systems (ICMAS), June 1995. 

[Van Beek and Cohen, 1991] P. Van Beek and R. Co­
hen. Resolving plan ambiguity for cooperative re­
sponse generation. In Proceedings of International 
Joint Conference on Artificial Intelligence, pages 938-
944, 1991. 

[Ward, 1991] B. Ward. ET-Soar: Toward an ITS for 
Theory-Based Representations. PhD thesis, School of 
Computer Science, Carnegie Mellon Univ., 1991. 

110 ACTION AND PERCEPTION 


