
A d a p t a b l e P l a n n e r P r i m i t i v e s f o r R e a l - W o r l d R o b o t i c A p p l i c a t i o n s

Rober t W. Wisn iewsk i and Chr is topher M . B rown*
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226

voice: 716-275-0469 fax: 716-461-2018
{bob and brown}Dcs .rochester.edu

Abs t rac t

With increased processor speed and improved
robotic and AI technology, researchers are be­
ginning to design programs that can behave in­
telligently and interact in the real world. A
large increase in processing power has come
from parallel machines, but taking advantage
of this power is challenging. In this paper
we address the issues in designing planners
for real-time AI and robotic applications, and
provide guiding principles. These principles
were designed to minimize the difference be­
tween the new real-time model and the stan­
dard off-line model. Applying these princi­
ples yields a better-structured application, eas­
ier design and implementation, and improved
performance. The focus of the paper is on
a design methodology for implementing effec­
tive planners in real-world applications. Using
Ephor (our runtime environment), and apply­
ing the described planner principles, we demon­
strate improved performance in a real-world
shepherding application.

1 I n t r oduc t i on
With increasing processor power there has been grow­
ing interest and research work in designing intelligent
applications that interact with the real world. Com­
bining real-world requirements with uncertain and com­
plex cognitive activities leads to issues of resource allo­
cation and decision-making in real time not previously
encountered in AI or robotics applications. We call in­
telligent parallel applications with unpredictable aspects
and a complex mixture of competing and cooperating de­
mands Soft PArallel Real-Time Applications, or SPAR­
TA s. Building SPARTAs is difficult because it involves

*This material is based upon work supported by NSF
Research Grant number CDA-8822724, DARPA Research
Grant MDA972-92-J-1012, and ONR Research Grant number
N00014-93-1-0221. Robert Wisniewski was supported in part
by an ARPA Fellowship in High Performance Computing ad­
ministered by the Institute for Advance Computer Studies,
University of Maryland. The Government has certain rights
in this material

not only designing the intelligent portion of the appli­
cation, but also handling both soft real-time constraints
(e.g. robot planning), and hard real-time constraints
(e.g. a balance subsystem).

If a SPARTA programmer is oblivious to real-time is­
sues when designing an application, poor or incorrect
behavior may result. Tension arises due to the discrep­
ancy between how an AI programmer wants to design an
application and the requirements of planning and acting
in the real world. We have developed Ephor1, a runtime
environment2 to support SPARTA development and ex­
ecution. Our goal is to provide as much of the off-line
programming model as possible, so that the standard
techniques available for designing intelligent robotic ap­
plications can be applied to SPARTAs.

In this paper we focus on techniques for implement­
ing effective planners3 in parallel real-world applications.
Previously, designing a planner for a SPARTA meant
tracking resource allocation, timing tasks, and handling
other concerns of interacting in the real world. The com­
bination of Ephor and our model of planning in SPAR­
TAs considerably sirnplies design.

A key observation we will leverage throughout our dis­
cussion is that in a dynamic real-world environment it
is important to be able to adapt. While this may be
intuitive, its implications for planner (and runtime) de­
sign are significant. The importance of adapting holds
both for the action taken by the application as well as
how the application decides on that action. More con­
cretely, in later sections we discuss the advantages of
having several planners (with the same goal) varying in
resources consumed (and thus quality of result). This
diversity is useful because it allows an adaptive deci­
sion to be made during execution when the application
needs a particular goal solved. In part, the principles
for designing SPARTA planners are motivated by what
tools/mechanisms the underlying runtime environment

Ephor WAS the name of the council of five in ancient Greece that effec­tively ran Sparta. 2 A runtime environment is a combination of library calls and system
code working together for a specific purpose, e.g., a lisp interpreter can be
thought of as a runtime environment.

Throughout, "planning" refers to all forms of cognitive reasoning,
problem-solving, and decision-making techniques for deciding what to do
next, from simple random choice through sophisticated modern planners.

64 ACTION AND PERCEPTION

and operating system can provide to the application pro-
grammer. Creating a happy marriage between what can
be supported (from the system's point of view) and the
ideal AI programmers' model, is extremely important to
implementing successful robotic real-world applications.

Throughout, we use the specific application domain of
shepherding to provide concrete examples of our princi-
ples, and to demonstrate their effectiveness. The shep­
herding application domain is flexible and maps onto a
large class of real-world AI applications that involve un­
certain actions, uncertain sensing, real-time constraints
and responsibilities, planning and replanning, dynamic
resource management, dynamic focus of attention, low-
level reflexive behaviors, and parallel underlying hard­
ware (e.g. purposive vision, autonomous vehicle control
and navigation). A real-world shepherding implementa­
tion runs in our robotics laboratory [Ballard and Brown,
1992][von Kaenel and Wisniewski, 1994](see Figure 1),
but the results in Section 4 are from a real-time simu­
lator that allows greater flexibility in experimentation.
The implementation consists of self-propelled Lego ve­
hicles ("sheep") that move around the table ("field")
in straight lines but random directions. Each sheep
moves at constant velocity until herded by the robot
arm ("shepherd"), which redirects it towards the center
of the field. A second robot arm ("wolf") can encroach
on the field and remove ("kill") sheep if not prevented.
The shepherd has a finite speed and can affect only one
sheep at a time. The goal of the shepherd is to keep
as many sheep on the table as possible, and the more
powerful the sheep behavior-models and look-ahead, the
better the results.

Figure 1: The Real-World Shepherding Application
(camera overhead)

General approaches to designing SPARTAs are only
now beginning to emerge, and usually individual solu­
tions do not generalize well. We believe this is a two
part problem. First, underlying support for developing

a general framework is needed. Secondly, the principles
in designing effective planners for these types of appli­
cations must be understood. In other work we have ad­
dressed the first concern. In this paper we address the
second by providing principles for SPARTA planner de­
sign that yield a better structured application, simplify
design, and improve performance. We start by providing
a model of SPARTAs in Section 2. Section 3 lists and
describes in detail the principles involved in designing ef­
fective planners for SPARTAs. This section is the focus
of the paper. In Section 4 we provide a quick overview
of our application and support, and results demonstrat­
ing the effectiveness of the planner principles. Section 5
provides conclusions and describes continuing work.

2 A Mode l of SPARTAs
This section is devoted to discussing models for design­
ing SPARTAs. We describe the model we have chosen
and therefore its applicable domains. There are two dis­
parate approaches to designing real-world AI and robotic
applications. A subsumption model [Brooks, 1987]
[Brooks, 1989] claims intelligent behavior will emerge
from low-level reactive modules. While our model in­
cludes reactive modules as part of its real-time com­
ponent, the allowance for time-constrained high-level
reasoning places it in the second, more traditional AI
camp. As in a modular architecture [Fodor, 1985], we
assume different, loosely coupled mechanisms for low-
level reaction-perception and high-level reasoning.

Figure 2: The Three Layers in the Design of a Real-
World Application

We augment the cognitive-reactive dichotomy with an
intermediate, run-time layer (Figure 2). All the ap­
plication levels reside above the the runtime layer and
real-time substrate. The application interacts only with
Ephor and not directly with the substrate. At the lowest
[application] level are [hard] real-time periodic or ape­
riodic (environment responsive) tasks. These tasks will
almost require the same set of resources and run for pred-
icatable amounts of time.

The intermediate [application] layer serves several
functions. Among them, it "catches the mistakes" of the
lower level and "interprets the meaning" of the higher
layer. The former involves servoing, adjusting sensors
and manipulators to ensure the intended action is actu­
ally carried out by the lower level (e.g. servo robot arm
to sheep). The latter involves parsing a high level de­
scription into components that can be understood and
executed by the lower level (e.g. determine robot arm
instructions to herd "that" sheep "there").

The highest or executive level consists of planning, rea­
soning, information gathering and processing, decision

WISNIEWSKI AND BROWN 65

analysis, etc.. With a traditional run-time and under­
lying operating system, the most significant differences
between applications occur at the executive level. Un­
fortunately it is this level that is most task-dependent
and has the fewest standard formalisms. Researchers
have approached this aspect of SPARTAs from differ­
ent angles. Both [Gervasio and DeJong, 1992] and [Ha-
davi et a/., 1992] describe planners effective in handling
varying environmental factors. Hoogeboom and Halang
[Hoogeboom and Halang, 1992] propose a more general
approach suggesting that "In anticipation of a deadline
at which some task must be fulfilled, it should be pos­
sible to choose from different program segments the one
that maintains optimum performance." We concur.

A goal in our work, and implicit in the planner spec­
ifications, is the desire to design a general architecture
rather than just one for a specific application. While
there are accounts of specific applications [Brown and
Terzopoulos, 1994] that have clear design principles and
correct behavior, it is difficult to extract useful code from
these programs to help design another SPARTA. Some
other work that, has looked at dynamic tradeoff deci­
sions is Schwuttke and Gasser's [Schwuttke and Gasser,
1992] dynamic trade-off evaluation algorithm that decide
which data to monitor in a spacecraft. Durfee [Durfee,
1990] suggests a more general method of supporting indi­
vidual cooperating components. Other prominent work
in this area of developing general mechanisms for sup­
porting SPARTAs is by Gopinath and Schwan [Gopinath
and Schwan, 1989] who suggest objects that can move
along a continuum of resource use and describe mecha­
nisms for scheduling these objects in a distributed sys­
tem.

3 Planner Design and Necessary
Suppor t

3.1 Background
Let a goal be something the application wishes to accom­
plish (e.g., save sheep) and a technique be a method or
algorithm for accomplishing a goal (e.g., planner A). Fig­
ure 3 illustrates the model of the program structure for
a SPARTA. Throughout a program's execution it will
need to solve many goals and frequently will need to
solve the same goal repeatedly. If each goal has only a
single, sequential, fixed technique to solve it, then there
will be no flexibility in choosing a technique for solving a
goal and thus the program will have sacrificed an entire
dimension of adaptability (it can only choose different
goals indicating a different course of action).

Interacting with the real world implies coping with the
unknown and the uncertain. Goals may be generated
in regards to unexpected environmental stimuli. As a
specific example from our real-world shepherding appli­
cation consider the entry of a wolf into the field; a high
priority goal ("kill wolf) must be solved. Some goals
may take longer or shorter than expected because of a
change in the environment or because of varying amounts
of available resources (if while solving the "find next
sheep to save" goal on seven processors, six of them are
preempted for other tasks, this goal will take consider­

ably longer than originally expected to solve). An unpre­
dictable environment can also cause additional goals to
be needed while no longer requiring the results of others.
For example, if while in the middle of solving the "save
sheep goal", the robot arm is allocated to killing a wolf,
there is no reason to continue to solve the "save sheep
goal" since the robot arm will not be available, instead
the processor(s) could be freed and given to another goal.
Clearly, the internal state of a SPARTA application, run­
time, and operating system will be highly variable over
time. To make efficient use of resources the application
must cooperate with the underlying runtime to allow
the whole system to adapt dynamically to varying con­
ditions. Using worst case analysis to pre-configure the
system is too inefficient [Paul et a/., 199l][Strosnider and
Paul, 1994].

With our model, the SPARTA programmer can still
conceptualize their program in terms of goals that need
to be solved and techniques for implementing those goals.
The only difference between previous models for off-line
applications and the model described by our planner
principles for SPARTAs is the emphasis on specifying
several ways of solving a given goal. Of course, to take
advantage of this new model, underlying support is re­
quired (see [Wisniewski and Brown, 1993]), and the abil­
ity to inform the underlying support about the goals and
techniques. We have developed a simple scheme that al­
lows the programmer to communicate a SPARTA's pro­
gram structure to the underlying runtime environment,
which we briefly describe in Section 4. Convinced that
we can support such a model we devote the rest of this
section to discussing the details and giving examples of
the our planner principles.

3.2 Designing a Suite of Planners
It is essential for SPARTAs to maintain as much flexi­
bility as possible both in their ability to choose different
courses of action based on the environment and their
ability to have multiple ways (techniques) for determin­
ing a particular course of action. Below we list (in order
of increasing effectiveness) a set of principles for planner
design. After the list we describe each item in detail and
provide examples. The more of the principles that are
followed when designing a SPARTA planner the better

66 ACTION AND PERCEPTION

the program's performance will be.
1. Provide techniques that can vary in completion time

(e.g., anytime algorithms [Liu et a/., 1991]).
2. Provide multiple techniques that:

a) use different resources (e.g., infrared
sensor/binocular vision)

b) vary (significantly) in quantity of resources
used (cpu time, etc.).

3. Provide parallel planners that:
a) use a "bag of tasks" (processor farm) model
b) use different resources
c) vary in quantity of resources used.

The intent of these recommendations is to provide flex­
ibility of resource allocation in as many dimensions as
possible. The more flexibility designed at this level the
more adaptable the program will be to unforeseen events
since the underlying runtime environment (Ephor) will
be able dynamically to select from a more diverse set of
techniques and thus will more likely be able to find an
appropriate technique for a given situation.

3.3 Description of Planner Principles
Following the outlined planner principles yields an
adaptable program that the allows the runtime to adjust
to unexpected events and thus achieve increased perfor­
mance. For each principle above we provide a detailed
description and give an example from the shepherding
domain described in the introduction.

1) Provide techniques that can vary in comple­
tion time

A method for meeting the challenge of time variabil­
ity is to design a planner that can move along a contin­
uum of completion times as suggested by Gopinath and
Schwan [Gopinath and Schwan, 1989]. Such a technique
is similar to the motivation behind anytime algorithms or
imprecise computations [Liu et a/., 199l] in which after
a certain minimum time the program's result improves
until a final completion time. These methods allow the
underlying system dynamically to allocate the maximum
amount of time available to the goal while still allowing
for early termination if processor cycles are needed by
other goals.

An example from our shepherding application is the
vision processing goal of determining the centroid of each
(circularly marked) sheep. A quick approximation of
the centroid may be found by scanning a horizontal and
then vertical line [von Kaenel and Wisniewski, 1994].
After this initial phase we have a reasonable centroid.
Continuing by searching every pixel and using a weighted
mean to determine will provide more accurate results,
and given time, would be preferred.

2a) Provide multiple techniques that use differ­
ent resources to achieve the same goal

Ideally, these techniques would have non-intersecting
resources, but techniques using different but not unique
sets are still useful. For example, having one technique
that uses processing time, a camera, and the robot arm,

and another that uses processing time, an infrared sen­
sor, and the robot arm. During execution, when this
goal needs to be solved, the runtime will still be able
to solve the goal even if the infrared sensor is allocated
to another technique by running the technique that uses
the camera.

As a specific example consider a mobile robot that
has two techniques it can use to find the distance to a
wall. It has an infrared sensor that may provide a fast
response and a pair of binocular cameras it can also use.
If both resources are free when it needs to solve the get-
distance-to-wall goal, then it prefers to use the infrared
sensor because it is faster. However, if the high-level
executive decides it is time to obtain the distance to the
wall when the infrared sensors are being used to avoid
an object, the runtime can still solve the goal by running
the technique that uses binocular vision.

2b) Provide multiple techniques that vary in
quantity of resources used

Make the techniques differ in the amount of resources
they use and consequently the quality of the result
they produce. The most straightforward example is
the amount cpu time consumed. Anytime algorithms
capture this notion and are supported by Ephor, but
even more significant differences yield greater adapt­
ability. For example: emergency or reflexive 0(1) al­
gorithms, heuristic O(n2or3) algorithms, or brute force
search 0(2n) algorithms. Concentrate on designing tasks
within constant factors of the expected time available for
this task. This dimension of flexibility allows the runtime
dynamically to select the best technique based on the in­
ternal load on the SPARTA's resources. There may be
periods of time when the application desires many goals
to be solved simultaneously and other periods of relative
inactivity. We have found a diversity of planners pro­
vides the best overall behavior for a given goal, because
during quiet periods a higher quality technique can be
run and during periods of high demand a simple tech­
nique can still be run (as opposed to being unable to run
any technique).

For example, in the shepherding application we have
implemented a simple planner that just looks for the first
sheep it finds moving away from the center and computes
the intercept to save it. We also have implemented three
variations of another planner varying in the amount of
lookahead performed. One looks two sheep saves into
the future when considering a move. The others look
three and four moves. Lookahead is useful because, for
example, it may be the case that by letting the farthest
sheep from the center go and moving to the other side of
the field two sheep can be saved. These different planners
are extremely valuable because they provide alternatives
to Ephor. We provide results in Section 4 that show with
a variety of planners, we can achieve better behavior
(more sheep confined) in the shepherding application.
We have also implemented a depth n search (where n is
the number of sheep), but in practice it never has enough
time to run for n > 4.

WISNIEWSKI AND BROWN 67

3a Provide parallel planners that use a "bag of
tasks" model

As mentioned in the introduction, SPARTAs contain
parallel and distributed components that bring a new
level of complexity and a new set of issues to design­
ing real-world applications. However, this parallelism
also brings new opportunities for adaptation. There are
many models of parallel computation (e.g. data paral­
lelism is natural in low-level vision). Programming a
technique to have a fixed number of tasks on a fixed set
of processors is counterproductive since it does not al­
low for any adapting. Instead, a model of parallelism
is needed that can easily and quickly change in light of
varying and unpredicted environmental stimuli. Our ex­
periments show that if the application is programmed
with a "bag of tasks" model, the runtime can provide
considerably better performance. In a "bag of tasks"
model, work is divided up into reasonable size pieces [of
the problem] and placed in a central repository. Each
process removes a piece from the bag, processes it, and
possibly updates shared information with the result. Ex­
amples of this model of parallelism are the Uniform Sys­
tem [Thomas and Crowther, 1988] or the Problem-Heap
Paradigm [Cok, 1991; Moller-Nielsen and Staunstrup,
1987]. This paradigm provides tremendous flexibility
since the runtime can choose to run any number pro­
cesses to work on this technique.

An example from the shepherding application is a par­
allel planner we designed. This planner looks at the next
n (for our experiment it was four) possible sheep saves in
order to determine the best next move. Another way to
cast the planning problem is to look at all permutations
of the sheep in the field and count the number of sheep
still confined at the end of the sequence of sheep saves
and the amount of time taken to do so. This represen­
tation nicely fits the "bag of tasks" model since now we
put into the bag a set of all the possible permutations.
Each (identical) process pulls a permutation out of the
bag computes the information above and updates a cen­
tral location (holding the best permutation seen so far)
if it determines it has found the best option so far. We
give results from applying the "bag of tasks" model to
the shepherding domain in Section 4.

3 Provide Parallel planners that: b) use dif­
ferent resources c) vary in quantity of resources
used.

Design parallel planners that either use distinct re­
sources or that vary greatly in the quantity of resources
consumed. The arguments and benefits are analogous to
those we discussed for sequential planners in 2a and 2b.

4 Suppor t i ng Results
In this section we examine the effectiveness of our plan­
ner principles. The evaluation is accomplished by using
Ephor (our runtime environment), and real-time primi­
tives from IRIX (the operating systems of our 12 pro-
cessor SGI Challenge). First, we briefly explain the
application-Ephor interface, which is how the application
informs Ephor of its goals, techniques, and task. Then,

vision_proc_goal * ephor_create_goal(ephor_periodic,
True, ephor_priority, 1,
ephor_goal_name, ''vision proc'',
ephor.rate, 16666, NULL); /* 60 HZ */

temp_tech = ephor_create_technique(vision_proc_goal,
ephor_cpu_time, 5000, NULL);

vision_proc_id ■ ephor_create_task(vision_proc_goal,
temp.tech, ephor.imp_function,
vision_processor, NULL);

Figure 4: Application-Ephor Interface

we provide results demonstrating improved performance
using adaptable planner principles. We concentrate on
two specific principles. We show that application be­
havior improves when multiple techniques accomplishing
the same goal are available to the runtime and when a
parallel planner it used that can adapt the number of
processes.

At startup, the application informs Ephor of its goals,
the different techniques it has for solving those goals, and
the specific function(s) that implement the techniques.
Throughout the programs' execution, when it wishes to
solve a goal it informs Ephor. The application can also
specify periodic goals. Once Ephor knows about the ap­
plication's goals, techniques, and tasks, it dynamically
selects the most appropriate technique when the appli­
cation informs Ephor it wants to solve a goal.

As a simple example from the shepherding applica­
tion, Figure 4 shows how the vision processing goal is
defined. The first call ephor_create_goal returns a
handle to the vision processing goal. If this goal was
not periodic, i.e., called in response to the environment,
then ephor_periodic would be False, and the program
would call ephor_run_goal(vision_proc_goal) when it
wanted this goal run.

4.1 A Suite of Techniques
The first planner principle we evaluate is the usefulness
of generating different techniques for accomplishing the
same goal. Here we will examine the performance of two
planners (planner A and B) - a more thorough analysis of
these tradeoffs may be found in [Wisniewski and Brown,
1993]. Both these planners figure out the next sheep to
save but differ in how long they take to run and how
many sheep are contained (in steady state) when run­
ning on an unloaded cpu. To guarantee accurate mea­
surement (no competing load) for this experiment, we
dedicate one processor to the planner function. A sheep
can travel from the center to the edge of the table in 10
seconds and the shepherd in about 1/3 of a second.

Planner A computes a list of all the sheep moving
away from the table center that the shepherd has time
to reach, sorted by distance from the center. It then de­
termines the best order for saving the next four sheep:
this requires future prediction of sheep movements. The
best sequence is the one maximizing the number of sheep
saved. Among the orderings that save equal number
of sheep, preference is given to the ordering taking less

68 ACTION AND PERCEPTION

time. The first sheep in the sequence is saved and the
planner starts over. Planner A performs the best un­
der no load but takes the longer time to run (about one
second). Planner B is a reactive, no look-ahead strategy,
that simply tries to save the sheep farthest from the cen­
ter. It runs much faster than A (about 8 milliseconds)
but does not perform nearly as well under no load: if by
letting the farthest sheep go, it is possible to save the
next two and otherwise not, A will save the two sheep
while B will save only one.

Figure 6: Adapting to high variable loads

To compare the different planners under simulated
conditions of parallel activity in other parts of the
SPARTA, a controlled load was placed on the processor
that the planner was running on. Since we were using
a multiprocessor we could vary the load experienced by
the planner process without affecting any of the other
processes in the system. We also had tight control over

how much load was experienced on the processor run­
ning the planners. The line graph of Figure 5 (on the
left) gives performance for a set of fixed loads (the load
does not vary throughout the entire execution - an unre­
alistic model since in a real application goals will come
and go, but it allows us to see the comparative benefits
of each of the planners), while the bar chart of Figure
6 gives average performance when the cpu load varies
during the run (like actual program execution).

The experiment (Figures 5 and 6) demonstrates the
effect of a high load. Recall that B runs about 40 times
faster than A. Planner A is expected to outperform B
with no load, but under increased load planner A might
not complete its calculations in time, thus planner B is
expected to outperform A under high load. The loads
are plotted on a logarithmic scale: load type II is twice
as much background load as load type I and half as
much as load type I I I . Indeed there is a dramatic de­
crease in performance of planner A under higher loads
while planner B remains fairly constant. In a fixed load
environment the run-time can select the better of the
two planners, thus achieving the best performance in all
cases. In the second half of the experiment the load var­
ied through time. Half the time there was no load and
half the time there was load. When there was a load it
was divided evenly (by thirds) amongst the different load
types. Figure 6 represents how A, B, and the run-time
mixture perform under varying load; best performance
occurs when Ephor dynamically selects the planner to
suit the (currently) available resources. It is clear that
dynamically selecting between planners improves appli­
cation performance.

4.2 Adaptable Parallel Planners

Sheep Speed (units/sec)

Figure 7: Fixed versus Adaptable Parallel Planners

The second planner principles we evaluate is the "bag
of tasks" (see section 3a) model for parallel planner

WISNIEWSKI AND BROWN 69

design. As we have mentioned, a key aspect of perform­
ing well in the real world is being able to adapt. This
adaptability applies both to the runtime and the appli­
cation. Our principle of using a "bag of tasks" model is
motivated by the fact that it provides considerable flex­
ibility when considering the amount of processing power
to allocate to a planner.

In this experiment we again assume a model of vary­
ing load as would be observed in a real application. The
parallel planner has been written using a "bag of tasks"
model. The planner looks four saves into the future.
The possible permutations for the next four sheep saves
are placed into a central queue where they are removed
by as many processes as the runtime has decided to in­
voke in this particular goal instantiation. This planner is
qualitatively different from the planners discussed in sec­
tion 4.1 and the environment is quantitatively different,
so the results should not be compared.

The results appear in Figure 7. The load of the appli­
cation allowed for between 1 and 7 processors to be avail­
able to the save-sheep goal at different points throughout
its execution. The "fixed" bar represents the applica­
tion's behavior assuming it could not adapt and adjust
to use the extra processors available at various points
throughout the execution, i.e., it always used one pro-
cessor. This would be required if the planner could not
adapt to the number of processors it could use, otherwise
it would not have been able to run in times of slightly
heavier load. The variable bar represents when Ephor
was allowed dynamically to allocate more processors for
the parallel planner when they were available. We vary
the response time expected from the planner by varying
the rate the sheep move. Notice that when the response
demands placed on the application increase, it becomes
more important for the planner to have been designed al­
lowing for differing number of processes to be used. This
figure illustrates the benefit of using a flexible parallel
planner. When the sheep are moving around quickly, the
adaptable parallel planner can confine over three times
as many sheep as the fixed parallel planner. The impor­
tant aspect of this discussion is not that parallel planners
(versus sequential ones) can improve the performance of
applications, rather that in real-world applications we
need planners that can dynamically vary the number of
processors they use. And equally important, we need
a system such as Ephor, that can support this desired
behavior.

This graph represents the interesting part of the state
space for the save-sheep planner. If the sheep move
very slowly (1-5 units/sec) then either planner will have
enough time to do something reasonable, and similarly if
the sheep are moving extremely quickly (greater than 60
units/sec) neither planner will have enough time to do
anything. Achieving perfect speedup when running on
seven processors (versus one) would allow the planner to
run seven times as fast. This does not however, translate
into a seven-fold improvement in application behavior.
In fact there may be some programs that do not ben­
efit or benefit very little from decreased running time.
However, many real-world applications will be able to
benefit from being able to perform more computation in

less time. Exploiting the parallel dimension of program­
ming a SPARTA can substantially improve application
behavior.

5 Conclusion
We described SPARTA characteristics and set of general
design principles for planners and parallel planners in
real-world applications. We presented qualitative argu­
ments for some, and for others we presented results in­
dicating significant performance improvement (as much
as 300 percent on our system). In all cases we showed
the key to good (parallel) planner design in SPARTAs
was the ability to adapt, by offering a set of techniques
to solve a particular goal.

We have found it very productive to work on both
the high level application and runtime system simulta­
neously. Their interactions are nontrivial and hard to
anticipate. Our current and future emphasis is on inves­
tigating and expanding the runtime support for sophisti­
cated parallel planners and decision-makers. We are also
continuing to develop better measures for how well the
implemented support meets the need of the high-level
planner.

References
[Ballard and Brown, 1992] DTI. Ballard and C. M.

Brown. Principles of animate vision, cvgip, 56(1):3-
21, July 1992.

[Brooks, 1987] Rodney A. Brooks. Intelligence without,
representation. In Proceedings of the Workshop on the
Foundations of Artificial Intelligence, 1987.

[Brooks, 1989] Rodney A. Brooks. A robot that walks:
Emergent behavior from a carefully evolved network.
Neural Computation, l(2):253-262, 1989.

[Brown and Terzopoulos, 1994] Christopher M. Brown
and Demetri Terzopoulos. Real-Time Computer Vi­
sion, chapter Chapter 9: Hybrid problems need hybrid
solutions? Tracking and controlling toy cars, pages
209-230. Cambridge University Press, 1994.

[Cok, 1991] Ronald S. Cok. Parallel Programs for the
Transputer. Prentice Hall, 1991.

[Durfee, 1990] Edmund H. Durfee. Towards intelligent
real-time cooperative systems. In James Hendler, ed­
itor, Planning in Uncertain, Unpredictable, of Chang­
ing Environments: 1990 AAAI Spring Symposium,
1990.

[Fodor, 1985] Jerry A. Fodor. Precis of the modularity
of mind. The Behavioral and Brain Sciences, 8(1): 1- 5,
1985.

[Gervasio and DeJong, 1992] Melinda T. Gervasio and
Gerald F. DeJong. Completable scheduling: An in­
tegrated approach to planning and scheduling. In
AAAI Spring Symposium on Practical Approaches to
Scheduling and Planning, pages 122-126, Stanford
University, March 1992.

[Gopinath and Schwan, 1989] Prabha Gopinath
and Karsten Schwan. Chaos: Why one cannot have

70 ACTION AND PERCEPTION

only an operating system for real-time applications.
Operating Systems Review, 23(3): 106-125, July 1989.

[Hadavi et al , 1992] Khosrow Hadavi, Wen-Ling Hsu,
and Michael Pinedo. Adaptive planning for appli­
cations with dynamic objectives. In AAAI Spring
Symposium on Practical Approaches to Scheduling and
Planning, pages 30-31, Stanford University, March
1992.

[Hoogeboom and Halang, 1992] Boudewijn Hoogeboom
and Wolfgang A. Halang. Real-Time Systems Engi­
neering and Applications, chapter 2: The Concept of
Time in the Specification of real-Time Systems, pages
11-40. Kluwer Academic Publishers, 1992.

[Liu et al , 1991] Jan Liu, Kwei-Jay Lin, Wei-Kuan
Shih, Albert Yu, Jen-Yao Chung, and Wei Zhao. Algo­
rithms for scheduling imprecise computations. IEEE
Computer, 24(5):58-69, May 1991.

[Moller-Nielsen and Staunstrup, 1987] A P.
Moller-Nielsen and A J. Staunstrup. Problem-heap:
A paradigm for multiprocessor algorithms. Parallel
Computing, 4:64-74, 1987.

[Paul et a/., 1991] C. J. Paul, Anurag Acharya, Bryan
Black, and Jay K. Strosnider. Reducing problem-
solving variance to improve predictability. Commu­
nications of the ACM, 34(8):80-93, August 1991.

[Schwuttke and Gasser, 1992] U. M. Schwuttke and
L. Gasser. Real-time metareasoning with dynamic
trade-off evaluation. In Proceedings of the Tenth
National Conference on Artificial Intelligence AAA!
1992, pages 500-506, 1992.

[Strosnider and Paul, 1994] Jay K. Strosnider and C. J.
Paul. A structured view of real-time problem solving.
Al Magazine, 15(2):45—66, summer 1994.

[Thomas and Crowther, 1988] R.H. Thomas and A W.
Crowther. The uniform system: An approach to run­
time support for large scale shared memory parallel
processors. In Proceedings of the 1988 International
Conference on Parallel Processing, pages 245-254, St.
Charles IL, August 1988.

[von Kaenel and Wisniewski, 1994] Peter von Kaenel
and Robert W. Wisniewski. Real-world shephering -
combining vision, manipulation, and planning in real
time. Technical Report 530, Department of Computer
Science, University of Rochester, Rochester, NY, Au­
gust 1994.

[Wisniewski and Brown, 1993] Robert W. Wisniewski
and Christopher M. Brown. Ephor, a run-time en­
vironment for parallel intelligent applications. In Pro­
ceedings of The IEEE Workshop on Parallel and Dis­
tributed Real-Time Systems, pages 51-60, Newport
Beach, California, April 13-15, 1993.

