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Abs t rac t 

With increased processor speed and improved 
robotic and AI technology, researchers are be­
ginning to design programs that can behave in­
telligently and interact in the real world. A 
large increase in processing power has come 
from parallel machines, but taking advantage 
of this power is challenging. In this paper 
we address the issues in designing planners 
for real-time AI and robotic applications, and 
provide guiding principles. These principles 
were designed to minimize the difference be­
tween the new real-time model and the stan­
dard off-line model. Applying these princi­
ples yields a better-structured application, eas­
ier design and implementation, and improved 
performance. The focus of the paper is on 
a design methodology for implementing effec­
tive planners in real-world applications. Using 
Ephor (our runtime environment), and apply­
ing the described planner principles, we demon­
strate improved performance in a real-world 
shepherding application. 

1 I n t r oduc t i on 
With increasing processor power there has been grow­
ing interest and research work in designing intelligent 
applications that interact with the real world. Com­
bining real-world requirements with uncertain and com­
plex cognitive activities leads to issues of resource allo­
cation and decision-making in real time not previously 
encountered in AI or robotics applications. We call in­
telligent parallel applications with unpredictable aspects 
and a complex mixture of competing and cooperating de­
mands Soft PArallel Real-Time Applications, or SPAR­
TA s. Building SPARTAs is difficult because it involves 
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not only designing the intelligent portion of the appli­
cation, but also handling both soft real-time constraints 
(e.g. robot planning), and hard real-time constraints 
(e.g. a balance subsystem). 

If a SPARTA programmer is oblivious to real-time is­
sues when designing an application, poor or incorrect 
behavior may result. Tension arises due to the discrep­
ancy between how an AI programmer wants to design an 
application and the requirements of planning and acting 
in the real world. We have developed Ephor1, a runtime 
environment2 to support SPARTA development and ex­
ecution. Our goal is to provide as much of the off-line 
programming model as possible, so that the standard 
techniques available for designing intelligent robotic ap­
plications can be applied to SPARTAs. 

In this paper we focus on techniques for implement­
ing effective planners3 in parallel real-world applications. 
Previously, designing a planner for a SPARTA meant 
tracking resource allocation, timing tasks, and handling 
other concerns of interacting in the real world. The com­
bination of Ephor and our model of planning in SPAR­
TAs considerably sirnplies design. 

A key observation we will leverage throughout our dis­
cussion is that in a dynamic real-world environment it 
is important to be able to adapt. While this may be 
intuitive, its implications for planner (and runtime) de­
sign are significant. The importance of adapting holds 
both for the action taken by the application as well as 
how the application decides on that action. More con­
cretely, in later sections we discuss the advantages of 
having several planners (with the same goal) varying in 
resources consumed (and thus quality of result). This 
diversity is useful because it allows an adaptive deci­
sion to be made during execution when the application 
needs a particular goal solved. In part, the principles 
for designing SPARTA planners are motivated by what 
tools/mechanisms the underlying runtime environment 

Ephor WAS the name of the council of five in ancient Greece that effec­tively ran Sparta. 2 A runtime environment is a combination of library calls and system 
code working together for a specific purpose, e.g., a lisp interpreter can be 
thought of as a runtime environment. 

Throughout, "planning" refers to all forms of cognitive reasoning, 
problem-solving, and decision-making techniques for deciding what to do 
next, from simple random choice through sophisticated modern planners. 
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and operating system can provide to the application pro-
grammer. Creating a happy marriage between what can 
be supported (from the system's point of view) and the 
ideal AI programmers' model, is extremely important to 
implementing successful robotic real-world applications. 

Throughout, we use the specific application domain of 
shepherding to provide concrete examples of our princi-
ples, and to demonstrate their effectiveness. The shep­
herding application domain is flexible and maps onto a 
large class of real-world AI applications that involve un­
certain actions, uncertain sensing, real-time constraints 
and responsibilities, planning and replanning, dynamic 
resource management, dynamic focus of attention, low-
level reflexive behaviors, and parallel underlying hard­
ware (e.g. purposive vision, autonomous vehicle control 
and navigation). A real-world shepherding implementa­
tion runs in our robotics laboratory [Ballard and Brown, 
1992][von Kaenel and Wisniewski, 1994]( see Figure 1), 
but the results in Section 4 are from a real-time simu­
lator that allows greater flexibility in experimentation. 
The implementation consists of self-propelled Lego ve­
hicles ("sheep") that move around the table ("field") 
in straight lines but random directions. Each sheep 
moves at constant velocity until herded by the robot 
arm ("shepherd"), which redirects it towards the center 
of the field. A second robot arm ("wolf") can encroach 
on the field and remove ("kill") sheep if not prevented. 
The shepherd has a finite speed and can affect only one 
sheep at a time. The goal of the shepherd is to keep 
as many sheep on the table as possible, and the more 
powerful the sheep behavior-models and look-ahead, the 
better the results. 

Figure 1: The Real-World Shepherding Application 
(camera overhead) 

General approaches to designing SPARTAs are only 
now beginning to emerge, and usually individual solu­
tions do not generalize well. We believe this is a two 
part problem. First, underlying support for developing 

a general framework is needed. Secondly, the principles 
in designing effective planners for these types of appli­
cations must be understood. In other work we have ad­
dressed the first concern. In this paper we address the 
second by providing principles for SPARTA planner de­
sign that yield a better structured application, simplify 
design, and improve performance. We start by providing 
a model of SPARTAs in Section 2. Section 3 lists and 
describes in detail the principles involved in designing ef­
fective planners for SPARTAs. This section is the focus 
of the paper. In Section 4 we provide a quick overview 
of our application and support, and results demonstrat­
ing the effectiveness of the planner principles. Section 5 
provides conclusions and describes continuing work. 

2 A Mode l of SPARTAs 
This section is devoted to discussing models for design­
ing SPARTAs. We describe the model we have chosen 
and therefore its applicable domains. There are two dis­
parate approaches to designing real-world AI and robotic 
applications. A subsumption model [Brooks, 1987] 
[Brooks, 1989] claims intelligent behavior will emerge 
from low-level reactive modules. While our model in­
cludes reactive modules as part of its real-time com­
ponent, the allowance for time-constrained high-level 
reasoning places it in the second, more traditional AI 
camp. As in a modular architecture [Fodor, 1985], we 
assume different, loosely coupled mechanisms for low-
level reaction-perception and high-level reasoning. 

Figure 2: The Three Layers in the Design of a Real-
World Application 

We augment the cognitive-reactive dichotomy with an 
intermediate, run-time layer (Figure 2). All the ap­
plication levels reside above the the runtime layer and 
real-time substrate. The application interacts only with 
Ephor and not directly with the substrate. At the lowest 
[application] level are [hard] real-time periodic or ape­
riodic (environment responsive) tasks. These tasks will 
almost require the same set of resources and run for pred-
icatable amounts of time. 

The intermediate [application] layer serves several 
functions. Among them, it "catches the mistakes" of the 
lower level and "interprets the meaning" of the higher 
layer. The former involves servoing, adjusting sensors 
and manipulators to ensure the intended action is actu­
ally carried out by the lower level (e.g. servo robot arm 
to sheep). The latter involves parsing a high level de­
scription into components that can be understood and 
executed by the lower level (e.g. determine robot arm 
instructions to herd "that" sheep "there"). 

The highest or executive level consists of planning, rea­
soning, information gathering and processing, decision 
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analysis, etc.. With a traditional run-time and under­
lying operating system, the most significant differences 
between applications occur at the executive level. Un­
fortunately it is this level that is most task-dependent 
and has the fewest standard formalisms. Researchers 
have approached this aspect of SPARTAs from differ­
ent angles. Both [Gervasio and DeJong, 1992] and [Ha-
davi et a/., 1992] describe planners effective in handling 
varying environmental factors. Hoogeboom and Halang 
[Hoogeboom and Halang, 1992] propose a more general 
approach suggesting that "In anticipation of a deadline 
at which some task must be fulfilled, it should be pos­
sible to choose from different program segments the one 
that maintains optimum performance." We concur. 

A goal in our work, and implicit in the planner spec­
ifications, is the desire to design a general architecture 
rather than just one for a specific application. While 
there are accounts of specific applications [Brown and 
Terzopoulos, 1994] that have clear design principles and 
correct behavior, it is difficult to extract useful code from 
these programs to help design another SPARTA. Some 
other work that, has looked at dynamic tradeoff deci­
sions is Schwuttke and Gasser's [Schwuttke and Gasser, 
1992] dynamic trade-off evaluation algorithm that decide 
which data to monitor in a spacecraft. Durfee [Durfee, 
1990] suggests a more general method of supporting indi­
vidual cooperating components. Other prominent work 
in this area of developing general mechanisms for sup­
porting SPARTAs is by Gopinath and Schwan [Gopinath 
and Schwan, 1989] who suggest objects that can move 
along a continuum of resource use and describe mecha­
nisms for scheduling these objects in a distributed sys­
tem. 

3 Planner Design and Necessary 
Suppor t 

3.1 Background 
Let a goal be something the application wishes to accom­
plish (e.g., save sheep) and a technique be a method or 
algorithm for accomplishing a goal (e.g., planner A). Fig­
ure 3 illustrates the model of the program structure for 
a SPARTA. Throughout a program's execution it will 
need to solve many goals and frequently will need to 
solve the same goal repeatedly. If each goal has only a 
single, sequential, fixed technique to solve it, then there 
will be no flexibility in choosing a technique for solving a 
goal and thus the program will have sacrificed an entire 
dimension of adaptability (it can only choose different 
goals indicating a different course of action). 

Interacting with the real world implies coping with the 
unknown and the uncertain. Goals may be generated 
in regards to unexpected environmental stimuli. As a 
specific example from our real-world shepherding appli­
cation consider the entry of a wolf into the field; a high 
priority goal ("kill wolf) must be solved. Some goals 
may take longer or shorter than expected because of a 
change in the environment or because of varying amounts 
of available resources (if while solving the "find next 
sheep to save" goal on seven processors, six of them are 
preempted for other tasks, this goal will take consider­

ably longer than originally expected to solve). An unpre­
dictable environment can also cause additional goals to 
be needed while no longer requiring the results of others. 
For example, if while in the middle of solving the "save 
sheep goal", the robot arm is allocated to killing a wolf, 
there is no reason to continue to solve the "save sheep 
goal" since the robot arm will not be available, instead 
the processor(s) could be freed and given to another goal. 
Clearly, the internal state of a SPARTA application, run­
time, and operating system will be highly variable over 
time. To make efficient use of resources the application 
must cooperate with the underlying runtime to allow 
the whole system to adapt dynamically to varying con­
ditions. Using worst case analysis to pre-configure the 
system is too inefficient [Paul et a/., 199l][Strosnider and 
Paul, 1994]. 

With our model, the SPARTA programmer can still 
conceptualize their program in terms of goals that need 
to be solved and techniques for implementing those goals. 
The only difference between previous models for off-line 
applications and the model described by our planner 
principles for SPARTAs is the emphasis on specifying 
several ways of solving a given goal. Of course, to take 
advantage of this new model, underlying support is re­
quired (see [Wisniewski and Brown, 1993]), and the abil­
ity to inform the underlying support about the goals and 
techniques. We have developed a simple scheme that al­
lows the programmer to communicate a SPARTA's pro­
gram structure to the underlying runtime environment, 
which we briefly describe in Section 4. Convinced that 
we can support such a model we devote the rest of this 
section to discussing the details and giving examples of 
the our planner principles. 

3.2 Designing a Suite of Planners 
It is essential for SPARTAs to maintain as much flexi­
bility as possible both in their ability to choose different 
courses of action based on the environment and their 
ability to have multiple ways (techniques) for determin­
ing a particular course of action. Below we list (in order 
of increasing effectiveness) a set of principles for planner 
design. After the list we describe each item in detail and 
provide examples. The more of the principles that are 
followed when designing a SPARTA planner the better 

66 ACTION AND PERCEPTION 



the program's performance will be. 
1. Provide techniques that can vary in completion time 

(e.g., anytime algorithms [Liu et a/., 1991]). 
2. Provide multiple techniques that: 

a) use different resources (e.g., infrared 
sensor/binocular vision) 

b) vary (significantly) in quantity of resources 
used (cpu time, etc.). 

3. Provide parallel planners that: 
a) use a "bag of tasks" (processor farm) model 
b) use different resources 
c) vary in quantity of resources used. 

The intent of these recommendations is to provide flex­
ibility of resource allocation in as many dimensions as 
possible. The more flexibility designed at this level the 
more adaptable the program will be to unforeseen events 
since the underlying runtime environment (Ephor) will 
be able dynamically to select from a more diverse set of 
techniques and thus will more likely be able to find an 
appropriate technique for a given situation. 

3.3 Description of Planner Principles 
Following the outlined planner principles yields an 
adaptable program that the allows the runtime to adjust 
to unexpected events and thus achieve increased perfor­
mance. For each principle above we provide a detailed 
description and give an example from the shepherding 
domain described in the introduction. 

1) Provide techniques that can vary in comple­
tion time 

A method for meeting the challenge of time variabil­
ity is to design a planner that can move along a contin­
uum of completion times as suggested by Gopinath and 
Schwan [Gopinath and Schwan, 1989]. Such a technique 
is similar to the motivation behind anytime algorithms or 
imprecise computations [Liu et a/., 199l] in which after 
a certain minimum time the program's result improves 
until a final completion time. These methods allow the 
underlying system dynamically to allocate the maximum 
amount of time available to the goal while still allowing 
for early termination if processor cycles are needed by 
other goals. 

An example from our shepherding application is the 
vision processing goal of determining the centroid of each 
(circularly marked) sheep. A quick approximation of 
the centroid may be found by scanning a horizontal and 
then vertical line [von Kaenel and Wisniewski, 1994]. 
After this initial phase we have a reasonable centroid. 
Continuing by searching every pixel and using a weighted 
mean to determine will provide more accurate results, 
and given time, would be preferred. 

2a) Provide multiple techniques that use differ­
ent resources to achieve the same goal 

Ideally, these techniques would have non-intersecting 
resources, but techniques using different but not unique 
sets are still useful. For example, having one technique 
that uses processing time, a camera, and the robot arm, 

and another that uses processing time, an infrared sen­
sor, and the robot arm. During execution, when this 
goal needs to be solved, the runtime will still be able 
to solve the goal even if the infrared sensor is allocated 
to another technique by running the technique that uses 
the camera. 

As a specific example consider a mobile robot that 
has two techniques it can use to find the distance to a 
wall. It has an infrared sensor that may provide a fast 
response and a pair of binocular cameras it can also use. 
If both resources are free when it needs to solve the get-
distance-to-wall goal, then it prefers to use the infrared 
sensor because it is faster. However, if the high-level 
executive decides it is time to obtain the distance to the 
wall when the infrared sensors are being used to avoid 
an object, the runtime can still solve the goal by running 
the technique that uses binocular vision. 

2b) Provide multiple techniques that vary in 
quantity of resources used 

Make the techniques differ in the amount of resources 
they use and consequently the quality of the result 
they produce. The most straightforward example is 
the amount cpu time consumed. Anytime algorithms 
capture this notion and are supported by Ephor, but 
even more significant differences yield greater adapt­
ability. For example: emergency or reflexive 0(1) al­
gorithms, heuristic O(n2or3) algorithms, or brute force 
search 0(2n) algorithms. Concentrate on designing tasks 
within constant factors of the expected time available for 
this task. This dimension of flexibility allows the runtime 
dynamically to select the best technique based on the in­
ternal load on the SPARTA's resources. There may be 
periods of time when the application desires many goals 
to be solved simultaneously and other periods of relative 
inactivity. We have found a diversity of planners pro­
vides the best overall behavior for a given goal, because 
during quiet periods a higher quality technique can be 
run and during periods of high demand a simple tech­
nique can still be run (as opposed to being unable to run 
any technique). 

For example, in the shepherding application we have 
implemented a simple planner that just looks for the first 
sheep it finds moving away from the center and computes 
the intercept to save it. We also have implemented three 
variations of another planner varying in the amount of 
lookahead performed. One looks two sheep saves into 
the future when considering a move. The others look 
three and four moves. Lookahead is useful because, for 
example, it may be the case that by letting the farthest 
sheep from the center go and moving to the other side of 
the field two sheep can be saved. These different planners 
are extremely valuable because they provide alternatives 
to Ephor. We provide results in Section 4 that show with 
a variety of planners, we can achieve better behavior 
(more sheep confined) in the shepherding application. 
We have also implemented a depth n search (where n is 
the number of sheep), but in practice it never has enough 
time to run for n > 4. 
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3a Provide parallel planners that use a "bag of 
tasks" model 

As mentioned in the introduction, SPARTAs contain 
parallel and distributed components that bring a new 
level of complexity and a new set of issues to design­
ing real-world applications. However, this parallelism 
also brings new opportunities for adaptation. There are 
many models of parallel computation (e.g. data paral­
lelism is natural in low-level vision). Programming a 
technique to have a fixed number of tasks on a fixed set 
of processors is counterproductive since it does not al­
low for any adapting. Instead, a model of parallelism 
is needed that can easily and quickly change in light of 
varying and unpredicted environmental stimuli. Our ex­
periments show that if the application is programmed 
with a "bag of tasks" model, the runtime can provide 
considerably better performance. In a "bag of tasks" 
model, work is divided up into reasonable size pieces [of 
the problem] and placed in a central repository. Each 
process removes a piece from the bag, processes it, and 
possibly updates shared information with the result. Ex­
amples of this model of parallelism are the Uniform Sys­
tem [Thomas and Crowther, 1988] or the Problem-Heap 
Paradigm [Cok, 1991; Moller-Nielsen and Staunstrup, 
1987]. This paradigm provides tremendous flexibility 
since the runtime can choose to run any number pro­
cesses to work on this technique. 

An example from the shepherding application is a par­
allel planner we designed. This planner looks at the next 
n (for our experiment it was four) possible sheep saves in 
order to determine the best next move. Another way to 
cast the planning problem is to look at all permutations 
of the sheep in the field and count the number of sheep 
still confined at the end of the sequence of sheep saves 
and the amount of time taken to do so. This represen­
tation nicely fits the "bag of tasks" model since now we 
put into the bag a set of all the possible permutations. 
Each (identical) process pulls a permutation out of the 
bag computes the information above and updates a cen­
tral location (holding the best permutation seen so far) 
if it determines it has found the best option so far. We 
give results from applying the "bag of tasks" model to 
the shepherding domain in Section 4. 

3 Provide Parallel planners that: b) use dif­
ferent resources c) vary in quantity of resources 
used. 

Design parallel planners that either use distinct re­
sources or that vary greatly in the quantity of resources 
consumed. The arguments and benefits are analogous to 
those we discussed for sequential planners in 2a and 2b. 

4 Suppor t i ng Results 
In this section we examine the effectiveness of our plan­
ner principles. The evaluation is accomplished by using 
Ephor (our runtime environment), and real-time primi­
tives from IRIX (the operating systems of our 12 pro-
cessor SGI Challenge). First, we briefly explain the 
application-Ephor interface, which is how the application 
informs Ephor of its goals, techniques, and task. Then, 

vision_proc_goal * ephor_create_goal(ephor_periodic, 
True, ephor_priority, 1, 
ephor_goal_name, ''vision proc'', 
ephor.rate, 16666, NULL); /* 60 HZ */ 

temp_tech = ephor_create_technique(vision_proc_goal, 
ephor_cpu_time, 5000, NULL); 

vision_proc_id ■ ephor_create_task(vision_proc_goal, 
temp.tech, ephor.imp_function, 
vision_processor, NULL); 

Figure 4: Application-Ephor Interface 

we provide results demonstrating improved performance 
using adaptable planner principles. We concentrate on 
two specific principles. We show that application be­
havior improves when multiple techniques accomplishing 
the same goal are available to the runtime and when a 
parallel planner it used that can adapt the number of 
processes. 

At startup, the application informs Ephor of its goals, 
the different techniques it has for solving those goals, and 
the specific function(s) that implement the techniques. 
Throughout the programs' execution, when it wishes to 
solve a goal it informs Ephor. The application can also 
specify periodic goals. Once Ephor knows about the ap­
plication's goals, techniques, and tasks, it dynamically 
selects the most appropriate technique when the appli­
cation informs Ephor it wants to solve a goal. 

As a simple example from the shepherding applica­
tion, Figure 4 shows how the vision processing goal is 
defined. The first call ephor_create_goal returns a 
handle to the vision processing goal. If this goal was 
not periodic, i.e., called in response to the environment, 
then ephor_periodic would be False, and the program 
would call ephor_run_goal(vision_proc_goal) when it 
wanted this goal run. 

4.1 A Suite of Techniques 
The first planner principle we evaluate is the usefulness 
of generating different techniques for accomplishing the 
same goal. Here we will examine the performance of two 
planners (planner A and B) - a more thorough analysis of 
these tradeoffs may be found in [Wisniewski and Brown, 
1993]. Both these planners figure out the next sheep to 
save but differ in how long they take to run and how 
many sheep are contained (in steady state) when run­
ning on an unloaded cpu. To guarantee accurate mea­
surement (no competing load) for this experiment, we 
dedicate one processor to the planner function. A sheep 
can travel from the center to the edge of the table in 10 
seconds and the shepherd in about 1/3 of a second. 

Planner A computes a list of all the sheep moving 
away from the table center that the shepherd has time 
to reach, sorted by distance from the center. It then de­
termines the best order for saving the next four sheep: 
this requires future prediction of sheep movements. The 
best sequence is the one maximizing the number of sheep 
saved. Among the orderings that save equal number 
of sheep, preference is given to the ordering taking less 
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time. The first sheep in the sequence is saved and the 
planner starts over. Planner A performs the best un­
der no load but takes the longer time to run (about one 
second). Planner B is a reactive, no look-ahead strategy, 
that simply tries to save the sheep farthest from the cen­
ter. It runs much faster than A (about 8 milliseconds) 
but does not perform nearly as well under no load: if by 
letting the farthest sheep go, it is possible to save the 
next two and otherwise not, A will save the two sheep 
while B will save only one. 

Figure 6: Adapting to high variable loads 

To compare the different planners under simulated 
conditions of parallel activity in other parts of the 
SPARTA, a controlled load was placed on the processor 
that the planner was running on. Since we were using 
a multiprocessor we could vary the load experienced by 
the planner process without affecting any of the other 
processes in the system. We also had tight control over 

how much load was experienced on the processor run­
ning the planners. The line graph of Figure 5 (on the 
left) gives performance for a set of fixed loads (the load 
does not vary throughout the entire execution - an unre­
alistic model since in a real application goals will come 
and go, but it allows us to see the comparative benefits 
of each of the planners), while the bar chart of Figure 
6 gives average performance when the cpu load varies 
during the run (like actual program execution). 

The experiment (Figures 5 and 6) demonstrates the 
effect of a high load. Recall that B runs about 40 times 
faster than A. Planner A is expected to outperform B 
with no load, but under increased load planner A might 
not complete its calculations in time, thus planner B is 
expected to outperform A under high load. The loads 
are plotted on a logarithmic scale: load type II is twice 
as much background load as load type I and half as 
much as load type I I I . Indeed there is a dramatic de­
crease in performance of planner A under higher loads 
while planner B remains fairly constant. In a fixed load 
environment the run-time can select the better of the 
two planners, thus achieving the best performance in all 
cases. In the second half of the experiment the load var­
ied through time. Half the time there was no load and 
half the time there was load. When there was a load it 
was divided evenly (by thirds) amongst the different load 
types. Figure 6 represents how A, B, and the run-time 
mixture perform under varying load; best performance 
occurs when Ephor dynamically selects the planner to 
suit the (currently) available resources. It is clear that 
dynamically selecting between planners improves appli­
cation performance. 

4.2 Adaptable Parallel Planners 

Sheep Speed (units/sec) 

Figure 7: Fixed versus Adaptable Parallel Planners 

The second planner principles we evaluate is the "bag 
of tasks" (see section 3a) model for parallel planner 
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design. As we have mentioned, a key aspect of perform­
ing well in the real world is being able to adapt. This 
adaptability applies both to the runtime and the appli­
cation. Our principle of using a "bag of tasks" model is 
motivated by the fact that it provides considerable flex­
ibility when considering the amount of processing power 
to allocate to a planner. 

In this experiment we again assume a model of vary­
ing load as would be observed in a real application. The 
parallel planner has been written using a "bag of tasks" 
model. The planner looks four saves into the future. 
The possible permutations for the next four sheep saves 
are placed into a central queue where they are removed 
by as many processes as the runtime has decided to in­
voke in this particular goal instantiation. This planner is 
qualitatively different from the planners discussed in sec­
tion 4.1 and the environment is quantitatively different, 
so the results should not be compared. 

The results appear in Figure 7. The load of the appli­
cation allowed for between 1 and 7 processors to be avail­
able to the save-sheep goal at different points throughout 
its execution. The "fixed" bar represents the applica­
tion's behavior assuming it could not adapt and adjust 
to use the extra processors available at various points 
throughout the execution, i.e., it always used one pro-
cessor. This would be required if the planner could not 
adapt to the number of processors it could use, otherwise 
it would not have been able to run in times of slightly 
heavier load. The variable bar represents when Ephor 
was allowed dynamically to allocate more processors for 
the parallel planner when they were available. We vary 
the response time expected from the planner by varying 
the rate the sheep move. Notice that when the response 
demands placed on the application increase, it becomes 
more important for the planner to have been designed al­
lowing for differing number of processes to be used. This 
figure illustrates the benefit of using a flexible parallel 
planner. When the sheep are moving around quickly, the 
adaptable parallel planner can confine over three times 
as many sheep as the fixed parallel planner. The impor­
tant aspect of this discussion is not that parallel planners 
(versus sequential ones) can improve the performance of 
applications, rather that in real-world applications we 
need planners that can dynamically vary the number of 
processors they use. And equally important, we need 
a system such as Ephor, that can support this desired 
behavior. 

This graph represents the interesting part of the state 
space for the save-sheep planner. If the sheep move 
very slowly (1-5 units/sec) then either planner will have 
enough time to do something reasonable, and similarly if 
the sheep are moving extremely quickly (greater than 60 
units/sec) neither planner will have enough time to do 
anything. Achieving perfect speedup when running on 
seven processors (versus one) would allow the planner to 
run seven times as fast. This does not however, translate 
into a seven-fold improvement in application behavior. 
In fact there may be some programs that do not ben­
efit or benefit very little from decreased running time. 
However, many real-world applications will be able to 
benefit from being able to perform more computation in 

less time. Exploiting the parallel dimension of program­
ming a SPARTA can substantially improve application 
behavior. 

5 Conclusion 
We described SPARTA characteristics and set of general 
design principles for planners and parallel planners in 
real-world applications. We presented qualitative argu­
ments for some, and for others we presented results in­
dicating significant performance improvement (as much 
as 300 percent on our system). In all cases we showed 
the key to good (parallel) planner design in SPARTAs 
was the ability to adapt, by offering a set of techniques 
to solve a particular goal. 

We have found it very productive to work on both 
the high level application and runtime system simulta­
neously. Their interactions are nontrivial and hard to 
anticipate. Our current and future emphasis is on inves­
tigating and expanding the runtime support for sophisti­
cated parallel planners and decision-makers. We are also 
continuing to develop better measures for how well the 
implemented support meets the need of the high-level 
planner. 
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