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Abst rac t 

Recent work regarding the statistics of nat­
ural images has revealed that the dominant 
eigenvectors of arbitrary natural images closely 
approximate various oriented derivative-of-
Gaussian functions; these functions have also 
been shown to provide the best fit to the recep­
tive field profiles of cells in the primate striate 
cortex. We propose a scheme for expression-
invariant face recognition that employs a fixed 
set of these "natural" basis functions to gener­
ate multiscale iconic representations of human 
faces. Using a fixed set of basis functions obvi­
ates the need for recomputing eigenvectors (a 
step that was necessary in some previous ap­
proaches employing principal component anal­
ysis (PCA) for recognition) while at the same 
time retaining the redundancy-reducing prop­
erties of PCA. A face is represented by a set of 
iconic representations automatically extracted 
from an input image. The description thus ob­
tained is stored in a topographically-organized 
sparse distributed memory that is based on a 
model of human long-term memory first pro­
posed by Kanerva. We describe experimental 
results for an implementation of the method 
on a pipeline image processor that is capable 
of achieving near real-time recognition by ex­
ploiting the processor's frame-rate convolution 
capability for indexing purposes. 

1 I n t roduc t i on 
The problem of object recognition has been a central 
subject in the field of computer vision. An especially 
interesting albeit difficult subproblem is that of recog­
nizing human faces. In addition to the difficulties posed 
by changing viewing conditions, computational methods 
for face recognition have had to confront the fact that 
faces are complex non-rigid stimuli that defy easy ge­
ometric characterizations and form a dense cluster in 
the multidimensional space of input images. One of the 
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most important issues in face recognition has therefore 
been the representation of faces. Early schemes for face 
recognition utilized geometrical representations; promi­
nent features such as eyes, nose, mouth, and chin were 
detected and geometrical models of faces given by fea­
ture vectors whose dimensions, for instance, denoted the 
relative positions of the facial features were used for the 
purposes of recognition [Bledsoe, 1966; Kanade, 1973]. 
Recently, researchers have reported successful results us­
ing photometric representations i.e. representations that 
are computed directly from the intensity values of the 
input image. Some prominent examples include face 
representations based on biologically-motivated Gabor 
filter "jets" [Buhmann et al., 1990], randomly placed 
zeroth-order Gaussian kernels [Edelman et a/., 1992], 
isodensity maps [Nakamura et a/., 1991], and principal 
component analysis (PCA) [Turk and Pentland, 1991; 
Pentland et al., 1994]. 

This paper explores the use of an iconic representa­
tion of human faces that exploits the dimensionality-
reducing properties of PCA. However, unlike previous 
approaches employing PCA for recognition [Turk and 
Pentland, 1991; Murase and Nayar, 1995], our approach 
uses a fixed set of basis functions that are learned during 
an initial "development" phase; the costly and time con­
suming step of having to recompute basis functions when 
new faces (or other objects) are encountered is thereby 
avoided. In addition, the basis functions used to generate 
face representations are based on PCA of localized natu­
ral image patches at multiple scales rather than PCA of 
entire face images at a single scale; the localized nature 
of the representation helps to make it tolerant to mi­
nor changes in facial expressions and partial occlusions 
while the multiscale structure allows strategies for scale 
invariance. 

The iconic face representations are formed from n-
dimensional photometric feature vectors comprised of 
the responses of m derivative of Gaussian basis functions 
at a range of orientations, each at k scales (n = mk); 
for the experiments in the paper, nine basis filters at 
five scales were used generating a forty-five element re­
sponse vector characterizing the local image region at a 
point of interest. We have previously shown these iconic 
feature vectors to be useful for active vision [Rao and 
Ballard, 1995a], visuomotor learning [Rao and Ballard, 
1995b], and general object indexing [Rao and Ballard, 
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1995c]. Here, we show that such a representation may 
be used for the difficult problem of expression-invariant 
face recognition as well. 

A face is represented by a collection of iconic fea­
ture vectors automatically extracted from specific loca­
tions in the input image (Section 3). A topographically-
organized sparse distributed memory is used to learn the 
association between the appearance of a face as given by 
its feature vectors and the identity of the face (Section 4). 
Implementation of the recognition scheme is achieved 
using a Datacube MV200 pipeline image processor for 
both real-time visual preprocessing as well as indexing 
into the face database, utilizing frame-rate convolutions 
for distance computations (Section 5). We present pre­
liminary results on the performance of the method on a 
face database of 140 images from 20 different persons ex­
hibiting a range of facial expressions; a recognition rate 
of 93.3% was achieved by the method when a set of 33 
points were used for characterizing a face. 

2 Na tu ra l Basis Functions 
Images of natural scenes, unlike random collections of 
pixels, are characterized by a high degree of statistical 
regularity. For instance, pixel values in a given neigh­
borhood tend to be highly correlated owing to the mor­
phological consistency of objects. Thus, a pixel-wise rep­
resentation of objects obtained from a camera is highly 
redundant and some form of redundancy reduction is 
desirable. 

In principle, all n < N2 eigenvectors are needed in or­
der to completely represent the input image set but due 
to the statistics of natural images, it is usually the case 
that only a small number m of eigenvectors (m << n) 
account for almost all of the variance in the input data. 
Thus, by using only the first m dominant eigenvectors 
as basis functions (or orthogonal axes) for projecting 
new inputs, considerable computational savings can be 
achieved. 

Turk and Pentland [l99l] used PCA to synthesize 
the eigenvectors ("eigenfaces") of a training set of face 
images; they achieve recognition by using a template-
matching strategy with the vectors obtained by project­
ing new face images along a small number of eigenfaces. 
Murase and Nayar [1995] applied PCA to the problem 
of object recognition and pose estimation; they repre­
sent objects as manifolds in the low-dimensional sub-
space ("eigenspace") formed by the dominant eigenvec­
tors of a set of training images and achieve recognition 
by finding the manifold that is closest to the projection 
of an input image in the eigenspace formed by all objects. 

2.2 Unsupervised Learning of Basis 
Functions 

The methods of [Turk and Pentland, 1991] and [Murase 
and Nayar, 1995] both require recomputation of the 
eigenvectors when new faces/objects are encountered. It 
is therefore natural to ask what the results of PCA would 
be if one were to take the above process to its limit i.e. 
to perform PCA on a set J\,..., Jn of arbitrary natural 
images containing a wide variety of natural and man-
made stimuli. Recently, Hancock et al. [1992] used a 
neural network introduced by Sanger [1989] to extract 
the first few eigenvectors of an ensemble of natural im­
ages. They discovered that the eigenvectors were very 
close approximations of different oriented derivative-of-
Gaussian operators. 

We employed Sanger's PCA network to ascertain 
whether the results of Hancock et al. remained true 
for collections of images containing equal proportions of 
natural and man-made stimuli. In particular, we used 
32 x 32 Gaussian-windowed image patches obtained by 
scanning across a number of arbitrary images of natu­
ral scenes (Figure 1 (a)). Suppose / represents an in­
put mean-centered image patch and Wj represents the 
weight vector from the input layer (which in our case 
consists of 1024 units) to the output unit j. Sanger's 
PCA network uses linear output units i.e. 



after 12000 presentations. These nine eigenvectors alone 
account for as much as 83% of the input variance. It is 
clear that regardless of the scale of analysis, the eigen­
vectors closely approximate different oriented derivative-
of-Gaussian operators. 

In summary, the derivative-of-Gaussian filters are 
well-suited for use as natural basis functions for general-
purpose visual recognition because: (a) they are ob­
tained as result of applying PCA to arbitrary collec­
tions of images containing diverse elementary features 
from natural as well as man-made structures rather than 
just the images of particular objects or faces. In ad­
dition, correlation filters generated via PCA have been 
shown to maximize signal-to-noise ratio and yield much 
sharper correlation peaks than traditional raw image 
cross-correlation techniques [Kumar et a/., 1982]; (b) 
they form the class of real-valued functions that simul­
taneously minimize the product of the standard de­
viation of the spatial position sensitivity and spatial 
frequency sensitivity ([Gabor, 1946] p. 441)1; and (c) 
they are endorsed by neurobiological studies [Young, 
1985] which show that the different order derivative-of-
Gaussian functions provide the best fit to primate corti­
cal receptive field profiles among the different functions 
suggested in the literature. 

1The class of complex-valued functions that minimize this 
conjoint localization metric are the well-known Gabor ele­
mentary functions [Gabor, 1946]. 

3 Iconic Representations of Faces 
The iconic representations used in our recognition 
scheme are based on the natural basis functions men­
tioned in the previous section. The exact number and 
type of Gaussian derivative basis functions used is moti­
vated by the need to make the representations invariant 
to rotations in the image plane. This invariance can be 
achieved by exploiting the property of steerability [Free­
man and Adelson, 1991] and using a minimal basis set 
of two first-order directional derivatives at 0° and 90°, 
three second-order derivatives at 0°, 60° and 120°, and 
four third-order derivatives oriented at 0°, 45°, 90°, and 
135° (Figure 1 (c)). We omit the zeroth order to reduce 
illumination dependence and do not use higher orders 
since variance of the higher-order filters can be expected 
to approach that of image noise as suggested by the re­
sults of PCA. The use of the non-orthogonal oriented 
filters also obviates the use of mixed derivatives (some 
of which were obtained in Figure 1 (b)) since the other 
oriented filters yield a complete basis. 

3.1 Representing Image Regions 
The current implementation uses nine Gaussian direc­
tional derivatives denoted by 

where n denotes the order of the filter and 0n refers to 
the preferred orientation of the filter. The response of an 
image patch / centered at (xo,yo) to a particular basis 
filter Gt

J can be obtained by convolving the image patch 
with the filter : 

(7) 

The iconic representation for the local image patch 
centered at (x0,yo) is formed by combining into a single 
high-dimensional vector the responses from the nine ba­
sis filters, each (in the current implementation) at five 
different scales: 

(8) 
where i = 1,2,3 denotes the order of the filter, j = 
1, . . . ,i -I- 1 denotes the different filters per order, and 
s = smin,..., smax denotes the different scales (as given 
by the levels of a low-pass filtered image pyramid). The 
use of multiple scales increases the perspicuity of the rep­
resentation and allows interpolation strategies for scale 
invariance (see [Rao and Ballard, 1995a] for more de­
tails). In addition, the high-dimensionality of the vec­
tors makes them remarkably robust to noise due to the 
orthogonality inherent in high-dimensional spaces: given 
any vector, most of the other vectors in the space tend 
to be relatively uncorrelated with the given vector [Rao 
and Ballard, 1995c]. 

The iconic representations can be made invariant to 
rotations in the image plane (for a fixed scale) by ex­
ploiting the property of steerability [Freeman and Adel­
son, 1991]. The current orientation is computed using 
the first-order responses as: 

(9) 

12 ACTION AND PERCEPTION 



(13) 
with j' — 1 , . . . ,4. Note that this normalization proce­
dure does not apply to rotations in 3D. Modest rotations 
in depth can be handled as noise by the representation 
but larger 3D rotations require the use of responses from 
multiple views as we have shown in [Rao and Ballard, 
1995c]. This view-based approach is similar in spirit to 
the one used by Beymer [1993] (see also [Pentland et a/., 
1994]). 

3.2 Representing Faces 
The response vectors described in the previous section 
serve as iconic descriptions of individual image regions. 
In order to represent a given model face with a set of such 
vectors, the problem of selecting suitable points within a 
face from which model response vectors can be extracted 
must be addressed. In our current implementation, we 
apply the following simple strategy after the approxi­
mate boundary of the face is determined (by using, for 
instance, stereo and a technique such as zero disparity 
filtering [Coombs, 1992]): 

A face is represented by response vectors 
from the centroid of the face and each of the 
points lying on the intersections of radial lines 
with concentric circles of exponentially increas­
ing radii centered on the centroid. 

This strategy is illustrated in Figure 2. Only points ly­
ing within the approximate face boundary are used. This 
method ensures a dense representation of the "foveal" re­
gion near the centroid while at the same time including 
information from the "parafoveal" regions as well. Note 
that this strategy is a form of representation by parts. 
Also, due to the tendency of nearby points to be highly 
correlated, the above method does not require the cen­
troid and the other points of an input face to be precisely 
registered with the corresponding points from a model 
face; an approximate registration suffices in most cases. 

4 Topographic Sparse D is t r i bu ted 
M e m o r y 

For the task of face recognition using the iconic repre­
sentations discussed above, two requirements need to be 
met: (a) a mode of long-term storage for the represen­
tations of model faces, and (b) a method for learning 
the association between the representation of a face and 
the identity of the face. Both these requirements are 
met by using a modified form of sparse distributed mem­
ory (SDM), first proposed by Kanerva [1988; 1993] as a 
model of human long-term memory. 

4.1 Operation of the SDM 
The organization of sparse distributed memory (Fig­
ure 3) is similar to that of conventional random access 
memory. There exists an array of data storage lo­
cations, each identified by a number (the address of 
the location). However, the address vectors are usu­
ally high-dimensional and hence only a sparse subset 
of the address space is used for identifying data loca­
tions. Suppose the SDM contains M storage locations 
where the address vectors are p-ary and n-dimensional, 
and the data vectors are derived from the set { - 1 , l}k. 
For our current purposes, the feature vectors describing 
faces correspond to the addresses of the SDM while the 
data being associated with the feature vectors represent 
the identities of the faces, each person being defined by 
a small interval of possible values. Specific values of the 
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data vector may be interpreted as corresponding to a 
particular facial expression of a person. 
Organization of the Address Space 
Kanerva suggests randomly picking M unique vectors 
Ai from the pn possible address vectors for addressing 
each of the M data storage locations of the memory. 
However, in our case, the set of response vectors will be 
clustered in many correlated groups distributed over a 
large portion of the response vector space. Therefore, if 
addresses are picked randomly, a large number of loca­
tions will never be activated while a number of locations 
will be selected so often that their contents will resemble 
noise. The solution is to pick addresses according to the 
distribution of the data [Keeler, 1988]. In our case, we 
simply use an initial subset of the training response vec­
tors as the addresses. When all address locations have 
subsequently been filled, the address space can be al­
lowed to self-organize using the well-known competitive 
Hebbian learning rule: given a new input vector f, the 
closest addresses Ak are adapted according to 

(14) 
where n > 0 is a gain term and g is a radial basis func­
tion [Poggio and Girosi, 1990] that weights the second 
summand according to the distance between r and Ak. 
However, for the experiments in this paper, we did not 
employ the above self-organization rule. 
Activation of Data Locations 
The distance between response vectors r1 and r2 is de­
fined to be their normalized dot product (or correlation): 

(15 

Given a response vector r for indexing into the mem­
ory, all storage locations whose addresses lie within a 
distance of D from r are selected (the selected locations 
are indicated by ones in the vector s*in Figure 3). Note 
that in general, an arbitrary radial basis function such 
as a Gaussian may be used to obtain the components 
of s instead of a strict binary threshold function. This 
allows for smoother interpolation between stored data 
vectors especially when they are used to indicate facial 
expression in addition to identity. 
Hebbian Learning of Identity 
During the training phase, the input response vector r 
is used to find s and the associated identity vector d is 
added to the previous contents of each of the selected 
storage locations. This corresponds to a form of gener­
alized Hebbian learning as pointed out in [Keeler, 1988]. 
Note that this is different from a conventional memory 
where addresses are required to exactly match for se­
lection and previous contents are overwritten with new 
data. 
Retrieval of Identity 
After training, the memory can be used to yield hypothe­
ses for the identity of the object given a response vector 
r. First, the locations selected for r are found as above 
and the values of these selected locations are added in 

parallel (vector addition) to yield a sum vector 5 con­
taining the k sums. These k sums are thresholded at 0 
to obtain the data vector d i.e. di = 1 if Si > 0 and 
d't = -1 otherwise. 

The statistically reconstructed data vector should 
closely resemble the original data vector (or some linear 
combination of the stored vectors in the case of inter­
polation between stored facial expressions) provided the 
capacity of the SDM [Kanerva, 1993] has not been ex­
ceeded. The intuitive reason for this is as follows: When 
storing d using r, each of the selected locations receives 
one copy of the data. During retrieval with an address 
close to r, say r, most of the locations that were se­
lected with r are also selected with r. Thus, the sum 
vector contains most of the copies of d, plus copies of 
other different words; however, due to the orthogonality 
of the address space for large n, these extraneous copies 
are much fewer than the number of copies of d. This 
biases the sum vector in the direction of d and hence, 
d is output with a high probability (see [Kanerva, 1993] 
for a more rigorous argument based on a signal-to-noise 
ratio analysis). 

4.2 Topographical Organization of 
Memory 

Topology of the model points, as given by the concentric 
circular template (Figure 2), is preserved by using sep­
arate SDMs for storing vectors from each of the sparse 
number of locations on a face. The final output of the 
memory is obtained from the cumulative sum vector over 
the SDMs for the different facial locations. This arrange­
ment offers at least two advantages over using a single 
SDM for storing vectors as proposed earlier in [Rao and 
Ballard, 1995c]: (a) the crosstalk between response vec­
tors from different locations on a face is eliminated, and 
(b) a given response vector from a facial location needs 
to compared to only the model vectors in the SDM for 
that location, thereby speeding up the recognition pro-

5 Imp lementa t ion 
The face recognition scheme described above has been 
implemented using an active vision system comprised of 
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the University of Rochester (UR) binocular head which 
(Figure 4) provides input to a Datacube MaxVideo™ 
MV200 pipeline image-processing system capable of per­
forming convolutions at frame-rate (30/sec). The pitch 
of the two-eye platform is controlled by a single servo 
motor while separate motors control each camera's pan 
angle, thereby providing independent vergence control. 
This allows strategies for figure-ground segmentation of 
faces using, for instance, zero disparity filtering [Coombs, 
1992]; once a face has been approximately segmented 
from the background, the concentric circular template 
of points can be centered on the centroid of the face. 
Given an input face image, the MV200 executes nine 
convolutions with the different 8 x 8 Gaussian deriva­
tive kernels on a low-pass filtered five-level pyramid of 
the input image; filter responses are then extracted from 
each of the sparse number of points whose coordinates 
are given by the concentric circular template. 

Traditionally, the most time-consuming step during 
object indexing has been linearly accessing the large 
number of object representations in memory. However, 
our implementation greatly optimizes this step by imple­
menting memory directly within the pipeline image pro­
cessing system itself and using convolutions for distance 
computations. During indexing, an input response vec­
tor is loaded into the 8 x 8 convolution kernel and con­
volved with a "memory surface" containing the stored 
model vectors; the closest vectors can be selected by sim­
ply thresholding the results of the convolution. 

6 Exper imenta l Results 
The first experiment (Figure 5) illustrates the discrim­
ination ability of the feature vectors. The vector ex­
tracted from a point near the approximate centroid of a 
given face was compared with those for five other faces. 
It is clear that the five vectors are relatively uncorrected 
with the vector for the original face, the closest vector 
having a correlation of 0.43. For the SDMs, thresholds D 
in the range 0.80-0.95 were found to yield satisfactory re­
sults. Further discriminability is obtained by using more 
than one vector per face from different facial locations 
as previously discussed. 

The next experiment examines the effect of varying 
facial expressions on the iconic feature vectors. Figure 6 
shows a set of face images of a person exhibiting a range 
of facial expressions. The correlation between the vec­
tors for two different points on the neutral face image 
and the corresponding vectors for the other images is 
plotted below. The graph indicates that as expected, 
vectors for some facial points change much more than 
the others though the correlation still remains relatively 
high (above 0.45). This motivates the need for using a 
small number of images of a person under varying facial 
expressions for training the memory in order to achieve 
expression-invariant recognition. Due to the interpola­
tion inherent in the output of the SDM, the output of 
the memory can then be interpreted as an indication of 
facial expression in addition to the identity of the person. 

The third experiment tests vulnerability to occlusions. 
Figure 7 shows a sequence of face images with increasing 
facial occlusions; a plot below shows the correlations be-

Figure 5: Discrimination Ability of the Feature Vet 
tors. The graph shows a plot of correlation between th 
vector from the approximate centroid (marked by '+') of th 
first face and the corresponding vectors for the other face: 
In this case, a threshold D (for the SDM) of upto 0.45 retair 
discriminability between the first face and the others; the us 
of multiple vectors at other facial locations resolves furthe 
ambiguities. 

tween the iconic vectors for two different points on the 
first face image and the corresponding vectors for the 
other images. The results seem to indicate that modest 
occlusions (as in images 2, 3, and 4) can be handled but 
larger occlusions (such as in 5) may require other strate­
gies such as the one suggested in [Ballard and Rao, 1994]. 
The results also motivate the need for using more than 
one point per face in order to be able to compensate for 
partial occlusions near specific facial locations. 

Finally, we tested the recognition performance of the 
method by training the memory on a face database con­
sisting of images of 20 persons (Figure 8 (a)) exhibiting 
6 different facial expressions (as in Figure 6 (a)). All 
images were of size 128 x 128, greyscale, 8 bit quantized, 
and taken under normal (overhead) illumination condi­
tions with the face only approximately centered in the 
image frame. For testing the method, we used face im­
ages of the persons exhibiting facial expressions which 
were not used in the training set. Figure 8 (b) and (c) 
give examples of success and failure of the method re­
spectively. Figure 8 (d) shows the recognition rate (the 
fraction of 60 test faces correctly recognized) plotted as 
a function of the number of points used per training face. 
A peak performance of 93.3% was achieved when 33 fa­
cial points were used; only 4 of the 60 test faces were 
incorrectly classified, with the correct identity finishing 
second in 3 of these 4 cases. 

7 Conclusions and Future W o r k 
A new approach to the problem of face recognition was 
proposed which uses iconic representations of faces as 
input to a topographically-organized sparse distributed 
memory. The iconic feature vectors are attractive as 
representations of faces because: 
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• They simultaneously achieve the dual goals of 
dimensionality-reduction and orthogonality. 

• They are tolerant to modest changes in facial fea­
tures or expressions due to the large number of mea­
surements incorporated in the representations. 

• They allow simple strategies for rotation normaliza­
tion and scale invariance2. 

• They can be computed efficiently on pipeline image 
processors such as the Datacube MV200. 

• They facilitate real-time indexing of large face 
databases by allowing strategies such as using con­
volutions for distance computations. 

The sparse distributed memory model of Kanerva was 
used for learning the association between feature vec­
tors of a face and its identity. This model enjoys several 
favorable properties such as the ability to interpolate be­
tween stored facial expressions/views of a person, theo­
retically constant indexing time (due to the fixed number 
M of storage locations), possibly greater storage capac­
ity over conventional linear memory, and anthropomor­
phic learning behavior in addition to the favorable prop­
erties (such as fault tolerance) that are known to accrue 
to distributed representations. In addition, recognition 
memory was topographically organized, thereby reduc­
ing crosstalk and speeding up the indexing process. 

The method is clearly computation intensive; however, 
the recent availability of pipeline image processors sig­
nificantly ameliorates this drawback since the ability of 
these processors to perform convolutions at frame rate 
(30/sec) can be effectively exploited. For example, the 
feature vectors for a face can be extracted after only 
13 convolutions (four for generating the low-pass filtered 
five-level pyramid and nine for the basis filter kernels) 
i.e. in approximately half a second. Indexing into the 
SDMs using convolutions for distance computations fur­
ther optimizes the recognition process. Storing upto 33 

2See [Rao and Ballard, 1995a] for more details. 

vectors for a face may seem extravagant but note that 
this choice still results in considerable savings over the 
alternative of pixel-wise storage of images (33 x 45 ver­
sus 128 x 128). An interesting question is whether the 
method will fail when extremely large model bases of 
faces are used. However, the use of more than one vec­
tor per face potentially allows an extremely large num­
ber of persons to be handled. Kanerva [1993] estimates 
the capacity of the SDM to be about 5% of the number 
of storage locations; thus, even with only 1000 storage 
locations for each SDM, the number of potentially distin­
guishable items is still 5033 which is an extremely large 
number even after ruling out a significant proportion of 
the possible combinations as being unlikely to be en­
countered in practice. The accuracy of the above naive 
estimate clearly depends on the extent to which the filter 
response vectors are shared between the different stored 
model faces; while there exists some sharing in general 
due to the similarity of certain facial features across per­
sons, we believe that the possible use of self-organization 
within the address space of the SDMs will greatly help 
in further extending the capacity of the memory. 

As described in Section 6, preliminary results us­
ing the proposed method have been encouraging. Fu­
ture work will involve augmentation of the filter re­
sponses with color information (using, for instance, a va­
riety of color-opponent Gaussian center-surround mecha­
nisms derived from unsupervised learning along the RGB 
planes), motion-based segmentation and recognition of 
persons, and further testing of the method on large face 
databases. 
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